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Abstract

This thesis presents the Conditional Value-at-Risk concept and combines an analysis that covers
its application as a risk measure and as a vector norm. For both areas of application the theory
is revised in detail and examples are given to show how to apply the concept in practice.

In the first part, CVaR as a risk measure is introduced and the analysis covers the mathe-
matical definition of CVaR and different methods to calculate it. Then, CVaR optimization is
analysed in the context of portfolio selection and how to apply CVaR optimization for hedging
a portfolio consisting of options. The original contributions in this part are an alternative proof
of Acerbi’s Integral Formula in the continuous case and an explicit programme formulation for
portfolio hedging.

The second part first analyses the Scaled and Non-Scaled CVaR norm as new family of norms
in Rn and compares this new norm family to the more widely known Lp norms. Then, model (or
signal) recovery problems are discussed and it is described how appropriate norms can be used
to recover a signal with less observations than the dimension of the signal. The last chapter of
this dissertation then shows how the Non-Scaled CVaR norm can be used in this model recovery
context. The original contributions in this part are an alternative proof of the equivalence of two
different characterizations of the Scaled CVaR norm, a new proposition that the Scaled CVaR
norm is piecewise convex, and the entire Chapter 8. Since the CVaR norm is a rather novel
concept, its applications in a model recovery context have not been researched yet. Therefore,
the final chapter of this thesis might lay the basis for further research in this area.
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Chapter 1

Introduction

This chapter presents the motivation for this thesis, gives the outline of the following chapters,
and states the original contributions of the thesis.

Note that are no dedicated chapters covering a literature review or to establish notation.
Rather, the literature is reviewed and notation is established in each chapter and section where
it is appropriate.

1.1 Motivation of the Thesis

In financial risk management, especially with practitioners, Value-at-Risk (VaR) is a widely used
risk measure because its concept is easily understandable and it focusses on the down-side, i.e.
tail risk. A possible definition is given by Choudhry: “VaR is a measure of market risk. It is
the maximum loss which can occur with [(α × 100)] % confidence [...]” [13, p. 30].

However, despite its wide use, VaR is not a coherent risk measure. The concept of a coherent
risk measure was introduced by Artzner et al. in [4]. They formulated that a risk measure ρ is
coherent if it satisfies the following axioms (see Section 2.2 for details):

• Monotonicity
• Translation equivariance
• Subadditivity
• Positive Homogeneity

VaR is only coherent when the underlying loss distribution is normal, otherwise it lacks sub-
additivity. Other disadvantages of the VaR measure are that it does not give any information
about potential losses in the 1 − α worst cases and that calculating VaR optimal portfolios can
be difficult, if not impossible [30, p. 1444].

The Conditional Value-at-Risk (CVaR) is closely linked to VaR, but provides several distinct
advantages. In fact, in settings where the loss is normally distributed, CVaR, VaR, and Minimum
Variance (Markowitz) optimization give the same optimal portfolios [29, p. 29]. The advantages
of CVaR become apparent when the loss distribution is not normal or when the optimization
problem is high-dimensional: CVaR is a coherent risk measure for any type of loss distribution.

Furthermore, in settings where an investor wants to form a portfolio of different assets, the
portfolio CVaR can be optimized by a computationally efficient, linear minimization problem,
which simultaneously gives the VaR at the same confidence level as a by-product. On the other
hand, it is difficult to form VaR optimal portfolios, as is these settings VaR is difficult to calcu-
late. This computationally efficient way to optimize the portfolio CVaR can also be transferred
to hedging problems, in which an investment decision has been taken, but adjustments are pos-
sible so that the downside risk of the investment can be reduced. For example, [3], [5], [31], and
[34] used CVaR optimization to hedge risk, each one in a different setting.

What is more remarkable, is that the CVaR concept (which was developed as a financial risk
measure) can be abstracted to form a new family of norms in Rn. The Scaled and (Non-Scaled)

1



CVaR norm can then be used as alternatives to the widely established family of Lp norms.
Moreover, by choosing suitable α, the CVaR norm is equivalent to the L1 and L∞ norm.

Having this new CVaR norm also opens up new opportunities in Big Data optimization,
particularly in model or signal recovery problems. In these problems, it is the goal to reconstruct
a model or signal of dimension p when less than p observations are available. This can be achieved
by exploiting the structure of particular signals and solving a norm minimization problem using
an appropriate norm. Particularly the L1 and L∞ norm are used for two different types of
models, and having the CVaR norm as another norm in Rn could recover further types of
signals and models. To the best knowledge of the author, no research has been undertaken so
far to use the CVaR norm in model recovery problems, so this might be another area of research
to consider in the future.

1.2 Outline of the Thesis

This thesis consists of 7 main chapters (not counting the introduction and conclusion), which
concentrate on two main areas: First, the use of CVaR as a risk measure and second, the char-
acteristics of the CVaR norm with an outlook on possible future applications. For both areas,
an extensive analysis on the theory of CVaR and the CVaR norm is given, before showing how
this theory can be applied in practice.

Chapter 2 introduces the concept of CVaR as a risk measure for a univariate loss distribution.
It starts by showing how VaR and CVaR are related to each other. Then, the notion of a coherent
risk measure is introduced and it is shown why VaR is not coherent. Section 2.3 then examines
the mathematical definition of CVaR and shows how the CVaR can be calculated using the
Convex Combination Formula. The chapter finishes by showing an alternative way to calculate
CVaR, namely using Acerbi’s Integral Formula.

Chapter 3 moves from univariate to multivariate loss distributions. These loss distributions
arise in portfolio optimization problems, where there are different assets, each with their own loss
distribution and the investor’s loss depends on his investment decision into each asset. Section 3.1
discusses the first model that was introduced to optimize a portfolio with regards to risk (the
Markowitz Model, which aims to reduce the portfolio variance). Identifying the shortcomings
of the Markowitz Model gives the motivation for the next model that is considered, i.e. the
Rockafellar and Uryasev Model, which optimizes the portfolio CVaR. The analysis extends the
results of the CVaR analysis in the univariate case to the multivariate case and gives a linear
optimization programme that minimizes the CVaR of a portfolio. This section also shows that
the Markowitz Model and Rockafellar and Uryasev Model lead to the same optimal portfolio if
the loss of all assets in the portfolio is normally distributed. Section 3.3 then gives two numerical
examples to demonstrate the results that were established in this chapter. First, it is shown
that in certain cases CVaR and Mean-Variance optimization indeed give the same portfolio,
before demonstrating that for non-normal loss distributions CVaR optimization gives a less
risky portfolio that Mean-Variance optimization.

Next, Chapter 4 shows how the CVaR optimization problem can be used to hedge tail losses
from a previous investment decision. In this particular example, a scenario based on real world
data is created. Simplifying assumptions are made to focus on the hedging procedure instead
of the technical implementation of the hedge. For the scenario, a trader’s portfolio is to be ad-
justed, so that the CVaR of the portfolio is minimized. Since it is an option portfolio (for which
the risk manager needs a daily estimate on the portfolio variance) Section 4.1 and Section 4.2
give the necessary finance and risk management background. Section 4.3 briefly describes how
the portfolio is formed before Section 4.4 explains the hedging procedure, including an explicit
formulation of the hedging problem. The portfolio risk before and after hedging are compared
and it is shown how the hedging procedure can improve the risk profile of the portfolio.

Moving away from the financial context, Chapter 5 introduces two norms that are based on
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CVaR: the Scaled CVaR norm CSα , and the (Non-Scaled) CVaR norm Cα. For both norms, two
different yet equivalent characterizations are given. Section 5.3 then describes the properties
of each norm and especially shows how their properties with regards to the parameter α are
fundamentally different. Since these norms are fairly novel and standard algorithms to calculate
them are not yet implemented in MATLAB, Section 5.4 examines the computational efficiency
of calculating the two norms, CSα and Cα, using the two different characterizations for each.

To give a better understanding of CSα and Cα, they are both compared to the more familiar
family of Lp norms in Chapter 6. First CSα is compared to LSp norms before the Cα is analysed
with regards to the parameter α and its proximity to Lp norms.

Chapter 7 then gives a possible application of the CVaR norm in an optimization context:
model recovery using atomic norms. In model (or signal) recovery the goal is to reconstruct a
p-dimensional model (or signal) with n random measurements, such that n < p. For a recovery to
be successful, the model must have a certain structure that can be exploited by a corresponding
atomic norm. Section 7.1 provides the background on atomic norms and convex geometry (e.g.
the notions of tangent and normal cones) that is needed to explore the usefulness of the CVaR
norm in this setting. Section 7.2 states the necessary recovery conditions, more precisely the
number of random measurements needed to ensure that a p-dimensional model can be recovered
from n measurements. The number of measurements n is derived by using Gaussian Widths,
which are quite difficult to compute directly. Therefore, Section 7.3 states some properties of
Gaussian Widths that might prove useful when establishing a bound on n.

The final chapter, Chapter 8, is completely original in the sense that it explores how the
CVaR norm can be used in the context of model recovery problems. To the best knowledge of
the author, no research in this particular area has been carried out before. Unfortunately, due to
the limited scope of this thesis, the analysis could not be completed. Rather, this chapter should
show areas of further research, with pointers towards what could be analysed in more detail.
Section 8.1 contains a conjecture about the set of atoms of the CVaR norm for a certain α. A
proposition based on the conjecture is proven, but due to the limited scope of this dissertation,
the conjecture could not be proven in full. Still, a numerical experiment was carried out to
identify the atoms of the CVaR norm in R4 and this experiment provides further evidence that
the conjecture is true. Section 8.2 is rather short, showing how a bound on the number of
measurements n can be derived if expressions are available for the tangent or normal cone with
respect to the atoms of CVaR norm. Some numerical experiments were performed to recover
simple signals using the CVaR norm in Section 8.3. The results are not impressive, as the
experiments were limited to a certain α and only few special cases of signals. Analysing model
recovery using the CVaR norm further could lead to different set ups, for which the results could
be better.

1.3 Original Contributions of the Thesis

First of all, to the best knowledge of the author, this thesis is the first piece of work that
analyses CVaR as a risk measure and the CVaR norm (including possible applications) in a
unified way. There is an abundance of papers on CVaR, CVaR portfolio optimization, and
further applications of CVaR as a risk measure. However, there is little research on the CVaR
norm and no research on the application of the CVaR norm in the context of model recovery.

A large part of this thesis presents results of other papers. Even with established concepts,
the author aims to present them in such a way that the concepts are easily understandable.
Also, most plots in this paper were reproduced independently to confirm the results of other
authors. But throughout the paper several original contributions are made, either by presenting
new proofs to existing propositions, or by stating new propositions / conjectures. In detail, the
original contributions are:

• Subsection 2.4.1: A new proof of Acerbi’s Integral Formula (first proposed in [2]) to
calculate CVaR is given.

• Section 3.1: Although this is a standard result, the author proves independently why
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portfolio diversification reduces risk (when measured by standard deviation). The reason
to give an independent proof is that the standard introductory financial literature only
shows this result for N = 2 assets, while this thesis shows this result for N ≥ 2 assets.

• Section 4.4: Although hedging using CVaR optimization was discussed by Rockafellar and
Uryasev in [29], they never explicitly formulated the optimization programme. This thesis
clearly defines the variables and states the problem for a CVaR optimal hedge of a portfolio
of options.

• Subsection 5.1.2: This subsection introduces a second, equivalent characterization of the
Scaled CVaR norm, which was proposed by Pavlikov and Uryasev in [25]. The original
contribution of this thesis is an alternative proof of the equivalence of the two different
characterizations.

• Proposition 5.5: The piecewise convexity of the Scaled CVaR norm is a new and original
proposition of this thesis, to the best knowledge of the author.

• Section 5.4: To the best knowledge of the author, the computational efficiency of different
algorithms to calculate the Scaled and Non-Scaled CVaR norm has not been investigated
before.

• Section 8.1: To the best knowledge of the author, the atoms (i.e. the extreme points of
the unit ball) of the CVaR norm have never been explicitly stated before. This section
conjectures the set of atoms of the CVaR norm for a specific α. It shows that for different
α the unit ball of the CVaR norm looks different, and finally a numerical experiment is
performed to provide evidence for the conjecture in R4.

• Section 8.3: To the best knowledge of the author, the CVaR norm has never been analysed
in the context of model recovery problems. This section performs some numerical recovery
experiments to see how suitable Cα would be recover a special type of signal. Because of
the close link between the CVaR norm and the L1 and L∞ norms, it is also investigated
how well the CVaR norm performs in signal recovery problems when compared to these
two Lp norms.
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Chapter 2

Conditional Value-at-Risk as a Risk
Measure

This chapter introduces the concept of CVaR (building on the VaR concept) in the way that it
was first introduced - a financial risk measure. In Section 2.1 the mathematical definitions of VaR
and CVaR are given, followed by an intuitive description of their properties and interactions.
Section 2.2 presents the axioms that must be satisfied for a risk measure to be considered
coherent. Specifically, an example is shown to prove that VaR is not subadditive - whereas for
the same example, CVaR is subadditive. Finally, Section 2.3 explores the CVaR concept in
more detail, giving different algorithms and optimization programmes to calculate the CVaR of
a given loss distribution in a variety of settings. Section 2.4 states Acerbi’s Integral Formula to
calculate CVaR and gives an alternative proof of the formula.

2.1 Basic Notions in the VaR / CVaR Framework

Since losses are random variables, some statistical measures need to be introduced to cover
the basics for latter sections and chapters, especially the ones concerning portfolio optimization
(Chapter 3 and Chapter 4).

Definition 2.1 ([22, p. 17] Expectation). The expectation, sometimes called expected value
or mean, of a random variable X is defined as

E[X] ∶=

∞

∫
−∞

xf(x)dx in the continous case (2.1)

or

E[X] ∶=
∞
∑
k=−∞

kP (X = k) in the discrete case, (2.2)

where f(x) is the probability density function of X and P (X = k) is the probability mass function
X.

The expectation is often denoted by the letter µ, such that µ = E[X].1 E[X] provides
information about the distribution of X; informally it can be described as the centre value
around which possible values of X disperse [22, p. 17].

Definition 2.2 ([22, p. 18] Variance). The variance of a random variable X is defined as

Var (X) ∶= E [(X −E[X])
2
] . (2.3)

1Many texts apply the distinction to use µ for the population mean and µ̂ for the sample mean. Although
the expectation of the loss variable X is actually a sample mean, this dissertation will use the notation µ when
talking about the expectation of losses.
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The variance is often denoted as σ2.2 Since the variance is hard to interpret as it is given in
square units, the standard deviation (denoted σ =

√
Var(X)) is often used. It does not contain

additional information, but is easier to interpret as σ is given in the same units as µ [22, p. 18].
The standard deviation σ (or variance σ2) measures how strongly X is dispersed around µ.

Small values of σ indicate that X is concentrated strongly around µ, while large values of σ
mean that values of X further away from µ (in either direction) are more likely.

Another important concept throughout this dissertation is Covariance.

Definition 2.3 ([22, p. 21] Covariance). The covariance of two random variables X1 and X2

is defined as

Cov (X1,X2) ∶= E [(X1 −E[X1]) (X2 −E[X2])] . (2.4)

Covariance measures how strongly the variable X1 varies together with X2 (and vice versa).
As a special case, Cov(X,X) = Var(X). Also, if X1 and X2 are independent, their covariance
is 0 [22, p. 21]. As in the case with variance, the covariance is hard to interpret, as its unit is
the product of the respective units of X1 and X2. Therefore, another measure for dependency
that is derived from the covariance and variance is commonly used to express how strongly X1

and X2 vary together - it is called the correlation coefficient :

Definition 2.4 ([22, p. 22] Correlation Coefficient). The correlation coefficient of two random
variables X1 and X2 is defined as

ρ12 ∶=
Cov (X1,X2)

√
Var (X1)

√
Var (X2)

. (2.5)

ρ always takes values between -1 and 1 and is therefore easier to interpret than covariance.
If ∣ρ12∣ is close to 1, then there is a strong dependence between X1 and X2 [22, p. 22].

As pointed out in the introduction, Value-at-Risk (VaR) is the maximum loss that will not
be exceeded at a given confidence level. This gives the following mathematical definition of VaR:

Definition 2.5 ([27, week 8, p. 5] Value-at-Risk (VaR)). Let X be a random variable repre-
senting loss. Given a parameter 0 < α < 1, the α-VaR of X is

VaRα(X) ∶= min{c ∶ P (X ≤ c) ≥ α} . (2.6)

Given Definition 2.5, VaR can have several equivalent interpretations [27, week 8, p. 5]:
• VaRα(X) is the minimum loss that will not be exceeded with probability α.
• VaRα(X) is the α-quantile of the distribution of X.
• VaRα(X) is the smallest loss in the (1 − α) × 100% worst cases.
• VaRα(X) is the highest loss in the α × 100% best cases.

The general definition of CVaR is given in Section 2.3. At this point, only the CVaR definition
for continuous random variables will be given to create a more intuitive introduction into the
topic. For continuous X, the Conditional Value-at-Risk is the expected loss, conditional on the
fact that the loss exceeds the VaR at the given confidence level:

Definition 2.6 ([27, week 8, p. 13] Conditional Value-at-Risk (CVaR) in the continuous case).
Let X be a continuous random variable representing loss. Given a parameter 0 < α < 1, the
α-CVaR of X is

CVaRα(X) ∶= E[X ∣X ≥ VaRα(X)]. (2.7)

2Again, many texts apply a distinction between the population variance σ2 and the sample variance s2. As in
the case with the expectation, this dissertation will use the notation σ2 when talking about the variance of losses.
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Alternative names for CVaR found in the literature are Average Value-at-Risk, Expected
Shortfall, or Tail Conditional Expectation, although some authors make subtle distinctions be-
tween their definitions [27, week 8, p. 13].

Figure 2.1 shows the VaR and CVaR for a specific continuous random variable X. The
cumulative distribution function of X can be used to find VaRα(X), and VaRα(X) can be used
in turn to calculate CVaRα(X). 3

Figure 2.1: VaRα and CVaRα of a random variable X representing loss.

2.2 Coherent Risk Measures

Artzner et al. analysed risk measures in [4] and stated a set of properties / axioms that should
be desirable for any risk measure. Any risk measure which satisfies these axioms is said to be
coherent. The four axioms they stated are Monotonicity, Translation equivariance, Subadditivity,
and Positive Homogeneity. For the definitions of all axioms, X and Y are random variables
representing loss, c ∈ R is a scalar representing loss, and ρ is a risk function, i.e. it maps the
random variable X (or Y ) to R, according to the risk associated with X (or Y ).

Definition 2.7 ([4, p. 210] Monotonicity). A risk measure ρ is monotone, if for all X, Y :

X ≤ Y ⇒ ρ(X) ≤ ρ(Y ). (2.8)

Definition 2.8 ([4, p. 209] Translation Equivariance). A risk measure ρ is translation equiv-
ariant, if for all X, c:

ρ(X + c) = ρ(X) + c. (2.9)

Definition 2.9 ([4, p. 209] Subadditivity). A risk measure ρ is subadditive, if for all X, Y :

ρ(X + Y ) ≤ ρ(X) + ρ(Y ). (2.10)

Definition 2.10 ([4, p. 209] Positive Homogeneity). A risk measure ρ is positively homoge-
neous, if for all X, λ ≥ 0:

ρ(λX) = λρ(X). (2.11)

Speaking in a more intuitive way, the above axioms (Definition 2.7 - Definition 2.10) can be
interpreted as follows [27, week 8, p. 10 f.]:

3An alternative approach to find VaR and CVaR is shown in Theorem 3.2
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• Monotonicity: Higher losses mean higher risk.
• Translation Equivariance: Increasing (or decreasing) the loss increases (decreases) the

risk by the same amount.
• Subadditivity: Diversification decreases risk.
• Monotonicity: Doubling the portfolio size doubles the risk.

VaR fails to meet the subadditivity axiom (Definition 2.9) and is therefore criticized for not
being a coherent risk measure. A simple example shows this [27, week 8, p. 19]:

Consider two possible investments, A and B, which have the loss profile shown in Table 2.1.
There are three different scenarios ξ1, ξ2, ξ3, each with associated probability p(ξi).

ξ1 ξ2 ξ3

p(ξi) 0.04 0.04 0.92

A 1000 0 0
B 0 1000 0

Table 2.1: Losses for investments A and B under three scenarios.

Using Equation 2.6 to calculate the VaR at the 95 % confidence level for investments in A,
B, and A +B gives

VaR0.95(A) = min{c ∶ P (A ≤ c) ≥ 0.95} = 0 (P (A ≤ 0) = 0.96) ,

VaR0.95(B) = min{c ∶ P (B ≤ c) ≥ 0.95} = 0 (P (B ≤ 0) = 0.96) , and

VaR0.95(A +B) = min{c ∶ P (A +B ≤ c) ≥ 0.95} = 1000 .

In this example, VaR0.95(A + B) /≤ VaR0.95(A) + VaR0.95(B), hence VaR is not subadditive
according to Definition 2.9. Therefore, it is not a coherent risk measure in the sense of Artzner
et al.

Acerbi and Tasche proved in [2] that CVaR in satisfies the above axioms and is therefore a co-
herent risk measure.4 Using the previous example together with Equation 2.15 of Proposition 2.1
gives

CVaR0.95(A) = 800 (λ = 0.2,CVaR+
0.95(A) = 1000) ,

CVaR0.95(B) = 800 (λ = 0.2,CVaR+
0.95(B) = 1000) , and

CVaR0.95(A +B) = 1000 (λ = 1,CVaR+
0.95(A +B) = 0) .

which shows that subadditivity holds for CVaR, as CVaR0.95(A + B) = 1000 ≤ CVaR0.95(A) +

CVaR0.95(B) = 1600.

2.3 Closer Analysis of CVaR

Analysing CVaR in a wider context, one can derive CVaR from the generalized α-tail distribu-
tion of a random variable X (which represents loss). This is what Rockafellar and Uryasev did
in [30]. While [30] focused on general distributions, their previous work in [29] concerned the
CVaR of continuous loss distributions. This section will present the results of both papers in a
unified way, for discrete as well as for continuous loss distributions.

Suppose that X is the loss distribution, and that FX(z) is the cumulative distribution
function of X, i.e. FX(z) = P (X ≤ z). Then the generalized α-tail distribution of is defined as

4To be precise: In [2] Acerbi and Tasche defined Expected Shortfall (ES) and CVaR slightly differently. In the
paper, they first proved that ES is a coherent risk measure and later proved that ES is identical to CVaR.
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[27, week 8, p. 15]

FαX(z) ∶= {
0, when z < VaRα(X)
FX(z)−α

1−α , when z ≥ VaRα(X)
. (2.12)

Now, if Xα is the random variable whose cumulative distribution function is FαX (Equation 2.12),
then the CVaR is defined as

CVaRα(X) ∶= E[Xα
], (2.13)

which leads to Definition 2.6 in the continuous case (CVaRα(X) = E[X ∣ X ≥ VaRα(X)]), but
is different for the discrete case [27, week 8, p. 15].

For discrete or non-continuous loss distributions, Rockafellar and Uryasev proposed to cal-
culate CVaR as a weighted average, also called the Convex Combination Formula. To apply the
Convex Combination Formula, one needs the VaRα and CVaR+

α of X, where CVaR+
α(X) is the

expected loss strictly greater than the VaRα(X), i.e.,

CVaR+
α(X) ∶= E[X ∣X > VaRα(X)]. (2.14)

Proposition 2.1 ([30, p. 1452] CVaR as a weighted average / Convex Combination Formula).
Let Ψ be cumulative probability of VaRα(X), i.e. Ψ = FX(VaRα(X)) and define λ as

λ ∶=
Ψ − α

1 − α
,

for 0 ≤ α < 1. We then have:

CVaRα(X) = λVaRα(X) + (1 − λ)CVaR+
α(X). (2.15)

Note that Proposition 2.1 is valid for all loss distributions, including continuous ones. From
Proposition 2.1 it follows that CVaRα dominates VaRα, i.e. CVaRα ≥ VaRα. In fact, CVaRα >

VaRα, unless VaRα is the maximum loss possible [30, p. 1452]. Another result to emphasize is
that the representation of CVaR by Equation 2.15 is rather surprising. As shown earlier, VaR
is not a coherent risk measure (see Section 2.2) and, in fact, neither is CVaR+ [27, week 8, p.
16]. However, both these incoherent risk measures are combined in the Convex Combination
Formula to yield CVaR, which is coherent and therefore has many advantageous properties [30,
p. 1452].

To provide a better understanding of the Convex Combination Formula (Equation 2.15),
an example of a discrete loss distribution will be presented. The losses yi with associated
probabilities are given in Table 2.2.

i 1 2 3 4 5 6

yi 100 200 400 800 900 1000
P (Y = yi) 0.1 0.2 0.5 0.18 0.01 0.01

Table 2.2: Discrete loss distribution of a random variable Y .

Now assume the 95 % CVaR is to be determined. Since FY (400) = P (Y ≤ 400) = 0.8 and
FY (800) = P (Y ≤ 800) = 0.98, it follows that VaR0.95(Y ) = min{c ∶ P (Y ≤ c) ≥ 0.95} = 800
and λ = 0.98−0.95

1−0.95 = 3
5 . Also, CVaR+

0.95(Y ) can be calculated as 1
2 × 900 + 1

2 × 1000 = 950. Hence,
applying Equation 2.15 gives

CVaR0.95(Y ) =
3

5
× 800 +

2

5
× 950 = 860.
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2.4 Acerbi’s Integral Formula

Another way to express CVaR is to use Acerbi’s integral formula.

Proposition 2.2 ([12, p. 329] Acerbi’s Integral Formula for CVaR). The CVaR of a random
variable X, which represents loss, at the confidence level α can be expressed as

CVaRα(X) =
1

1 − α

1

∫
α

VaRβ(X)dβ. (2.16)

Hence, CVaRα can also be interpreted as the average VaRβ for β ∈ [α,1] [27, week 8, p.
33]. To demonstrate how Equation 2.16 is applied, an example with a uniform loss distribution
will be given. For this example, assume that the loss is distributed continuously and uniformly
between 0 and 100, i.e., X ∼ U(0,100). Thus, fX(z) = 1

100 for 0 ≤ z ≤ 100 and 0 elsewhere. The
VaR at confidence level β is given as VaRβ(X) = 100 × β. Then the CVaR at confidence level α
can be calculated as

CVaRα(X) =
1

1 − α

1

∫
α

VaRβ(X)dβ =
1

1 − α

1

∫
α

100 × β dβ

=
100

1 − α
[

1

2
β2

]
1

α
= 50 × (1 + α).

So in this example, the 90 % CVaR would be CVaR0.9(X) = 50 × (1 + 0.9) = 95.

2.4.1 A New Proof of Acerbi’s Integral Formula

Although Acerbi and Tasche proved Proposition 2.2 in [2, p. 1492], another proof will be given
here. Two reasons for this alternative proof are, first, that Acerbi used different definitions in his
paper, and second, to show how the result can be derived in another way. To the best knowledge
of the author, this alternative proof has not been published before. However, the proof given
here only holds for continuous random variables and therefore lacks the generality of Acerbi’s
proof.

For this alternative proof, the probability density function of the generalized α-tail distribu-
tion is needed, which can be derived from Equation 2.12 as fαX(z) = d

dzF
α
X(z), i.e.,

fαX(z) = {
0, when z < VaRα(X)
fX(z)
1−α , when z ≥ VaRα(X)

. (2.17)

Proof. (Continuous case only) Starting from the very basic definition of CVaR given in Equa-
tion 2.13, one can use integration by substitution to arrive at Equation 2.16:

CVaRα(X) =E[Xα
]

=

∞

∫
−∞

zfαX(z)dz

=

VaRα(X)

∫
−∞

zfαX(z)dz +

∞

∫

VaRα(X)

zfαX(z)dz.
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Using the definition of fαX(z) given in Equation 2.17, the above equality simplifies to

CVaRα(X) =

∞

∫

VaRα(X)

z
fX(z)

1 − α
dz.

Now, one can define a new variable β, such that β = FX(z). Differentiating β with respect to z
gives

d

dz
β = fX(z) ⇐⇒ fX(z)dz = dβ.

Furthermore, since X is continuous, there is a one-to-one relationship between β and z and by
Equation 2.6, z can be expressed as z = VaRβ(X). So substituting β = FX(z), z = VaRβ(X),
and adjusting the limits of the integral (FX(VaRα(X)) = α and FX(∞) = 1) yields

CVaRα(X) =
1

1 − α

1

∫
α

VaRβ(X)dβ ,

which completes the proof.
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Chapter 3

Portfolio Optimization Using CVaR

While Chapter 2 introduced the CVaR concept for univariate random distributions, the concept
can be extended to multivariate random distributions or random vectors as well. This will be
done here with a focus on portfolio optimization, i.e. investment decisions where the investor
is able to invest his funds in more than one asset. First, Section 3.1 gives an introduction into
portfolio optimization by presenting the first model that has been developed to improve decision
making for portfolio investments [23], namely the Markowitz or Mean Variance Model. Then,
Section 3.2 introduces the CVaR Model that has been developed by Rockafellar and Uryasev
in [29]. It will also be explained why the CVaR Model is preferable to the Markowitz Model
with regards to risk management. And finally, numerical examples will be given in Section 3.3
to show how the two models can be applied in practice.

Before beginning with the first section, some notation will be established for the concepts
that are used throughout this chapter and the rest of the dissertation.

First of all, the investor can invest in N different assets. His investment decision can be
represented mathematically by a decision vector x ∈ S ⊆ RN . Here, S represents the feasible set
for investment decisions.5

To define the set of admissible portfolios S for this chapter, the investor only has two con-
straints: He cannot short sell any assets and his decision needs to satisfy the unit budget
constraint. With these considerations, the set of admissible portfolios S which consists of N
assets can be as

S = {x ∈ RN ∶ xi ≥ 0 ∀ i ∈ {1,2, . . . ,N} ,
N

∑
i=1

xi = 1} . (3.1)

Also, the returns of each asset are random. Therefore, the losses can be expressed by a
random loss vector r ∈ RN ,6 so that ri is a random variable that is distributed according to the
loss distribution of the ith asset. Note that ri and rj for i /= j do not need to have the same
distribution. Furthermore, ri and rj can be correlated (and in most cases are), which is why
portfolio optimization is concerned with multivariate loss distributions.

So the loss X that an investor can experience is a random variable that depends on the
(random) losses of each asset and also on the investment in each asset, so that X =X(x, r).

For the following considerations, the investor demands a minimum expected return. Taking
r as the vector of random losses, x the vector of investment decisions, and labelling the minimum

5For example, S could have the unit budget constraint ∑i xi = 1, or a concentration risk constraint xj ≤
0.3∑i xi ∀j ≤ N . In the case of the budget unit constraint, x3 = 0.3 means that 30 % of available funds should be
invested in asset number 3.

6Here, the losses are the negative values of returns. Hence, a negative ri means that asset i is giving the
investor a profit.
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required return R, the minimum expected return constraint can be formulated as

xT r̂ ≤ −R , (3.2)

where r̂ = E[r].

3.1 Mean Variance Optimization (Markowitz Model)

Before modern portfolio theory was introduced by Markowitz in 1952 ([23]), investment decisions
were mostly made by an investor’s belief.7 Although the expected return and variance of a single
asset could be calculated, investors were not able to form optimal portfolios, i.e. assign their
funds in such a way that the whole portfolio had preferable characteristics [33].

The most important contribution of [23] is that it is favourable to diversify a portfolio because
this will reduce the portfolio’s standard deviation (risk) as long as the correlation between assets
is less than 1. This result can be shown by a portfolio of N assets [33, p. 32].

Assume that an investor can buy N assets, with expected returns r̂1 , . . . , r̂N and variance
σ2

1 , . . . , σ
2
N . Assigning xi of his funds to the ith asset, the investor can expect a return of

E[xT r] =
N

∑
i=1

xi × r̂i ,

which is the weighted average of expected asset returns. However, the risk for the investor can
be lower than the weighted average of asset risks. To show this, the covariance matrix Σ ∈ RN×N
of the random loss vector r will be introduced. Σ is defined as [27, week 3, p. 11]

Σ ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Var(r1) Cov(r1, r2) ⋯ Cov(r1, rN)

Cov(r2, r1) Var(r2) ⋯ Cov(r2, rN)

⋮ ⋮ ⋱ ⋮

Cov(rN , r1) Cov(rN , r2) ⋯ Var(rN)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where Var(ri) = σ
2
i was defined in Equation 2.3. Using Equation 2.5, Cov(ri, rj) can be expressed

as
Cov(ri, rj) = ρijσiσj ,

which leads to the expression below. This expression is a standard result in financial literature
but has been derived independently by the author:8

σ(xT r) =
√

Var(xT r) =
√

xTΣx

=

¿
Á
Á
ÁÀ

N

∑
i=1

x2
iσ

2
i +

N−1

∑
i=1

N

∑
j=i+1

2ρijxixjσiσj

=

¿
Á
Á
ÁÀ

N

∑
i=1

x2
iσ

2
i +

N−1

∑
i=1

N

∑
j=i+1

2xixjσiσj −
N−1

∑
i=1

N

∑
j=i+1

2(1 − ρij)xixjσiσj

=

¿
Á
Á
ÁÀ(

N

∑
i=1

xiσi)

2

−
N−1

∑
i=1

N

∑
j=i+1

2(1 − ρij)xixjσiσj

≤

¿
Á
Á
ÁÀ(

N

∑
i=1

xiσi)

2

=
N

∑
i=1

xiσi ,

7Even after Markowitz’s paper was published it took several decades to be adapted by the financial industry
because computers did not have the necessary power to perform the calculations.

8In the standard financial literature, e.g. [8], this result is usually derived for N = 2 assets but not for N > 2.
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for x ∈ S. The above inequality is strict whenever ρij < 1 for i /= j, meaning that the portfolio
risk (given by the standard deviation) is less than the weighted average of asset risks whenever
the assets are not perfectly correlated (which is usually the case).

Using Markowitz’s findings, a quadratic programme can be formulated to find a minimum
variance portfolio. Including the constraint given by Equation 3.2, the programme can give the
investor a portfolio which offers the required minimum return at the lowest possible risk. The
inputs for the model are r̂, the expected returns of assets 1, . . . ,N and Σ, the covariance matrix.
Usually these inputs have to be estimated and one possibility of estimating the entries of the
covariance matrix is given in Section 4.2 but a further discussion on parameter estimation is
beyond the scope of this dissertation.

Definition 3.1 ([27, week 3, p. 15] Minimum Variance Portfolio). A minimum variance portfolio
in the sense of [23] is a portfolio which can be formed by solving

min
x

xTΣx

s.t. xT r̂ ≤ −R
x ∈ S

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

, (3.3)

where Σ is the covariance matrix of the random loss vector r, r̂ = E[r], and S is the set of
admissible portfolios.

Since a covariance matrix Σ is always positive definite [27, week 3, p. 13], Problem 3.3 is a
convex optimization problem. It has therefore either a unique solution or is infeasible. The only
situation under which Problem 3.3 becomes infeasible is when the required expected return is
higher than any single expected return of the N assets under consideration.

To see how the portfolio risk changes for different expected returns, one can solve Problem 3.3
for different values of R (expected minimum return) and calculate the resulting portfolio risk
(standard deviation). These risk/return pairs can be used to draw the efficient frontier, which is
“a graph of the lowest possible [risk] that can be attained for a given portfolio expected return”
[8, p. 220].

For a sample portfolio of three assets with expected returns and covariance matrix

r̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−0.1073
−0.0737
−0.0627

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and Σ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.02778 0.00387 0.00021
0.00387 0.01112 −0.00020
0.00021 −0.00020 0.00115

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

the efficient frontier is shown in Figure 3.1.

Figure 3.1: Efficient frontier for a sample portfolio.
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Because of the quadratic term in the objective function of Problem 3.3, an investor can
increase his expected portfolio return with little additional risk if the portfolio has a low standard
deviation to begin with. For example, increasing the expected return from 6.5 to 7 % only
increases the standard deviation by 0.6 %. However, the more expected return an investor
demands, the higher the increase in risk. Increasing the expected return from 9.5 to 10 %
requires an additional risk of 1.7 %.

It is possible to form a portfolio with a risk/return profile that lies below the efficient frontier.
However, it is not possible to form a portfolio whose risk/return profile is above or to the left of
the efficient frontier in Figure 3.1 [8, p. 220].

3.2 CVaR Optimization (Rockafellar and Uryasev Model)

Despite revolutionizing risk management at its time, the Markowitz Model has some drawbacks
regarding risk management. Two important disadvantages arise because it measures the risk in
terms of variance of the portfolio:

1. Variance is only a useful risk measure for normally (or symmetrically) distributed losses.
Since variance is measured in either direction, tail losses arising from skewed loss distri-
butions are not taken in account.

2. Variance is not a coherent risk measure as it is not monotone.

The first argument is illustrated in the second scenario of Section 3.3, while the second ar-
gument can easily be shown by an example: Consider two random variables (both representing
loss) which are normally distributed, but with different µ and σ2: X ∼ N(µX = 0, σ2

X = 2) and
Y ∼ N(µY = 10, σ2

Y = 1). The probability that X is bigger than Y is insignificantly small. To be
precise, P (Y ≤X) = 3.9 × 10−9. Hence, it is nearly impossible that the loss of X will exceed the
loss of Y . However, X has a higher variance than Y , i.e. Var(X) = 2 ≥ Var(Y ) = 1, and would
therefore be considered riskier if the risk were measured by the variance.

Because of this, it is preferable for a risk manager to optimize the portfolio with regards to
CVaR than with regards to variance. Rockafellar and Uryasev proposed a linear programme in
[29] to optimize the CVaR of a portfolio. They also proved that under certain conditions the
CVaR optimization will give the same optimal portfolio as the minimum variance optimization.
The rest of this section introduces their notation and presents their results.9

To derive later results, Rockafellar and Uryasev labelled the cumulative distribution function
of losses Ψ(x, c), so that for any given decision x ∈ S, random asset losses r ∈ Rn, and loss
distribution X(x, r),

Ψ(x, c) = FX(c) = P (X(x, r) ≤ c) in the general case, and (3.4)

Ψ(x, c) = FX(c) = ∫

r∶X(x,r)≤c

p(r)dr in the continuous case, (3.5)

where p(r) in Equation 3.5 is the pdf for a continuous r. The function Ψ(x, c) can be interpreted
as the probability that the losses do not exceed threshold c.

Continuing with the notation of Ψ(x, c) as the threshold of losses, VaRα and CVaRα of an
investment decision x can be then written as

VaRα(x) = VaRα(X(x, r)) = min{c ∶ Ψ(x, c) ≥ α}, and (3.6)

CVaRα(x) = CVaRα(X(x, r)) = Er[X(x, r) ∣X(x, r) ≥ VaRα(x)]. (3.7)

9Although this section follows the outline of [29], the expressions are closer aligned with [27, week 8].
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Rockafellar and Uryasev characterized Equation 3.6 and Equation 3.7 in terms of a function

φα(x, c) ∶= c +
1

1 − α
E [(X(x, r) − c)+] , (3.8)

where E [⋅] is the expectation and (t)+ = max{0, t}. Based on Equation 3.8, they formulated
Theorem 3.1, the most important result of [29].

Theorem 3.1 ([29, p. 24]). As a function of c, φα(x, c) is convex and continuously differen-
tiable. The CVaRα of the loss associated with any x ∈ S can be determined from the formula

CVaRα(x) = min
c∈R

φα(x, c). (3.9)

Furthermore, let Φ∗
α(x) ∶= arg minc φα(x, c), i.e. Φ∗

α(x) is the set of minimizers of φα(x, c).
Then

VaRα(x) = min{c ∶ c ∈ Φ∗
α(x)}. (3.10)

And following from Equation 3.9 and Equation 3.10, the following equation always holds:

CVaRα(x) = φα(x,VaRα(x)). (3.11)

The proof of Theorem 3.1 is given in the appendix of [29]. Based on Theorem 3.1, Rockafellar
and Uryasev stated another theorem, which is useful for the computational calculation to find
a CVaR optimal portfolio x∗ ∈ S.

Theorem 3.2 ([29, p. 25 f.]). Let S be a convex set of feasible decisions x and assume that
X(x, r) is convex in x. Then minimizing the CVaRα of the loss associated with decision x ∈ S
is equivalent to minimizing φα(x, c) over all (x, c) ∈ S ×R, in the sense that

min
x∈S

CVaRα(x) = min
(x,c)∈S×R

φα(x, c) , (3.12)

where, moreover, a pair (x∗, c∗) achieves the right hand side minimum if and only if x∗ achieves
the left hand side minimum and c∗ ∈ Φ∗

α(x). Therefore, in circumstances where the interval
Φ∗
α(x) reduces to a single point (as is typical), the minimization of φα(x, c) produces a pair

(x∗, c∗) such that x∗ minimizes the CVaRα and c∗ gives the corresponding VaRα.

Theorem 3.2 not only gives a way to express the CVaR minimization problem in a tractable
form, but also allows to calculate CVaRα without having to calculate VaRα first, as would have
been the case with Definition 2.6. More remarkably, finding the CVaR by using Theorem 3.2,
gives the corresponding VaR as a by-product [29, p. 25 f.].

Applying Theorem 3.2 with Equation 3.8, the investment decision x that minimizes the
Conditional Value-at-Risk of a portfolio at the confidence level α can be expressed as [27, week
8, p. 21]

min
x∈S

CVaRα(x) = min
x ∈S,c ∈R

(c +
1

1 − α
E [(X(x, r) − c)+]) . (3.13)

To provide a better understanding of how to solve Problem 3.13, a one-dimensional example
will be given, i.e. there is only asset with a univariate, discrete loss distribution. Since there is
only one asset to consider, x = [1]. Because of this, it is not the goal in this example to find
the optimal portfolio composition, but rather to find the VaR and CVaR using Theorem 3.2.
The asset has the loss distribution of Y given in Table 2.2. The table is reproduced below for
convenience.

i 1 2 3 4 5 6

yi 100 200 400 800 900 1000
P (Y = yi) 0.1 0.2 0.5 0.18 0.01 0.01
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For this asset, the function φα(x, c) = c+
1

1−αE [(X(x, r) − c)+] will be drawn against c to find
CVaRα(x) = min

c∈R
φα(x, c) graphically. The graph of φα(x, c) for α = 0.95 is shown in Figure 3.2.

Figure 3.2: Function value φ0.95(c) of Y for different values of c.

The graph shows that the minimum of φα(x, c) occurs at c∗ = 800. Thus, min
c∈R

φα(x, c) =

φα(x,800) = 860. Hence, by Theorem 3.2, it follows that VaR0.95 = 800 and CVaR0.95 = 860,
which agrees with the results of the Convex Combination Formula in Section 2.3 as expected.
Another characteristic to point out is that φα(x, c) has “kinks” at points yi , i = 1, . . . ,6 [27,
week 8, p. 22].

Problem 3.13 is still difficult to evaluate if the loss distribution X is continuous. One remedy
is to use Monte Carlo Sampling to draw K i.i.d. samples of the loss vector r (rk , k ∈ {1,2, . . . ,K})
from the distribution of r, so that Problem 3.13 can be written in a tractable LP form [27, week
8, p. 29]. Adding constraint 3.2 to ensure a minimum expected return for the investor, the
tractable LP form of the optimization problem is given as

min
c,z

c + 1
K(1−α)

K

∑
k=1

zk

s.t. zk ≥ xT rk − c for k ∈ {1, . . . ,K}

zk ≥ 0 for k ∈ {1, . . . ,K}

xT r̂ ≤ −R
x ∈ S

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.14)

Another interesting link between mean variance and CVaR optimization was established in
[29] as well. Rockafellar and Uryasev proposed that under certain conditions, Problem 3.3 and
Problem 3.13 give the same optimal portfolio.

Proposition 3.1 ([29, p. 29]). Suppose that the loss associated with each x is normally dis-
tributed as holds when r is normally distributed. If α ≥ 0.5 and the constraint 3.2 is active at
solutions to Problem 3.3 and Problem 3.12, then the solutions to those problems are the same;
a common portfolio x∗ is optimal by both criteria.

This means that under the conditions stated in the proposition, it is possible to find the
minimum variance portfolio by finding the minimum CVaR portfolio. Proposition 3.1 will be
explored in the first scenario of Section 3.3.

3.3 Numerical Examples

This section gives numerical examples for finding minimum CVaR portfolios. More precisely, the
CVaR criterion will be compared to the minimum variance criterion (as formulated by Markowitz
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in [23], see Definition 3.1) and two scenarios will be given to show the effect of the criterion on the
portfolio composition. The first scenario is adapted from [29] and concerns normally distributed
losses. The second scenario is a theoretical construct with a positively skewed loss distribution.

First Scenario: Normally Distributed Losses

This scenario serves to display the proposition by Rockafellar and Uryasev that for certain
conditions the minimum variance optimization and CVaR optimization give the same optimal
portfolio x∗:

In the example from [29, p. 29 ff.], three assets (N = 3) are available: The S&P 500 index (x1),
long-term US government bonds (x2), and a portfolio of small cap stocks (x3). The expected
return of each asset and their covariance matrix is given in Table 3.1 and Table 3.2, respectively.

Asset Mean Loss

x1 S&P 500 - 0.0101110
x2 Gov. bond - 0.0043532
x3 Small Cap - 0.0137058

Table 3.1: Mean Asset Losses of S&P, Government Bonds, and Small Cap.

Covariance x1 x2 x3

Matrix S&P 500 Gov. bond Small Cap

x1 S&P 500 0.00324625 0.00022983 0.00420395
x2 Gov. bond 0.00022983 0.00049937 0.00019247
x3 Small Cap 0.00420395 0.00019247 0.00764097

Table 3.2: Covariance Matrix of S&P, Government Bonds, and Small Cap.

Using the CVX package in MATLAB, the minimum variance portfolios (MV opt) and mini-
mum CVaR portfolios (CVaR opt) are calculated for expected minimum returns of 0.6%, 0.9%,
and 1.1%. To calculate the minimum CVaR portfolio for α = 0.95, 100,000 Monte Carlo simula-
tions were run to estimate the loss distribution. The results are given in Table 3.3.

Required
return

0.6 % 0.9 % 1.1 %

Portfolio: MV opt CVaR0.95 opt MV opt CVaR0.95 opt MV opt CVaR0.95 opt

S & P 17.54 % 17.28 % 34.19 % 34.82 % 45.15 % 46.20 %
Gov. Bonds 75.65 % 75.75 % 37.18 % 36.93 % 11.58 % 11.52 %
Small Cap 6.81 % 6.97 % 28.64 % 28.25 % 43.27 % 43.18 %

Table 3.3: Minimum Variance and Minimum CVaR portfolios for different required returns.

Comparing the two portfolios for different levels of required return, one can see that their
compositions only vary slightly (although they should be identical). The reason they are not
completely identical is because the minimum variance portfolio was computed analytically, while
Monte Carlo simulations were used to calculate the CVaR optimal portfolio. Otherwise, they
can be considered identical, as was stated in Proposition 3.1.

Second Scenario: Positively Skewed Loss Distribution

In this subsection, the effect of the portfolio selection criterion is analysed when the loss dis-
tributions are not normal. Therefore, two further characteristics are needed to describe their
distribution They are named skewness and kurtosis, respectively:

18



Definition 3.2 ([22, p. 22] Skewness). The skewness of a random variable X is defined as

skew (X) ∶= E [(
X − µ

σ
)

3

] . (3.15)

Definition 3.3 ([22, p. 22] Kurtosis). The kurtosis10 of a random variable X is defined as

kurt (X) ∶= E [(
X − µ

σ
)

4

] . (3.16)

A skewness of 0 means that the distribution of X is symmetrical about its mean µ, while
a negative skewness indicates that values of X below µ are more likely and a positive skewness
means that values of X greater than µ are more probable. Kurtosis measure how the variance
is affected by extreme deviations from the mean. A high kurtosis shows that a high variance is
caused by few extreme deviations from the mean µ [22, p. 22 f.].

In this scenario, four assets will be considered (called Index, Bonds, Mid Cap, Emerging
Markets Stocks) and the following assumptions will be made:

• The loss distributions of the four assets are independent of each other, i.e. their correlations
are 0.

• The loss distributions of the first three assets have the same mean and variance as in the
previous scenario. The fourth assets has higher mean and variance than the previous three.

• The minimum variance and minimum CVaR portfolios are formed the same way as in the
previous scenario.

• Two cases will be considered: In the first case, all single loss distributions are normal, i.e.
they have skewness 0. In the second case, all loss distributions are positively skewed, i.e.
high losses are more likely than high profits.

The first assumption is highly theoretical, as in any real world setting there exists at least
some correlation. However, uncorrelated assets are very favourable in portfolio diversification as
this reduces the combined variance significantly. The second and third assumption create a link
between this scenario and the previous one. Hence, the effects can be better compared. Finally,
the fourth assumption should show the dangers of using minimum variance optimization in the
cases where losses are not normally distributed. The first case (in which losses are normally
distributed) serves as a benchmark portfolio for the second case with skewed loss distributions.

The loss distributions will be characterized by their mean, variance, skewness, and kurtosis
(see Table 3.4). The implementation of these random losses in MATLAB will be done with
the function pearsrnd and the loss distributions for the single assets in both cases are shown in
Appendix C.1.

Distribution skewness
Parameters µ σ2 case 1 case 2 kurtosis

x1 Index - 0.0101110 0.00324625 0 0.7 3
x2 Bonds - 0.0043532 0.00049937 0 0.7 3
x3 Mid Cap - 0.0137058 0.00764097 0 0.7 3
x4 EMS -0.018 0.01 0 0.7 3

Table 3.4: Characterization of loss distributions used in second scenario.

For all simulations and both cases, a minimum return of −0.006 was required. For both cases
(no skewness and skewness = 0.7), the minimum variance optimal portfolio is the same, while
the minimum CVaR portfolio differs: In both cases, even with normally distributed losses, it is
different from the minimum variance portfolio. In the first case the portfolio is different because

10Some texts subtract 3 from the fourth central (normalized) moment when they define the kurtosis - so that
the normal distribution has a kurtosis of 0. This convention is not followed in this dissertation.
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the minimum return constraint is not active. It differs more strongly in the case of skewed
distributions, as the CVaR optimization programme (Problem 3.14) takes the skewness of the
losses into account when forming the optimal portfolio, while the minimum variance programme
(Problem 3.3) does not. The respective optimal portfolios are shown in Table 3.5 below.

Case 1, skewness = 0 2, skewness = 0.7

Portfolio: MV opt CVaR0.95 opt MV opt CVaR0.95 opt

Index 12.12 % 13.34 % 12.12 % 14.36 %
Bonds 78.80 % 75.36 % 78.80 % 72.87 %

Mid Cap 5.15 % 6.15 % 5.15 % 6.95 %
EMS 3.93 % 5.15 % 3.93 % 5.82 %

Table 3.5: Minimum Variance and Minimum CVaR portfolios for scenario 2.

Although the loss distributions for both optimal portfolios are very similar in both cases
(see Appendix C.2), the CVaR optimal portfolio shows a better performance for the 100,000
simulations. Among other performance and risk measures, Expected Loss (EL) will also be
considered. The definition of EL is given below.

Definition 3.4 ([15, p. 23] Expected Loss (EL)). Let X be a random variable representing loss.
The expected loss of X is defined as

EL(X) = E[X ∣X ≥ 0]. (3.17)

Hence, the expected loss is the average loss, given that there is a loss. In this sense EL
is similar to CVaR but with the difference that the condition for the expectation is different.
A summary of several performance and risk indicators for both optimal portfolios is given in
Table 3.6.

Case 1, skewness = 0 2, skewness = 0.7

Portfolio: MV opt CVaR0.95 opt MV opt CVaR0.95 opt

Expected Return µ -0.0061 -0.0064 -0.0061 -0.0064
Standard Deviation σ 0.0198 0.0199 0.0198 0.0199

Expected Loss 0.0137 0.0137 0.0148 0.0147
VaR0.95 0.0265 0.0263 0.0265 0.0263

CVaR0.95 0.0347 0.0345 0.0398 0.0393

Table 3.6: Performance and risk indicators of optimal portfolios for scenario 2.

Table 3.6 shows that the performance and risk measures for each optimal portfolio and
each different case. In both cases, the investor can expect a higher profit when using a CVaR
optimal portfolio. The standard deviation of returns is slightly higher for the CVaR optimal
portfolio than for the minimum variance portfolio (0.0199 vs. 0.0198). However, for all other
risk measures that were considered, the CVaR optimal portfolio has lower or equal risk than the
minimum variance portfolio (to 4 decimal places). Hence, in this setting it would be favourable
for the investor to use the CVaR optimal portfolio, as he can achieve a higher return with the
same or less risk if he uses either of EL, VaR, or CVaR as the risk measure.
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Chapter 4

Portfolio Hedging using CVaR

Chapter 2 stated the definition of CVaR, explained its properties and Section 3.2 gave a compu-
tationally tractable optimization programme to calculate CVaR optimal investment portfolios,
for which corresponding examples were given in Section 3.3. In [29, p. 32 ff.], Rockafellar and
Uryasev (later followed by other authors, e.g. [3], [5], [31], and [34]) expanded the use of CVaR
to hedge against potential losses that arise from a previous investment decision. A possible
scenario for this application is when a trader entered a position only looking at potential gains
but disregarding possible losses. The risk manager might then intervene to hedge against the
potential losses, i.e. minimizing the trader’s risk while still maintaining acceptable potential
gains.

This chapter will start by introducing the basic notions of options and financial risk manage-
ment methods in Section 4.1 and Section 4.2, followed by applying the hedging procedure that
Rockafellar and Uryasev used11 to call and put options on Google and Yahoo traded on 21 July
2015.12 Based on the available data as of 21 July 2015, two strangles are formed and described
in Section 4.3, while the subsequent hedging procedure is described and applied in Section 4.4.

4.1 Background on Options

In Chapter 3, investments in an index fund, bonds and equity were considered when forming
the portfolio. These securities are basic investment possibilities, which are easy to understand
as their payoff is directly linked to their market value. This means that if the price of a common
share of Google rises (or falls) by 1 %, an investor who invested all his funds into Google shares
makes a profit (or loss) of 1 % as well.

Derivatives, such as call and put options,13 are “securities whose prices are determined by,
or ’derive [sic] from,’ the prices of other securities” [8, p. 678]. Since these prices do not need
to depend linearly on the price of the underlying, their payoff profile can be more complicated
than the payoff of bonds or equity.

Definition 4.1 ([8, p. 679] Call Option). A call option gives its holder the right to purchase
an asset for a specified price, called strike price, on the specified expiration date.14

Definition 4.2 ([8, p. 690] Put Option). A put option gives its holder the right to sell an asset
for a specified price, called strike price, on the specified expiration date.

For stock options, one option contact gives the holder to the right to buy (call option) or sell
(put option) 100 shares at the specified priced [21, p. 199].15 For any type of option, four basic

11The example used was taken from [24, p. 172 ff.].
12The ticker symbols for the underlying equity are NASDAQ:GOOGL and NASDAQ:YHOO.
13Other derivative securities are for example futures or swaps. For more information on those and other

derivatives please refer to [21].
14This is known as a European option. American options can be exercised at any time before the expiration

date.
15In the following example, only stock options will be considered
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positions can be taken (these positions can be combined to give more complex option strategies,
e.g. a spread or a strangle) [21, p. 197]:

1. A long position in a call option (i.e. buying a call option)
2. A short position in a call option (i.e. selling a call option)
3. A long position in a put option (i.e. buying a put option)
4. A short position in a put option (i.e. selling a put option)

The payoff and profit profiles for each of the four basic option positions are given in Figure 4.1
and Figure 4.2 below.

Figure 4.1: Reproduced from [21, p. 198], payoff and profit profile for a call option.

Denoting K the strike price, ST the price of the underlying stock at maturity, and pC the
price of the call, the payoff and profit of a long position in a call option can be expressed as [21,
p. 198]

PayoffLong Call = max{ST −K,0} (4.1)

ProfitLong Call = max{ST −K,0} − pC (4.2)

The payoff and profit for a short position are the negatives of Equation 4.7 and Equation 4.8
and can be expressed as [21, p. 198]

PayoffShort Call = min{K − ST ,0} (4.3)

ProfitShort Call = min{K − ST ,0} + pC (4.4)

Figure 4.2: Reproduced from [21, p. 198], payoff and profit profile for a put option.

Using the same expressions as before and denoting the price of the put as pP , the payoff and
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profit for a long put position can be expressed as [21, p. 198]

PayoffLong Put = max{K − ST ,0} (4.5)

ProfitLong Put = max{K − ST ,0} − pP (4.6)

while the payoff and profit for a short put are [21, p. 198]

PayoffShort Put = min{ST −K,0} (4.7)

ProfitShort Put = min{ST −K,0} + pP (4.8)

Hence, the bounds for profits and losses are quite different between call and put options.
While a trader has no upper bound on possible profits from a long call, the losses for a short
call are unbounded as well. On the hand, profits and losses are bounded for both positions, long
and short, in put options.

As mentioned previously, the four basic positions can be combined in a variety of ways to
create many different payoff profiles.16 In this dissertation, only a strangle will be considered.

Definition 4.3 ([21, p. 248] Sale of a Strangle). In the sale of a strangle, sometimes called a
top vertical combination, the investors sells a European put and a European call option with the
same expiration date, but different strike prices (KPut <KCall).

The payoff and profit profile from the sale of a strangle is shown in Figure 4.3. It is an easy
to construct strategy and suitable for investors who feel that large stock price movements are
unlikely. The profit from the sale of strangle is constant if the stock price at maturity is between
the two strike prices, i.e. KPut ≤ ST ≤KCall. However potential losses are unlimited if the stock
price rises above KCall because of the short call position [21, p. 248].

Figure 4.3: Reproduced from [21, p. 249], payoff and profit profile for the sale of a strangle.

4.2 Background on Financial Risk Management

When managing the risk of an option trader’s portfolio, it is crucial to have the most up to date
estimates for the variance (or standard deviation / volatility17) and covariance of the underlying
stock’s price movements. Just prices constantly change, so does the volatility of the price
changes. In periods of economic stability, huge price fluctuations are unlikely so the volatility is
low - while in times of uncertainty price fluctuations are more common.

Hence, it might be unsuitable to estimate the variance and covariance using Definition 2.2 and
Definition 2.3 with the entire historic data. To estimate the market risk18, practitioners tend to
use running averages or exponentially weighted moving averages to estimate the current volatility

16For a more detailed description of option trading strategy, please refer to [21, p. 234 ff.].
17Volatility is just another term for standard deviation that is commonly used in finance.
18Market risk is the risk that is caused by the uncertainty of price changes.
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of an asset because this places more importance on recent observations of price fluctuations [33,
p. 16].

This section describes how to calculated the daily EWMA estimates for the variance and
covariance and how to scale the variance if the holding period of a portfolio is longer than one
day. The following variables will be used in the definitions:

t: the day of the estimation
rx,t: the natural log of the daily return of an asset x

from t − 1 to t, i.e. ln (
Pricex,t−Pricex,t−1

Pricex,t−1
)

The natural log of returns is used instead of the regular returns, because the distribution of
log returns is better fitted by the normal distribution than the regular return. And at the same
time, log returns usually have a correlation with regular returns of close to 1 [33, p. 12].

Definition 4.4 ([33, p. 16] EWMA of Variance). The daily variance of the returns of an asset
x using an exponentially weighted moving average with parameter λ is estimated by the formula

Vart(x) ∶= λVart−1(x) + (1 − λ)r2
x,t−1. (4.9)

Hence, the variance of any given day is estimated by using the variance estimate of the
previous day and the natural log of observed returns of the previous day. To apply Equation 4.9,
two parameters must be set: the variance estimate of day 0 and λ. If the estimates have been
calculated for a long enough horizon, Var0(x) is of little importance so it can be set equal to
0. In practice, risk managers usually set λ = 0.94, as this provides a good balance between the
volatility estimates of recent and historic data [33, p. 16 ff.].

Definition 4.5 ([33, p. 25] EWMA of Covariance). The daily covariance between the returns
of an asset x and an asset y using an exponentially weighted moving average with parameter λ
is estimated by the formula

Covt(x, y) ∶= λCovt−1(x, y) + (1 − λ)rx,t−1ry,t−1. (4.10)

Again, two parameters must be set to apply Equation 4.10: Cov0(x, y) and λ. Using the
same arguments as before, they should be set to Cov0(x, y) = 0 and λ = 0.94 [33, p. 25].

If the portfolio is held for longer than one day, the variance and covariance estimates need
to be scaled to estimate the risk over the entire holding period. Assuming that returns follow
a random walk, the variance and covariance over a n day holding period (denoted Varnt (x) and
Covnt (x), respectively) are given as [33, p. 13]

Varnt (x) = n ×Vart(x), and (4.11)

Covnt (x, y) = n ×Covt(x, y). (4.12)

4.3 Forming a Strangle

As described in the introduction, one scenario where CVaR hedging can be used is the adjustment
of a trader’s portfolio to protect the trading firm against unlikely, but very high losses. For this
scenario the following set-up is given and the following assumptions are made:

• The date and time is 22 July 2015, 9 PM New York time (before US markets open).
• The trader only trades in call and put options on Google (NASDAQ:GOOGL) and Yahoo

(NASDAQ:YHOO) which are expiring on 24 July 2015.
• The trader builds his position and does not change until the option contract expire, i.e.

the holding time is 3 trading days.
• Only options with strike prices for which the open interest is greater than 200 will be

considered.
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• There is no bid-ask spread, i.e. options can be bought and sold at the same price. 19

• There are no transaction costs.
• All data is taken from Google Finance UK.
• The trader believes that high price movements are unlikely, he will build a pure strangle

with Google options and a strangle with additional positions with Yahoo options. The
additional positions on Yahoo are because the trader believes that an upward movement
of Yahoo’s share price is more likely than a downward movement.

To be more precise, the trader believes that at the market closing on 24 July 2014, the
share price of Yahoo will be between USD 37.5 and 42.5, while the share price of Google will
be between USD 665 and 730. Based on the trader’s positions, the payoff and profit profile
for different prices of Yahoo and Google at maturity is shown in Figure 4.4. More detailed
information about option prices is given in Appendix B.1 and Appendix B.2, while the trader’s
positions are given in Appendix B.3.

Figure 4.4: Profit profiles for (unhedged) Google and Yahoo strangles at maturity.

Hence, if Google’s share price closes within the trader’s expectations on 24 July, the trader
will make a constant profit. If Yahoo’s share price closes within the expectations, the trader will
also make a profit, but the profit will be highest if the share price closes at USD 42. However,
the trader will suffer severe losses if the share prices close outside of his expectation, as can be
seen at the left and right edges of the profit profiles in Figure 4.4.

4.4 Hedging Against a Strangle

To perform the risk assessment of the trader’s positions, the variance and covariance of Yahoo’s
and Google’s share price movements need to be estimated. Using the daily share price movements
over the last year, together with Equation 4.9 and Equation 4.10 gives the following covariance
matrix 20 for daily price movements:

Σ1
= [

0.00021176 0.00010049
0.00010049 0.00017589

] ,

19Usually, the price to buy (ask) is higher than the price to sell (bid). Here, the price of an option is the average
between ask and bid price.

20As noted before, λ is chosen to be 0.94 and the initial estimates for the variance and covariance are 0
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where Σ1
1,1 is the variance for Yahoo’s and Σ1

2,2 is the variance for Google’s share price move-
ments.

Since the trader will hold the portfolio for 3 days, Σ1 needs to be multiplied by 3 to give
the variance and covariance estimates for the whole holding period (see Equation 4.11 and
Equation 4.12). This gives the following covariance matrix for all subsequent risk assessments:

Σ = [
0.00063528 0.00030147
0.00030147 0.00052767

] . (4.13)

The remainder of this section mostly follows the hedging procedure used by Rockafellar and
Uryasev in [29]. However, the optimization programme used to determine the CVaR optimal
hedge was never stated in [29], so the explicit formulation of Problem 4.14 (together with Ta-
ble 4.1) is an original contribution of this thesis.

With the initial prices of Yahoo and Google at USD 39.73 and 695.35, respectively, on the
morning of July 22 and the variance estimates given in Σ, one can calculate the probability that
the share prices will be outside the trader’s beliefs. Denoting the share prices at maturity of the
options as ST,y and ST,g, these probabilities can be expressed as

P (ST,y < 37.5) + P (ST,y > 42.5) = 0.016 , and

P (ST,g < 665) + P (ST,g > 730) = 0.044 .

Hence, there is a high probability that the trader will be correct in his assumption. Taking the
risk analysis a little further, 20,000 simulations21 of share price developments were run (taking
into account the correlation between Yahoo and Google share price movements). For each of
the 20,000 scenarios the trader’s loss was calculated. The loss distribution of the simulations is
shown in Figure 4.5 and several risk metrics are given in Table 4.2.

Figure 4.5: Histogram of trader’s (unhedged) portfolio losses from 20,000 simulations.

Only in very few simulations (2.6 %) the trader actually makes a loss. Quantifying the
Value-at-Risk also gives a positive assessment of the positions, as VaR0.95 = −31,441, meaning
that with 95 % probability, the trader makes at least a profit of USD 31,440. However, the tail
risk is not taken into account. Since the profits are bounded, but losses are unlimited (see profit

21A higher number of simulations could not be performed as the PC ran out of memory for a CVX programme
with more than 20,000 simulations.
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profile in Figure 4.4), it is impossible to say how much the trader can expect to lose using VaR
alone. Actually, the the 95 % CVaR over all simulations is USD 22,458. This means that in the
5 % worst cases, the trader can expect to lose this much.

To hedge against the tail losses, one can modify Problem 3.14 and define a linear programme
that computes a CVaR optimal portfolio, starting from the trader’s positions (given in Ap-
pendix B.3). The variables used in the programme are shown in Table 4.1.22

Variable Dimension Description

Ny,Ng 1 Number of strike prices for Yahoo / Google options
ky Ny × 1 Strike Prices for Yahoo call / put options
kg Ng × 1 Strike Prices for Google call / put options

pC,y,pP,y Ny × 1 Prices to buy / sell Yahoo call / put options

pC,g,pP,g Ng × 1 Prices to buy / sell Google call / put options

xC,y,xP,y Ny × 1 Trader’s positions in Yahoo call / put options

xC,g,xP,g Ng × 1 Trader’s positions in Google call / put options

yC,y,yP,y Ny × 1 Hedging adjustments for Yahoo call / put options

yC,g,yP,g Ng × 1 Hedging adjustments for Google call / put options

aC,y,aP,y Ny × 1 Maximum position adjustments in the hedge using Yahoo
call / put options

aC,g,aP,g Ny × 1 Maximum position adjustments in the hedge using Google
call / put options

M 1 Number of price simulations
S M × 2 Simulated share prices at maturity for Yahoo and Google

POC,y,POP,y M ×Ny The payoff for call / put options in Yahoo, by simulated
share price and strike price of the option

POC,g,POP,g M ×Ng The payoff for call / put options in Google, by simulated
share price and strike price of the option

costy, costg 1 Cost for building the trader’s position
spc 1 spc = 100; The number of shares covered by 1 option contract

Table 4.1: Variables used in LP to calculate CVaR optimal hedge.

The advantage of using CVaR optimization for hedging is that all positions can be adjusted
simultaneously with relatively little computing power as the problem formulation is a linear
programme (compared to pure VaR optimization methods). However, in hedging the general
profile of the trader’s positions should be maintained and only the risk reduced. Therefore, the
changes (denoted by y) cannot be arbitrarily large, and the maximum possible adjustment for
each position is given by the a vectors. [29, p. 33 f.]

Also, the payoffs PO can be calculated before running the optimization programme (but
after the scenarios were simulated). Their entries are

POC,yi,j = max{Si,1 − k
y
j ,0} for i ∈ {1, . . . ,M}, j ∈ {1, . . . ,Ny} ,

POP,yi,j = max{kyj − Si,1,0} for i ∈ {1, . . . ,M}, j ∈ {1, . . . ,Ny} ,

POC,gi,j = max{Si,2 − k
g
j ,0} for i ∈ {1, . . . ,M}, j ∈ {1, . . . ,Ng} , and

POP,gi,j = max{kgj − Si,2,0} for i ∈ {1, . . . ,M}, j ∈ {1, . . . ,Ng} .

22Note that the trader’s positions (denoted x) are now given in number of contracts instead of percentages
(which was done in Chapter 3).
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Hence, the hedging problem using CVaR optimization can be formulated as

min
c,z

c + 1
M(1−α)

M

∑
m=1

zm

s.t. −aC,yi ≤ yC,yi ≤ aC,yi for i ∈ {1, . . . ,Ny}

−aP,yi ≤ yP,yi ≤ aP,yi for i ∈ {1, . . . ,Ny}

−aC,gi ≤ yC,gi ≤ aC,gi for i ∈ {1, . . . ,Ng}

−aP,gi ≤ yP,gi ≤ aP,gi for i ∈ {1, . . . ,Ng}

POy = [POC,y (xC,y + yC,y)

+POP,y (xP,y + yP,y)] × spc

POg = [POC,g (xC,g + yC,g)

+POP,g (xP,g + yP,g)] × spc

adjCosty = [
Ny

∑
i=1
pC,yi × yC,yi +

Ny

∑
i=1
pP,yi × yP,yi ] × spc

adjCostg = [
Ng

∑
i=1
pC,gi × yC,gi +

Ng

∑
i=1
pP,gi × yP,gi ] × spc

zm ≥ adjCosty + adjCostg + costy

+costg − [POym + POgm] for m ∈ {1, .,M}

zm ≥ 0 for m ∈ {1, .,M}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.14)

Hedging the trader’s portfolio using Problem 4.14 with aP,yi = aC,yi = 50 for i ∈ {1, . . . ,Ny}

and aP,gi = aC,gi = 5 for i ∈ {1, . . . ,Ng} yields the payoff / profit profile shown in Figure 4.6 and
the loss distribution Figure 4.7. The exact composition of the hedged portfolio is shown in
Appendix B.4 and Appendix B.5.

Figure 4.6: Profit profiles for hedged Google and Yahoo strangles at maturity.

After hedging, the profit profile for Yahoo options only changed slightly. The most noticeable
change is that the graph is mostly scaled, that is, the profit for any given share price is about
twice as high as for the unhedged portfolio. Still, the highest profit will be achieved when the
share price of Yahoo is at USD 42.

The pure strangle that was formed by options on Google changed its shape more noticeably.
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While the profit was mostly constant in the unhedged portfolio, there is now a clear peak at
ST,g = 665. While USD 665 was the trader’s assumed lower bound for the final share price, it is
now the share price at which the maximum profit will be achieved. Also, the trader will make a
profit as long as Google’s share price closes above USD 640. This adjustment can be explained
by the correlation between Yahoo’s and Google’s share price movements. As they are positively
correlated, a drop in Yahoo’s share price will be compensated in the trader’s portfolio by the
positions in Google options and vice versa.

Figure 4.7: Histogram of trader’s hedged portfolio losses from 20,000 simulations.

The loss distribution is also much more favourable, as there much less losses and also higher
profits can be realized than with the unhedged portfolio. A summary of main risk metrics is
given in Table 4.2 below.

Metric Original Portfolio Hedged Portfolio

Mean Loss -38,882 -54,910
Min Loss -77,072 -142,556
Max Loss 466,221 376,638
Probability of Loss 2.62 % 0.48 %
95 % VaR -31,441 -39,648
95 % CVaR 22,458 -27,911

Table 4.2: Risk metrics for the original and hedged option portfolio.

As table Table 4.2 demonstrates, the hedged portfolio performs better than the original in
any of the 6 metrics under consideration. The portfolio has a higher expected profit and lower
probability of generating a loss. Also, the 95 % VaR is lower (meaning that the minimum profit
in the 95 % best cases is higher than for the original portfolio). Most notably however, is the
fact that the hedged portfolio has a negative 95 % CVaR. The means that even in the 5 % worst
cases, the trader can expect a profit of USD 27,911. Still, losses are possible as can be seen in
Figure 4.7, but they are far less likely and less severe than for the original portfolio.

To conclude this chapter, it needs to be emphasized that the given example (although relying
on real world data) is only demonstrating how to apply CVaR optimization when trying to hedge
a portfolio. The hedging effect shown here is astonishing, but can barely be reproduced in an
actual trading environment for several reasons. First, the original portfolio was just an example,
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it has not been optimized with regards to profit maximization. For a more balanced portfolio,
the effects of hedging would be less extreme. Also, the prices were simplified, enabling to buy
and sell at the same price, without any transaction costs. Introducing ask and bid prices, as
well as transaction costs would decrease the profit and hence increase possible losses. Third, the
trader and risk manager could buy and sell unlimited quantities of any option. In reality the
offer and demand for any given option is limited. Finally, all other simplifying assumption would
make it hard to reproduce the same results in a real world setting, e.g. that the assumption
that the trader holds the portfolio until the maturity of the options or that the volatility would
remain constant over the holding period.
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Chapter 5

Conditional Value-at-Risk as a Norm

In the previous chapters, CVaR was introduced as a risk measure, which was the original inten-
tion of CVaR. Applications to portfolio optimization and hedging were also explored. In more
recent research, Pavlikov and Uryasev ([25]) abstracted the concept of CVaR to a more general
interpretation, so that it can also be used to define a family of norms in Rn. Pavlikov and
Uryasev proposed two norms: a scaled CVaR norm (denoted CSα ), and a non-scaled CVaR norm
(denoted Cα, later simply referred as CVaR Norm), which only differ by a factor.

This chapter first presents the two different and equivalent definitions that Pavlikov and
Uryasev used to define the CSα norm, and how the CSα and Cα norms are related to one another
by a multiplying factor. Section 5.3 presents some of the norm properties that were identified
by Pavlikov and Uryasev in [25], enriched by some original ideas of the author. Section 5.4
introduces algorithms to computationally evaluate the different CVaR norms (CSα and Cα).
Algorithms are derived for both equivalent definition of each CVaR norm and the computational
efficiency of each algorithm is evaluated.

5.1 Scaled CVaR Norm

The scaled CVaR norm of the vector x ∈ Rn is denoted by ⟪x⟫Sα, where α is a parameter in
the range 0 ≤ α ≤ 1. The first way to define ⟪x⟫Sα is given in Subsection 5.1.1 below, while an
alternative characterization is given in Subsection 5.1.2.

5.1.1 Definition

Definition 5.1 ([25, p. 3f.] Component-wise Scaled CVaR Norm). Let the absolute values of the
components of vector x ∈ Rn be ordered in ascending order, i.e., ∣ x(1) ∣ ≤ ∣ x(2) ∣ ≤ . . . ≤ ∣ x(n) ∣.

For αj =
j
n , j = 0, . . . , n−1, the scaled CVaR norm ⟪x⟫Sα of vector x with parameter αj is defined

as

⟪x⟫Sαj ∶=
1

n − j

n

∑
i=j+1

∣ x(i) ∣ . (5.1)

For α such that αj < α < αj+1, j = 0, . . . , n − 2, the scaled CVaR norm ⟪x⟫Sα equals the weighted
average of ⟪x⟫Sαj and ⟪x⟫Sαj+1, i.e.,

⟪x⟫Sα ∶= µ⟪x⟫Sαj + (1 − µ)⟪x⟫Sαj+1 , (5.2)

where

µ =
(αj+1 − α) (1 − αj)

(αj+1 − αj) (1 − α)
.
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And finally, for α such that n−1
n < α ≤ 1,

⟪x⟫Sα ∶= max
i

∣ xi ∣ . (5.3)

To illustrate the scaled CVaR norm, ⟪x⟫Sα will be calculated for a vector x ∈ R4 and the unit
ball of x ∈ R2 will be drawn, both for different values of α. For x = [10,−14,2,−9]T ,

⟪x⟫S0 = 1
4 (∣2∣ + ∣ − 9∣ + ∣10∣ + ∣ − 14∣) = 8.75 ,

⟪x⟫S0.25 = 1
3 (∣ − 9∣ + ∣10∣ + ∣ − 14∣) = 11 ,

⟪x⟫S0.5 = 1
2 (∣10∣ + ∣ − 14∣) = 12 , and

⟪x⟫S0.75 = ∣ − 14∣ = 14 .

Note that by Equation 5.3, ⟪x⟫Sα = 14 for all α > 0.75 as well. To calculate ⟪x⟫S1
3

, µ must be

calculated first to use Equation 5.2. Since 0.25 < µ < 0.5,

µ =
(1

2 −
1
3
) (1 − 1

4
)

(1
2 −

1
4
) (1 − 1

3
)
=

3

4
.

Hence, ⟪x⟫S1
3

= µ⟪x⟫S0.25 + (1 − µ)⟪x⟫S0.5 =
3
411 + 1

412, so that ⟪x⟫S1
3

= 11.25.

For x ∈ R2, the unit balls of ⟪x⟫Sα for α ∈ {0,0.1,0.25,0.4,0.5} are shown below in Figure 5.1.

Figure 5.1: Unit balls of ⟪x⟫Sα for x ∈ R2 and different values of α.

5.1.2 Alternative Characterization (Including a New Proof)

Alternatively, the vector x ∈ Rn can be associated with a random variable X with the set of
possible outcomes {∣x1∣ , ∣x2∣ , . . . , ∣xn∣}, each of which is equally likely. Then the scaled CVaR
norm can be derived from the CVaR definition itself (see Problem 3.13). That is, the scaled
CVaR norm ⟪x⟫Sα is equal to CVaRα(X) as defined in Equation 3.9.

Proposition 5.1 ([25, p. 6f.] Alternative Characterization of the Scaled CVaR Norm). For
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every x ∈ Rn, 0 ≤ α < 1, and c ∈ Rn,

⟪x⟫Sα = min
c∈R

(c +
1

n(1 − α)

n

∑
i=1

(∣ xi ∣ −c)
+
) , and (5.4)

⟪x⟫S1 = max
i

∣ xi ∣ . (5.5)

Although Proposition 5.1 has been proven by Pavlikov and Uryasev in [25, p. 9ff.], a novel
proof will be presented here to show how the proof of Proposition 5.1 can be derived in a different
way. To the best knowledge of the author this novel proof has not been published before.

In their proof, Pavlikov and Uryasev showed that for the function f(c) ∶= c+ 1
n(1−α) ∑

n
i=1 [∣xi∣ − c]

+

it follows that ∣x(j+1)∣ ∈ arg minc f(c). They used this result together with Equation 5.4 to ma-
nipulate the alternative characterization of the scaled CVaR norm so that it was equal to Defi-
nition 5.1. The novel proof has two steps. First, it will be shown that when interpreting x ∈ Rn
as the distribution of a discrete random variable X, the right hand side of both, Equation 5.4
and Equation 5.5, are an expression for CVaRα(X). In the second step, it will be shown that
CVaRα(X) can be expressed by the Convex Combination Formula (Equation 2.15) so that it is
equivalent to ⟪x⟫Sα in Definition 5.1.

Proof. Let x ∈ Rn describe the distribution of a discrete random variable X, so that the possible
values of X are ∣xi∣ for i ∈ {1, . . . , n}, with P (X = ∣xi∣) =

1
n . Then for 0 ≤ α < 1, the right hand

side of Equation 5.4 is equivalent to

min
c ∈R

(c +
1

n(1 − α)

n

∑
i=1

(∣xi∣ − c)
+
)

=min
c ∈R

(c +
1

1 − α
E [(X − c)+])

=CVaRα(X) ,

where the last line follows from Problem 3.13. And by Equation 2.7, maxi ∣xi∣ = CVaR1(X).

To determine the α CVaR of X by the Convex Combination Formula (Equation 2.15), three
cases need to be considered. The first case is α = αj =

j
n , j ∈ {0,1, . . . , n − 1}, the second case

is αj < α < αj+1 , j ∈ {0,1, . . . , n − 2}, and the third and last case is n−1
n < α ≤ 1. For all three

cases the absolute values of the components of x should be ordered in ascending order, such
that ∣x(1)∣ ≤ ∣x(2)∣ ≤ ⋅ ⋅ ⋅ ≤ ∣x(n)∣. Also, for the special case α = 0, ∣x(0)∣ ∶= 0 is introduced.

In the first case, i.e., α = αj =
j
n , j ∈ {0,1, . . . , n − 1}, VaRα(X), CVaR+

α(X), and λ are

VaRαj(X) =∣x(j)∣ , CVaR+
αj(X) =

1

n − j

n

∑
i=j+1

∣x(i)∣ , and λ =
αj − αj

1 − α
= 0 ,

so that the CVaR can be expressed as

CVaRαj(X) =
1

n − j

n

∑
i=j+1

∣x(i)∣ , (5.6)

which equals ⟪x⟫Sαj by Equation 5.1.
In the second case, i.e., αj < α < αj+1 , j ∈ {0,1, . . . , n − 2}, VaRα(X), CVaR+

α(X), and λ are

VaRα(X) =∣x(j+1)∣ , CVaR+
α(X) =

1

n − (j + 1)

n

∑
i=j+2

∣x(i)∣ , and λ =
αj+1 − α

1 − α
,
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so that the CVaR can be expressed as

CVaRα(X) =
αj+1 − α

1 − α
∣x(j+1)∣ + (1 −

αj+1 − α

1 − α
)

1

n − (j + 1)

n

∑
i=j+2

∣x(i)∣ . (5.7)

To show that Equation 5.7 equals Equation 5.2, Equation 5.2 needs to be manipulated, so that

⟪x⟫Sα =µ⟪x⟫Sαj + (1 − µ)⟪x⟫Sαj+1

=µ
1

n − j

n

∑
i=j+1

∣x(i)∣ + (1 − µ)
1

n − (j + 1)

n

∑
i=j+2

∣x(i)∣

=µ
1

n − j
∣x(j+1)∣ + µ

1

n − j

n

∑
i=j+2

∣x(i)∣ +
1

n − (j + 1)

n

∑
i=j+2

∣x(i)∣ − µ
1

n − (j + 1)

n

∑
i=j+2

∣x(i)∣

−
αj+1 − α

1 − α

1

n − (j + 1)

n

∑
i=j+2

∣x(i)∣ +
αj+1 − α

1 − α

1

n − (j + 1)

n

∑
i=j+2

∣x(i)∣

=µ
1

n − j
∣x(j+1)∣ + (1 −

αj+1 − α

1 − α
)

1

n − (j + 1)

n

∑
i=j+2

∣x(i)∣

+ (µ
1

n − j
− µ

1

n − (j + 1)
+
αj+1 − α

1 − α

1

n − (j + 1)
)

n

∑
i=j+2

∣x(i)∣

=
αj+1 − α

1 − α
∣x(j+1)∣ + (1 −

αj+1 − α

1 − α
)

1

n − (j + 1)

n

∑
i=j+2

∣x(i)∣ . (5.8)

The last step follows because

µ
1

n − j
=
(αj+1 − α) (1 − αj)

(αj+1 − αj) (1 − α)

1

n − j

=
(αj+1 − α) (1 − j

n
)

(
j+1
n −

j
n
) (1 − α) (n − j)

=
αj+1 − α

1 − α
,

and

µ
1

n − j
− µ

1

n − (j + 1)
+
αj+1 − α

1 − α

1

n − (j + 1)
=0 .

Comparing Equation 5.8 and Equation 5.7 shows that CVaRα(X) = ⟪x⟫Sα for αj < α < αj+1 , j ∈
{0,1, . . . , n − 2}.

The last step is to show that CVaRα(X) = ⟪x⟫Sα for n−1
n < α ≤ 1, which is trivial, as

CVaRα(X) = maxi ∣xi∣ = ⟪x⟫Sα in this case. This follows from Equation 5.3 and because
CVaRα(X) = VaRα(X), when VaRα(X) is the maximum loss possible [30, p. 1452], which
is the case for n−1

n < α ≤ 1.
So both, Definition 5.1 and the right hand side of Equation 5.4 and Equation 5.5 in Propo-

sition 5.1 are equal to CVaRα(X), and hence must be equivalent.
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5.2 Non-Scaled CVaR Norm

The non-scaled CVaR norm (also called CVaR norm) is obtained by multiplying the scaled
CVaR norm by a factor. This norm will have more significance in the following chapters.

5.2.1 Definition

The non-scaled CVaR norm is obtained by multiplying the scaled CVaR norm by the factor
n(1 − α), i.e.,

⟪x⟫α ∶= n(1 − α) ⋅ ⟪x⟫Sα . (5.9)

The non-scaled CVaR norm will be called CVaR norm from here on for simplicity.

Algorithms for calculating the scaled CVaR norm and CVaR norm will be implemented
computationally and their efficiency will be compared in Section 5.4. Since the algorithms will
be based on the definitions of the norms, it is computationally more efficient to calculate the
CVaR norm from an algorithm based on Definition 5.2 than based on Equation 5.9 as this
eliminates two calculation steps: first scaling by n− j and then multiplying by n(1−α). Hence,
the following definition of the CVaR norm will be used.

Definition 5.2 ([25, p. 14f.] Component-wise CVaR Norm). Let the absolute values of the
components of vector x ∈ Rn be ordered in ascending order, i.e. ∣ x(1) ∣ ≤ ∣ x(2) ∣ ≤ . . . ≤ ∣ x(n) ∣.

For αj =
j
n , j = 0, . . . , n − 1, the CVaR norm ⟪x⟫α of vector x with parameter αj is defined as

⟪x⟫α ∶=
n

∑
i=j+1

∣ x(i) ∣ . (5.10)

For α such that αj < α < αj+1, j = 0, . . . , n−2, the CVaR norm ⟪x⟫α equals the weighted average
of ⟪x⟫αj and ⟪x⟫αj+1, i.e.

⟪x⟫α ∶= λ⟪x⟫αj + (1 − λ)⟪x⟫αj+1 , (5.11)

where

λ =
αj+1 − α

αj+1 − αj
.

And finally, for α such that n−1
n < α < 1,

⟪x⟫α ∶= n(1 − α)⟪x⟫αn−1 = n(1 − α)max
i

∣ xi ∣ . (5.12)

Again, some examples will be given to gain a better familiarity with the CVaR norm. The
examples are the same as in Subsection 5.1.1. For x = [10,−14,2,−9]T ,

⟪x⟫0 = ∣2∣ + ∣ − 9∣ + ∣10∣ + ∣ − 14∣ = 35 ,

⟪x⟫0.25 = ∣ − 9∣ + ∣10∣ + ∣ − 14∣ = 33 ,

⟪x⟫0.5 = ∣10∣ + ∣ − 14∣ = 24 , and

⟪x⟫0.75 = ∣ − 14∣ = 14 .

In contrast to ⟪x⟫Sα, ⟪x⟫α /= ⟪x⟫0.75 for α > 0.75, as, for example, ⟪x⟫0.9 = 4(1−0.9)⋅14 = 5.6.
And to calculate ⟪x⟫ 1

3

, λ must be calculated first to use Equation 5.11. Since 0.25 < λ < 0.5,

λ =
1
2 −

1
3

1
2 −

1
4

=
2

3
.

35



Hence, ⟪x⟫ 1
3

= λ⟪x⟫0.25 + (1 − λ)⟪x⟫0.5 =
2
333 + 1

324, so that ⟪x⟫ 1
3

= 30.

For x ∈ R2, the unit balls of ⟪x⟫α for α ∈ {0,0.1,0.25,0.4,0.5} are shown below in Figure 5.2.

Figure 5.2: Unit balls of ⟪x⟫α for x ∈ R2 and different values of α.

5.2.2 Alternative Characterization

Alternatively, the CVaR norm can be obtained by solving the following minimization (using
Equation 5.9 and Proposition 5.1).

Proposition 5.2 ([25, p. 16] CVaR Norm based on CVaR Definition). For 0 ≤ α < 1,

⟪x⟫α = min
c

(n(1 − α)c +
n

∑
i=1

(∣ xi ∣ −c)
+
) . (5.13)

Writing Proposition 5.2 as an LP, i.e.,

⟪x⟫α = min
c

n(1 − α)c +
n

∑
i=1
zi

s.t. zi ≥ ∣xi∣ − c for i ∈ {1, . . . , n}
zi ≥ 0 for i ∈ {1, . . . , n}

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

, (5.14)

one can use the strong duality theory of LP to obtain an equivalent definition of the CVaR
norm [17, p. 5]. This alternative definition can be expressed as

max
n

∑
i=1

∣xi∣qi

s.t.
n

∑
i=1
qi = n(1 − α) for i ∈ {1, . . . , n}

0 ≤ qi ≤ 1 for i ∈ {1, . . . , n}

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (5.15)

which is the continuous knapsack problem.
The knapsack problem is a standard integer programming problem. Suppose that there is a

decision to make on whether to use any of n items, each of which has a benefit bi and a cost ci
for i ∈ {1,2, . . . , n}. The goal is to maximize total benefit with a constraint on the total costs,
C. The only additional constraint of the knapsack problem is that the decision variables qi must
be 0 or 1, i.e., an item is used completely or not at all - which makes it an integer programming

36



problem [32, p. 524]. Hence, the knapsack problem can be formulated as

max
q

n

∑
i=1
biqi

s.t.
n

∑
i=1
ciqi ≤ C

qi ∈ {0,1} for i ∈ {1, . . . , n}

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (5.16)

Changing the integer constraint (qi ∈ {0,1}) to a linear constraint (0 ≤ qi ≤ 1) and changing the
inequality of the first constraint to an equality transforms the knapsack problem into the con-
tinuous knapsack problem, which is a linear programming problem. In the continuous knapsack
problem it is possible to use fractions of any item, making it easier and more straightforward to
solve (see Proposition 5.3). The parameters between Problem 5.16 and Problem 5.15 are linked
in such a way that bi = ∣xi∣, ci = 1 for i ∈ {1, . . . , n}, and C = n(1 − α).

The optimal objective value of Problem 5.15 is another equivalent definition of the CVaR
norm (since strong duality holds). The optimal objective value of Problem 5.15 can be found
by a greedy algorithm, the result of which is stated below. 23

Proposition 5.3 ([17, p. 6] CVaR Norm based on dual formulation of CVaR definition). Let
the absolute values of the components of vector x ∈ Rn be ordered in descending order, i.e.
∣ x(1) ∣ ≥ ∣ x(2) ∣ ≥ . . . ≥ ∣ x(n) ∣. Then

⟪x⟫α =
⌊n(1−α)⌋
∑
i=1

∣x(i)∣ + (n(1 − α) − ⌊n(1 − α)⌋) ∣x(⌊n(1−α)⌋+1)∣. (5.17)

In Proposition 5.3, the absolute values of the components of x are ordered in descending
order, which contrasts the original definition of the CVaR norm in Definition 5.2. This is done
so that the equivalence between Equation 5.17 and the D-norm given in Definition 5.3 will
become apparent (see Subsection 5.3.2).

5.3 CVaR Norm Properties

Any function ρ ∶ Rn → R satisfies the following properties is a norm on Rn [26, p. 20]:
i) ρ(x) ≥ 0∀x ∈ Rn

ii) ρ(λx) = ∣ λ ∣ ρ(x),∀x ∈ Rn,∀λ ∈ R
iii) ρ(x + y) ≤ ρ(x) + ρ(y),∀x,y ∈ Rn
iv) ρ(x) = 0⇒ x = 0

The scaled CVaR norm and CVaR norm both satisfy these properties. The proof is given in
[25]. Hence, it is justified to call these objects norms.

5.3.1 Properties of the Scaled CVaR Norm

Pavlikov and Uryasev showed that the scaled CVaR norm CSα is a non-decreasing function of
the parameter α.

Proposition 5.4 ([25, p. 7]). For a vector x ∈ Rn and 0 ≤ α1 ≤ α2 ≤ 1,

⟪x⟫Sα1
≤ ⟪x⟫Sα2

.

23The greedy algorithm (stated in Proposition 5.3) can be interpreted as follows: The knapsack has a limit of
n(1−α) and each vector component ∣xi∣ has the same weight. Pack as much of ∣x(1)∣ (the component with highest
magnitude) into the knapsack. If the component completely fits into the knapsack (i.e. qi = 1), start packing the
component of next highest magnitude. As soon as the knapsack is full, stop. Fractional values for qi are allowed.
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Another property, which to the best knowledge of the author has not been published or
proven before, is that the scaled CVaR norm is piecewise convex in α within each interval
[αj , αj+1].

Proposition 5.5. For any vector x ∈ Rn, and α ∈ [
j
n ,

j+1
n ] , j = 0,1, . . . n − 1 the scaled CVaR

norm ⟪x⟫Sα is convex in α, i.e.,

⟪x⟫Sλα1+(1−λ)α2
≤λ⟪x⟫Sα1

+ (1 − λ)⟪x⟫Sα2

for all α1, α2 ∈ [
j
n ,

j+1
n

] , j = 0,1, . . . , n − 1 and λ ∈ [0,1].

Proof. For α ∈ (n−1
n ,1] the proof of Proposition 5.5 is obvious, as ⟪x⟫Sα is constant for these

values of α.
To show that ⟪x⟫Sα is piecewise convex in α within each interval [

j
n ,

j+1
n ] , j = 0,1, . . . n − 2,

Definition 5.1 can be used, together with the following notation:
Suppose that α1, α2 ∈ [αj , αj+1], t = λα1+(1−λ)α2 , λ ∈ [0,1], and α1, α2, αj and αj+1 are labelled
a, b, c, d in such a way that

0 ≤ a = αj ≤ b ≤ t ≤ c ≤ d = αj+1 ≤
n − 1

n
.

Then ⟪x⟫Sλα1+(1−λ)α2
= ⟪x⟫St ,⟪x⟫Sα1

and ⟪x⟫Sα2
can be written as

⟪x⟫St =µ0⟪x⟫Sa + (1 − µ0)⟪x⟫Sd with µ0 =
(d − t)(1 − a)

(d − a)(1 − t)
, (5.18)

⟪x⟫Sα1
=µ1⟪x⟫Sa + (1 − µ1)⟪x⟫Sd with µ1 =

(d − b)(1 − a)

(d − a)(1 − b)
, and (5.19)

⟪x⟫Sα2
=µ2⟪x⟫Sa + (1 − µ2)⟪x⟫Sd with µ2 =

(d − c)(1 − a)

(d − a)(1 − c)
. (5.20)

Hence, it needs to be shown that ⟪x⟫St ≤ λ⟪x⟫Sα1
+ (1 − λ)⟪x⟫Sα2

, i.e.

µ0⟪x⟫Sa + (1 − µ0)⟪x⟫Sd ≤λ [µ1⟪x⟫Sa + (1 − µ1)⟪x⟫Sd ]

+ (1 − λ) [µ2⟪x⟫Sa + (1 − µ2)⟪x⟫Sd ] .

Rearranging ⟪x⟫Sa and ⟪x⟫Sd leaves to prove that

0 ≤(λµ1 + (1 − λ)µ2 − µ0)⟪x⟫Sa

+ (λ(1 − µ1) + (1 − λ)(1 − µ2) − (1 − µ0))⟪x⟫Sd

⇐⇒ 0 ≤(µ2 + λµ1 − λµ2 − µ0)⟪x⟫Sa

+ (µ0 + λµ2 − λµ1 − µ2)⟪x⟫Sd

⇐⇒ 0 ≤(µ0 + λµ2 − λµ1 − µ2) (⟪x⟫Sd − ⟪x⟫Sa ) .

By Proposition 5.4, since d ≥ a ⇒ ⟪x⟫Sd − ⟪x⟫Sa ≥ 0. Hence, to complete the proof, it must
be shown that µ0 + λµ2 − λµ1 − µ2 ≥ 0 for all 0 ≤ a = αj ≤ b ≤ t ≤ c ≤ d = αj+1 ≤

n−1
n and λ ∈ [0,1].

Using expressions 5.18, 5.19 and 5.20 and eliminating the common 1−a
d−a term yields:

0 ≤ µ0 + λµ2 − λµ1 − µ2 =
d − t

1 − t
+ λ

d − c

1 − c
− λ

d − b

1 − b
−
d − c

1 − c
⇔

0 ≤ (d − t)(1 − b)(1 − c) + λ(d − c)(1 − b)(1 − t)
−λ(d − b)(1 − c)(1 − t) − (d − c)(1 − b)(1 − t).

(5.21)
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Substituting t = λb + (1 − λ)c into Equation 5.21, expanding all brackets and summarizing
the terms gives

0 ≤ λ (b2 − b2d + c2 − c2d + 2bcd − 2bc)

+λ2 (b2d − b2 + c2d − c2 + 2bc − 2bcd) ,

which simplifies to
0 ≤ λ (1 − λ) (1 − d) (c − b)2 . (5.22)

Equation 5.22 holds for all 0 ≤ a = αj ≤ b ≤ t ≤ c ≤ d = αj+1 ≤
n−1
n and λ ∈ [0,1], which completes

the proof.

To illustrate Proposition 5.5, ⟪x⟫Sα is drawn against α for four different x in Figure 5.3.
Depending on the components of x, the convexity is more or less pronounced in the graphs.

Figure 5.3: Scaled CVaR norm CSα against α for different x.

To show that ⟪x⟫Sα is not convex over the whole interval [0,1] consider x = [−7,12,−2],
whose scaled CVaR norm is shown in the top left graph of Figure 5.3. Taking α1 = 0.2, α2 = 0.4,
and λ = 1

3 gives αt = λα1 + (1 − λ)α2 =
1
3 and

⟪x⟫S0.2 =
33

4
= 8.25 ,

⟪x⟫S0.4 =
88

9
≈ 9.78 , and

⟪x⟫S1
3

=
19

2
= 9.5 .

Hence, ⟪x⟫Sαt = ⟪x⟫S1
3

= 9.5 /≤ λ⟪x⟫S0.2 + (1 − λ)⟪x⟫S0.4 =
1
3

33
4 + 2

3
88
9 ≈ 9.27. Therefore, ⟪x⟫Sα is only

piecewise convex, but not over the whole interval [0,1]. This is also apparent from the plots
themselves.

5.3.2 Properties of the CVaR Norm

While the scaled CVaR norm is a non-decreasing function of the parameter α (see Proposi-
tion 5.4), the CVaR norm shows different properties:
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Proposition 5.6 ([25, p. 15]). For x ∈ Rn, the CVaR norm ⟪x⟫α is a non-increasing, concave,
piecewise-linear function of the parameter α.

Furthermore, the CVaR norm Cα coincides with the D-norm, which is defined below.

Definition 5.3 ([7, p. 513] D-Norm). For x ∈ Rn and parameter κ ∈ [1, n], the D-norm ∣∣∣x∣∣∣κ
is defined as

∣∣∣x∣∣∣κ ∶= max
S,t

(∑
i∈S

∣xi∣ + (κ − ⌊κ⌋)∣xt∣) ,

where N = {1, . . . , n} , S ⊆ N , ∣S∣ ≤ ⌊κ⌋ , and t ∈ S ∖N .

The D-norm is used in robust optimization as an alternative to the L2 norm for describing
an uncertainty set using a norm. The D-norm has advantages such as the guarantee of feasibility
independent of uncertainty distributions and a flexibility in trade off between robustness and
performance [35, p. 40]. A further discussion of the D-norm (beyond the coincidence with the Cα
norm) or robust optimization in general is beyond the scope of this thesis. Further discussions
on the D-norm are given in [7] and [35], while robust optimization is discussed in [14, p. 292ff.]
or [6].24

Proposition 5.7 ([25, p. 16]). For x ∈ Rn, the CVaR norm ⟪x⟫α with parameter α ∈ [0, n−1
n ]

coincides with the D-norm ∣∣∣x∣∣∣κ with parameter κ = n(1 − α), i.e. ⟪x⟫α = ∣∣∣x∣∣∣κ.

This is because the D-norm is an equivalent formulation to the CVaR norm given in Propo-
sition 5.3. Note that Proposition 5.7 does not hold for n−1

n < α ≤ 1, as for n−1
n < α ≤ 1 ⇒ κ =

n(1 − α) < 1⇒ κ /∈ [1, n], so that the D-norm is not defined in this case [25, p. 16].
Comparisons to Lp norms are made more extensively in Chapter 6.

5.4 Computational Efficiency

This section investigates how computationally efficient different algorithms are for calculating
⟪x⟫Sα and ⟪x⟫α. The definitions of ⟪x⟫Sα and ⟪x⟫α in Definition 5.1 and Definition 5.2, respec-
tively, naturally lead to simple algorithms for computing the norms. The algorithms that were
implemented in MATLAB are printed in Appendix A.2 for ⟪x⟫Sα and Appendix A.4 for ⟪x⟫α.
Informally, they can be described as follows:

1. Take the absolute values of the entries of x ∈ Rn and order them in ascending order.
2. If α > n−1

n , use Equation 5.3 or Equation 5.12 to calculate CSα or Cα, respectively.

3. If α = αj , i.e., α =
j
n for any j = 0,1, . . . , n − 1, use Equation 5.1 or Equation 5.10 to

calculate CSα or Cα, respectively.
4. Otherwise, find the closest αj and αj+1, such that αj < α < αj+1, calculate µ (for CSα ) or λ

(for CSα ), and use Equation 5.2 or Equation 5.11 to calculate CSα or Cα, respectively.

To calculate ⟪x⟫Sα and ⟪x⟫α using Proposition 5.1 or Proposition 5.2, respectively, the ac-
cording optimization problem was written in MATLAB CVX ([18],[19], for the code see Ap-
pendix A.3 and Appendix A.5). The algorithm that was used to solve the optimization problem
was picked automatically by CVX with no further input by the author. When referring an
“optimization algorithm” in the remainder of this section, the codes given in Proposition 5.1 or
Proposition 5.2 are meant.

To compare the computational efficiencies of the different algorithms, random vectors of
dimensions n ∈ {2,3,10,102,103,104,105} were generated, and each of the algorithms given in
Appendix A.2 - Appendix A.5 was run 10 times to calculate CSα or Cα, respectively. The
average time taken over the 10 runs is the computation time stated in Table 5.1, Table 5.2, and
Appendix B.6. These calculations were performed for values of α ∈ {0,0.1,0.25,0.5,0.7,0.9}

24This is only a selection of available literature on these topics.
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Summaries of the results are given in Table 5.1 and Table 5.2; the complete results are
displayed in Appendix B.6. 25

Computation time in ms
Component-wise Optimization

α n
⟪x⟫Sα

(Definition 5.1)

⟪x⟫α
(Definition 5.2)

⟪x⟫Sα
(Proposition 5.1)

⟪x⟫α
(Proposition 5.2)

0.5

2 0.13 0.08 178.59 174.96
3 0.18 0.12 180.96 179.34

10 0.13 0.08 184.33 181.49
100 0.15 0.10 217.66 213.11

1,000 0.19 0.14 323.36 239.72
10,000 1.00 0.92 571.45 551.93

100,000 5.64 5.00 5516.37 5128.19

Table 5.1: Computation times of ⟪x⟫Sα and ⟪x⟫α at α = 0.5 of a vector x ∈ Rn for different n in
milliseconds.

Computation time in ms
Component-wise Optimization

n α
⟪x⟫Sα

(Definition 5.1)

⟪x⟫α
(Definition 5.2)

⟪x⟫Sα
(Proposition 5.1)

⟪x⟫α
(Proposition 5.2)

1,000

0.0 0.19 0.14 202.81 199.38
0.1 0.19 0.14 244.86 236.01
0.25 0.19 0.14 229.73 271.94
0.5 0.19 0.14 323.36 239.72
0.7 0.19 0.15 252.11 241.46
0.9 0.19 0.14 289.31 249.22

Table 5.2: Computation times of ⟪x⟫Sα and ⟪x⟫α at different α of a vector x ∈ Rn for n = 1000
in milliseconds.

Table 5.1 indicates that for n ≤ 1,000 the computing times for ⟪x⟫Sα and ⟪x⟫α using the
component-wise algorithms do not increase significantly with increasing n. For n ≥ 10,000 there
is a notable increase in computing time with increasing n, for both algorithms and both norms.

Table 5.2 shows that the value of α does not have any considerable effect on the comput-
ing time for the component-wise algorithm, whereas the computing times for the optimization
algorithm fluctuate with α.

Both tables clearly show that the component-wise algorithms (given in Appendix A.2 and
Appendix A.4) outperform the optimization algorithms by several orders of magnitude. Hence,
in the rest of this thesis only the component-wise algorithms will be used when comparing com-
putational efficiencies against other norms. However, the component-wise algorithms cannot be
used to solve any optimization problem involving the calculation of a CVaR norm as constraints
cannot be included. Hence, the optimization algorithms to calculate CSα and Cα are the only
choice when trying to solve optimization problems, e.g. model recovery problems discussed in
Chapter 7.

25All calculations are performed on a PC with an Intel Core iS-2400S with 4 cores @ 2.5 GHz and 4 GB of
memory.
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Chapter 6

Comparisons to Lp Vector Norms

This chapter explores how the scaled CVaR norm CSα and CVaR norm Cα compare to several
Lp norms for different values of α and p, as investigated by [17] and [25]. First, in Section 6.1
a brief overview of the behaviour of CSα will be given following the examples of [25]. Then, the
focus will shift to the Cα norm: Section 6.2 illustrates how α and p can be chosen so that Cα
best approximates Lp. To conclude this chapter, Section 6.3 extends the numerical examples for
Cα given in [25] by the findings of Section 6.2.

6.1 Behaviour of Scaled CVaR Norm CS
α

To describe the behaviour of the scaled CVaR norm, Pavlikov and Uryasev use two examples
[25, p. 4 ff.]. For each comparison, the scaled LSp norm is used, which is defined by

∣∣x∣∣Sp = (
1

n

n

∑
i=1

∣xi∣
p
)

1
p

, (6.1)

where p ≥ 1. The actual examples used for the comparison are:
1. Let x = (2,1,7,10,−12)T , calculate ⟪x⟫Sα for α ∈ [0,1] and corresponding ∣∣x∣∣Sp for p =

1
(1−α)2 . This is shown in Figure 6.1.

2. Compare the unit disks for CSα and LSp , i.e. the sets USα = {x = (x1, x2) ∣ ⟪x⟫Sα ≤ 1} and

USp = {x = (x1, x2) ∣ ∣∣x∣∣Sp ≤ 1} for α ∈ {0,0.1,1− 1√
2
,0.4,1} and corresponding p(α) = 1

(1−α)2 .

This comparison is shown in Figure 6.2.

Figure 6.1: Reproduced from [25, p. 6], CSα and LSp Norms of x for different values of α and
p(α).
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Figure 6.2: [25, p. 5] Norm unit disks of CSα and LSp for different values of α and p(α).

As can be seen in Figure 6.2, ⟪x⟫S0 = ∣∣x∣∣S1 and ⟪x⟫Sα = ∣∣x∣∣S∞ for α ∈ [n−1
n ,1]. This relationship

follows from Definition 5.1 and Equation 6.1.

6.2 Relationship between α and p for Cα and Lp

In [17], Gotoh and Uryasev explored (among other things) the question: “For what value of
κ ∈ [1, n] does the CVaR norm (or its dual 26) give the best approximation of the Lp-norm, and

26This thesis will not introduce or explain the dual CVaR norm, but focus on the findings of [17] regarding the
CVaR norm (which was defined in Section 5.2).
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in which sense is it the best” [17, p. 3]?27

Gotoh’s and Uryasev’s analysis consisted of finding tight bounds on the ration
⟪x⟫α
∣∣x∣∣p

- a

lower bound L and an upper bound U , such that L ≤
⟪x⟫α
∣∣x∣∣p

≤ U .28 Then they defined the ratio

U/L as a measure of proximity (i.e. the goodness of approximation of ∣∣x∣∣p by ⟪x⟫α). Finally,
they defined a quasi-convex function fn,p(κ) = U/L and analysed for with value of α(p) fn,p(κ)
attains its minimum. This α∗ then gives ⟪x⟫α∗ , which is is the best approximation of ∣∣x∣∣p.

Proposition 6.1 ([17, p. 6]). For any p ∈ (1,∞), α ∈ [0, n−1
n ], and x ∈ Rn ∖ {0}, it is valid

min{1, n
1− 1

p (1 − α)} ≤
⟪x⟫α
∣∣x∣∣p

≤ (⌊κ⌋ + (κ − ⌊κ⌋)
p
p−1 )

p−1
p
, (6.2)

where κ = n(1 − α).

The proof of Proposition 6.1 is given in Chapter A.1 of [17].

Based on Equation 6.2, the ratio U/L, where U = (⌊κ⌋ + (κ − ⌊κ⌋)
p
p−1 )

p−1
p

and L = min{1, n
1− 1

p (1−

α)} defines a function, which evaluates the proximity of ⟪x⟫α to ∣∣x∣∣p:

fn,p(κ) ∶=
(⌊κ⌋ + (κ − ⌊κ⌋)

p
p−1 )

p−1
p

min{1, n
1− 1

p (1 − α)}
. (6.3)

Lemma 6.1 ([17, p. 9]). The function fn,p(κ) is continuous at any κ ∈ (1, n), and differentiable

at any non-integer except κ = n
1
p , i.e. κ /∈ {1, . . . , n} ∪ {n

1
p }.

Proposition 6.2 ([17, p. 9]). The function fn,p(κ) is decreasing for κ ≤ n
1
p . The function

fn,p(κ) is increasing for κ ≥ n
1
p . Accordingly, fn,p(κ) uniquely attains its minimum value,

(⌊κ⌋ + (κ − ⌊κ⌋)
p
p−1 )

p−1
p

, at κ = n
1
p .

The proofs of Lemma 6.1 and Proposition 6.2 are given in sections A.3 and A.4 of [17],
respectively.

Using Proposition 6.2 and substituting κ = n(1 − α) gives the values of α and p for which
⟪x⟫α best approximates ∣∣x∣∣p [17, p. 9] as

α∗ = 1 − n
1
p
−1

, and (6.4)

p∗ =
ln(n)

ln(n(1 − α))
. (6.5)

Gotoh and Uryasev also compared the proximity ratio U/L = fn,p(κ) given by Equation 6.3

for different combinations of p and n, each with optimal κ∗ = n(1 − α∗) = n
1
p (see Figure 6.3).

The ratio fn,p(κ
∗) becomes largest at p = 2, which indicates that L2 is the hardest Lp norm to

approximate by the CVaR norm [17, p. 11].

27Here, k refers is the parameter used in Definition 5.3 of the D-norm, which is related to α as κ = n(1−α) (see
Proposition 5.7).

28The term tight means that there is some x which satisfies the equality.
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Figure 6.3: Reproduced from [17, p. 11], fn,p(κ
∗) for different values of n and p, with κ∗ = n

1
p .

6.3 Behaviour of CVaR Norm Cα

To see how Cα behaves for different values of α, Pavlikov and Uryasev used the same examples
as in the previous subsection, but compared Cα to standard Lp norms

∣∣x∣∣p = (
n

∑
i=1

∣xi∣
p
)

1
p

, (6.6)

where p ≥ 1. Hence, using the same numerical examples the comparisons are
1. Let x = (2,1,7,10,−12)T , calculate ⟪x⟫α for α ∈ [0,1] and corresponding ∣∣x∣∣p and ∣∣x∣∣p∗ ,

with p = 1
(1−α)2 and optimal29 p∗ =

ln(n)
ln(n(1−α)) . This is shown in Figure 6.4.

2. Compare the unit disks for Cα and Lp, i.e. the sets Uα = {x = (x1, x2) ∣ ⟪x⟫α ≤ 1}
and Up = {x = (x1, x2) ∣ ∣∣x∣∣p ≤ 1} for α ∈ {0,0.1,1 − 1√

2
,0.4,0.5} and corresponding

p(α) = 1
(1−α)2 . This comparison is shown in Figure 6.5.

Figure 6.4: Reproduced from [17, p. 10], Cα and Lp Norms of x for different values of α and
p(α).

29Here, optimal means that for p = p∗, ∣∣x∣∣p best approximates ⟪x⟫α
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Figure 6.5: [25, p. 17] Norm unit disks of Cα and Lp for different values of α and p(α).

Again, there is a close relationship between Cα and L1 / L∞. As is depicted in Figure 6.5
and as can be shown from Equation 5.10 and Equation 6.6, ⟪x⟫0 = ∣∣x∣∣1 and ⟪x⟫n−1

n

= ∣∣x∣∣∞.

Letting x ∈ R2 ∶ ∣x1∣, ∣x2∣ ≤ 10 and producing surface plots of ⟪x⟫α∗ and ∣∣x∣∣p for p = 2 and

α∗ = 1
1−

√
2

gives the plots shown in Figure 6.6. Additional surface plots for varying values of α

and p∗ are displayed in Appendix C.3.
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Figure 6.6: Norm surface plots (Cα and Lp) of x for p = 2 and α∗ = 1
1−

√
2
.

Comparing the projections of a circle C = {x ∈ R3 ∶ x2
1 + x

2
2 = 1, x3 = 1} onto the unit ball

U = {x ∈ R3 ∶ xTx = 1} using the L2 norm and Cα∗ norm, with α∗ = 1− 1√
3

is shown in Figure 6.7.

Further comparisons for different α are shown in Appendix C.4.

Figure 6.7: Projection of a circle onto the unit ball in x ∈ R3 using L2 and Cα∗ norm, with
α∗ = 1 − 1√

3
.
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Chapter 7

Model Recovery Using Atomic
Norms

Many real world problems require solving an ill-posed inverse problem, in which the number of
measurements is smaller than the dimension of the model to be estimated. But if the structure
of the model is favourable, the original model can be recovered by the use of atomic norms, to
be more precise, by minimizing the atomic norm, i.e. solving the problem [11, p. 811]

x̂ = arg min
x

∣∣x∣∣A

s.t. y = Φx
} , (7.1)

where ∣∣ ⋅ ∣∣A is the atomic norm. The candidate vector x∗ can be formed from a set of atoms
A, i.e. x∗ = ∑ki=1 ciai where ai ∈ A, ci ≥ 0 and information about a linear mapping Φ ∶ Rp → Rn
is available. Also, the measurement y = Φx∗ is known. The goal is to reconstruct x∗ given y.

The following sections will discuss how atomic norms can be derived from a set of atoms and
which conditions need to be satisfied to allow for recovery.

7.1 Background on Atomic Norms and Convex Geometry

A model can be considered simple if it can be expressed as a non-negative combination of atoms
(i.e. basic building blocks of the model). More precisely, let x ∈ Rp be formed as [11, p. 806]

x =
k

∑
i=1

ciai , (7.2)

for ai ∈ A, ci ≥ 0, where A is the set of atoms.
The atomic norm of a set of atoms A is then derived by forming the convex hull of A, i.e

conv(A). Figure 7.1 displays the relation between different sets of atoms and their corresponding
atomic norms in R2.
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Figure 7.1: Atoms, their convex hull, and relation to the L1 and Cα norms in R2.

Choosing the atoms as the unit vectors of R2 and forming the convex hull gives the unit
ball of the L1 norm. Hence, for AL1 = {±ei}

2
i=1, the atomic norm is the L1 norm (see left side

of Figure 7.1). If we extend then set of atoms to also include the points 1
2(1−α)[±1,±1]T , for

0 < α < 1
2 , i.e. A1 = {±ei}

2
i=1 ∪

1
2(1−α)[±1,±1]T ,0 < α < 1

2 , then the atomic norm of A1 is the Cα

norm in R2, with 0 < α < 1
2 (see right side of Figure 7.1 and Conjecture 8.1).

A formal relation between conv(A) and the atomic norm induced by A can be derived from
different results of convex analysis:

Definition 7.1 ([20, p. 128] Gauge of a set). Let A be a closed convex set containing the origin.
The function defined by

γA(x) ∶= inf{λ > 0 ∶ x ∈ λ conv(A)} (7.3)

is called the gauge of A. If /∃ λ ∶ x ∈ λ conv(A), then γA(x) = +∞.

Proposition 7.1 ([9, p. 10]). Assume that the centroid of conv(A) is at the origin, which can
be achieved by appropriate recentering. Then the gauge function can be rewritten as

γA(x) = inf {∑
a∈A

ca ∶ x = ∑
a∈A

caa , ca ≥ 0∀a ∈ A} . (7.4)

Furthermore, if A is centrally symmetric about the origin (i.e. a ∈ A if and only if −a ∈ A),
then the gauge γA is a norm, which is called the atomic norm induced by A [11, p. 810]. In
this case, it will be denoted by ∣∣ ⋅ ∣∣A. The support function of A is given below.

Definition 7.2 ([20, p. 134], [11, p. 810] Support Function). Let A be a non-empty set in Rn.
The function defined by

∣∣x∣∣∗A ∶= sup{⟨x,a⟩ ∶ a ∈ A} (7.5)

is called the support function of A.30

30⟨x,a⟩ denotes the dot-product xTa.
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If ∣∣ ⋅ ∣∣A is a norm, the support function ∣∣ ⋅ ∣∣∗A is the dual norm of the atomic norm. This
definition shows that the unit ball of ∣∣ ⋅ ∣∣A is equal to conv(A) [11, p. 810].

In addition to the above concepts, some background on cones is also necessary for the fol-
lowing sections:

Definition 7.3 ([20, p. 21] Convex Cone). The set K is a cone if ∀t > 0 ,k ∈ K ⇒ tk ∈ K.
Furthermore, the cone is convex if the set K is convex.

Definition 7.4 ([11, p. 814] Polar Cone). The polar K∗ of a cone K is the cone

K∗ ∶= {x ∈ Rp ∶ ⟨x,k⟩ ≤ 0 ∀ k ∈K} . (7.6)

To provide a better understand of cones and polar cones, examples (taken from [1, p. 35])
are shown in Figure 7.2.

Figure 7.2: [1, p. 35] Examples of cones K and polar cones K∗.

Definition 7.5 ([11, p. 814] Tangent Cone). For some non-zero x ∈ Rp, the tangent cone at x
with respect to the scaled unit ball ∣∣x∣∣Aconv(A) is

TA(x) ∶= cone{z − x ∶ ∣∣z∣∣A ≤ ∣∣x∣∣A} . (7.7)

Definition 7.6 ([11, p. 814] Normal Cone). The normal cone NA(x) at x with respect to
the scaled unit ball ∣∣x∣∣Aconv(A) is the set of all directions that form obtuse angles with every
descent direction of the atomic norm ∣∣ ⋅ ∣∣A at the point x, i.e.

NA(x) ∶= {s ∶ ⟨s,z − x⟩ ≤ 0 ∀ z s.t. ∣∣z∣∣A ≤ ∣∣x∣∣A} . (7.8)

Examples of tangent and normal cones for a general convex set C (again taken from [1, p.
49]) are shown in Figure 7.3 to provide a better understanding of these concepts.
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Figure 7.3: [1, p. 49] Examples of tangent and normal cones with respect to a set C.

The tangent cone is equal to the set of descent directions of the atomic norm ∣∣ ⋅ ∣∣A at point
x, i.e. the set of all directions d such that the directional derivative is negative [11, p. 814].

The normal cone is equal to the set of all normals of hyperplanes given by normal vectors s
that support the scaled unit ball ∣∣x∣∣Aconv(A) at x. Additionally, the tangent cone TA(x) and
normal cone NA(x) are polar cones of each other. And finally, the normal cone NA(x) is the
conic hull of the subdifferential of the atomic norm at x [11, p. 814].

7.2 Recovery Conditions

This section states the conditions that are necessary to recover a vector x̂ exactly (when the
measurements y ∈ Rn are noise free) or robustly (when the measurements are noisy). The con-
cepts presented in Section 7.1 are used to derive the number of measurements n needed to ensure
exact (or robust) recovery.

Recall Problem 7.1, which states

x̂ = arg min
x

∣∣x∣∣A

s.t. y = Φx
.

The dual problem of 7.1 is [11, p. 811]

max
z

yT z

s.t. ∣∣ΦT z∣∣ ≤ 1

⎫⎪⎪
⎬
⎪⎪⎭

. (7.9)

Now suppose that the measurements y are noisy, i.e. y is formed as y = Φx∗ + ω, where ω
is the noise term. If an upper bound on the noise term is known, i.e. ∣∣ω∣∣ ≤ δ, the constraint in
Problem 7.1 can be relaxed to give [11, p. 811]

x̂ = arg min
x

∣∣x∣∣A

s.t. ∣∣y −Φx∣∣ ≤ δ
} . (7.10)

In the noise free case, the solution to Problem 7.1 (x̂) is considered an exact recovery so that
x̂ = x∗. If the error ∣∣x̂−x∗∣∣ is small in Problem 7.10 then the recovery is considered robust. The
conditions for exact and robust recovery will be given below.

Let Ker(Φ) denote the kernel or nullspace of the linear mapping Φ. Then the exact recovery
condition is stated in Proposition 7.2 below.
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Proposition 7.2 ([11, p. 815] Exact Recovery Condition). x̂ = x∗ is the unique optimal solution
of Problem 7.1 if and only if Ker(Φ) ∩ TA(x

∗) = {0}.

Given that the measurements of y are noisy, it is possible to give a condition for when x∗

can be well approximated.

Proposition 7.3 ([11, p. 815] Proximity of Robust Recovery). Suppose that there are n noisy
measurements y = Φx∗ +ω where ∣∣ω∣∣ ≤ δ and Φ ∶ Rp → Rn. Let x̂ denote an optimal solution of
Problem 7.10. Further suppose that ∣∣Φz∣∣ ≥ ε∣∣z∣∣ holds for all z ∈ TA(x

∗). Then ∣∣x̂ − x∗∣∣ ≤ 2δ
ε .

The proofs of Proposition 7.2 and Proposition 7.3 are given in [11, p. 815]. Hence the smaller
the tangent cone at x∗ with respect to conv(A), the easier it is to satisfy the empty intersection
condition of Proposition 7.2 and to recover x̂ [11, p. 816].

By Proposition 7.2, Ker(Φ) must miss TA(x
∗) for an exact recovery. Gordon ([16]) derived an

expression for the probability that a uniformly distributed subspace of fixed dimension misses
a cone and his findings form the basis of the analysis of Chandrasekaran et. al ([11]). An
important part in the analysis is the Gaussian width of a set.

Definition 7.7 ([11, p. 817] Gaussian Width). The Gaussian width of a set S ∈ Rp is defined
as

w(S) ∶= Eg [sup
z∈S

gT z] , (7.11)

where g ∼ N(0, I) is a vector of independent zero-mean unit-variance Gaussians.

Gordon defined the likelihood that a random subspace misses a cone K purely in terms of
the dimension of the subspace and the Gaussian width w(K ∩Sp−1), where Sp−1 ⊂ Rp is the unit
sphere [11, p. 817]. To introduce the following results, the expected length of a k-dimensional
Gaussian random vector (denoted λk) is needed. By integration and induction, it can be shown
that λk is tightly bounded as k√

k+1
≤ λk ≤

√
k. With this notation, a bound on these quantities

can be given.

Theorem 7.1 ([16, p. 86]). Let Ω be a closed subset of Sp−1 and let Φ ∶ Rp → Rn be a random
map with i.i.d. zero-mean Gaussian entries having variance one. Then

E [min
z∈Ω

∣∣Φz∣∣2] ≥ λk −w(Ω) . (7.12)

Theorem 7.1 then leads to the required number of measurements to give an exact or robust
recovery with a given probability. Specifically, if the measurement map Φ ∶ Rp → Rn consists of
i.i.d. zero-mean Gaussian entries having variance 1/n, then the required number of measurements
is given in Corollary 7.1, the proof of which is given in [11, p. 818f.].

Corollary 7.1 ([11, p. 818]). Let Φ ∶ Rp → Rn be a random map with i.i.d. zero-mean Gaussian
entries having variance 1/n. Further let Ω = TA(x

∗) ∩ Sp−1 denote the spherical part of the
tangent cone TA(x

∗).
1. Suppose that there are measurements y = Φx∗ to solve Problem 7.1. Then x∗ is the unique

optimum of Problem 7.1 with probability at least 1 − exp (−1
2 [λn −w(Ω)]

2
) provided

n ≥ w(Ω)
2
+ 1 . (7.13)

2. Suppose that there are noisy measurements y = Φx∗ + ω, with the noise bounded as ∣∣ω∣∣ ≤
δ to solve Problem 7.10. Letting x̂ denote the optimal solution of Problem 7.10, then

∣∣x∗ − x̂∣∣ ≤ 2δ
ε with probability at least 1 − exp (−1

2
[λn −w(Ω) −

√
nε]

2
) provided

n ≥
w(Ω)2 + 3/2

(1 − ε)2
. (7.14)
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Hence, to apply Corollary 7.1 for finding n (the number of measurements needed to ensure
recovery), one must calculate the Gaussian width of Ω = TA(x

∗) ∩ Sp−1. However, Gaussian
widths are not easy to compute [11, p. 819]. Chandrasekaran et. al stated various well-known
properties and derived new properties of Gaussian widths that can be used to calculate bounds
on Gaussian widths in a variety of cases [11, p. 819ff.]. The most important of these properties
within the scope of this dissertation are reproduced in the next section.

7.3 Properties of Gaussian Widths

This section states properties of Gaussian widths that might be useful31 for calculating the
Gaussian width of TA(x

∗) ∩ Sp−1, where A are the atoms of the CVaR Norm.32

Proposition 7.4 ([11, p. 821]). Let K be any non-empty convex cone in Rp and let g ∼ N(0, I)
be a random Gaussian vector. Then

w(K ∩ Sp−1
) ≤ Eg [dist(g,K∗

)] , (7.15)

where dist denotes the Euclidean distance between a point and a set.

Since Corollary 7.1 requires w(Ω)2, Jensen’s inequality is often useful to apply Proposition 7.4
[11, p. 822]. Jensen’s inequality states that if E[ξ] exists for a random variable ξ and if f(x) is
a convex function, then [10, p. 88]

f (E[ξ]) ≤ E [f(ξ)] .

Because g is a random vector, dist(g,K∗) is a random variable. Also, f(x) = x2 is a convex
function. Hence, [11, p. 822]

Eg [dist(g,K∗
)]

2
≤ Eg [dist(g,K∗

)
2] . (7.16)

By combining Equation 7.15 and Equation 7.16, Chandrasekaran et. al derived the lemma
below.

Lemma 7.1 ([11, p. 822]). Let K be any non-empty convex cone in Rp. Then

w(K ∩ Sp−1
)

2
+w(K∗

∩ Sp−1
)

2
≤ p . (7.17)

31As a proof on the bounds of the Gaussian width of TA(x∗) ∩ Sp−1 could not be proven within the scope of
this dissertation, the author can only make assumptions on which properties might be useful in a proof.

32For a more extensive list of properties see [11, p. 819ff.].
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Chapter 8

Model Recovery Using the CVaR
Norm

To use the CVaR norm for model recovery in the framework presented by Chandrasekaran et.
al, some fundamental properties of the CVaR norm need to be derived. To recover x̂, the set
of atoms A of the CVaR norm needs to be determined and a bound on the Gaussian width
of the intersection of TA(x̂) with the unit sphere Sp−1 needs to be established. The bound on
the Gaussian width is needed to determine how many measurements n are required to ensure
recovery with a high probability.

To the best knowledge of the author, no research with this particular focus has been pub-
lished. Hence, all results in this chapter are original. Unfortunately, due to limited scope of this
thesis, only partial results are available. This being said, the following thoughts can be the basis
for further research in this area.

8.1 Atomic CVaR Norm

In this section, the atoms of the CVaR norm Cα for αp−2 < α < αp−1 will be conjectured (the set
of atoms will be called Ap−1, see Subsection 8.1.1). It will be proposed and proven that Ap−1 is
a subset of the extreme points of the unit ball of Cα for αp−2 < α < αp−1, but due to the limited
time of this thesis it cannot be proven that Ap−1 is the exhaustive set of extreme points. It will
also be shown in Subsection 8.1.2 that a subset of the extreme points of the unit ball of Cα for
α0 < α < α1 (called A1) is similar to Ap−1. But since some of the points of A1 are different, the
unit ball of Cα for α0 < α < α1 looks different (the respective unit balls of Cα in R3 are shown
in Figure 8.1). Finally, an experiment will be performed to numerically determine the extreme
point of the unit ball of Cα for αp−2 < α < αp−1 in R4 and shown that the set of these extreme
points is equal to Ap−1.

8.1.1 Formulation of the Atoms of the CVaR Norm

The atoms of the CVaR norm for Cα for αp−2 < α < αp−1 are conjectured below.

Conjecture 8.1. Suppose that x ∈ Rp and αp−2 < α < αp−1 ,i.e., p−2
p < α <

p−1
p , and let the set

of atoms Ap−1 be such that

Ap−1 ∶= {±ei}
p
i=1 ∪ {

1

p(1 − α)
b} ,

where ei is the unit vector with 1 as the ith component and 0 zeros elsewhere and {b} is the
set of all vectors in Rp that have either +1 or -1 as their components. Then the atomic norm
induced by Ap−1 is equivalent to the CVaR norm ⟪x⟫α for p−2

p < α <
p−1
p .
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Proposition 8.1. The set Ap−1 defined in Conjecture 8.1 is a subset of extreme points of the
unit ball of Cα for αp−2 < α < αp−1 ,i.e., p−2

p < α <
p−1
p .

Proof. To prove Proposition 8.1, it needs to be shown that the points Ap−1 lie on the unit ball
of ⟪x⟫α for p−2

p < α <
p−1
p . To show this, an explicit expression for ⟪x⟫α will be derived first. By

Equation 5.11 and Equation 5.10,

⟪x⟫α =λ⟪x⟫αp−2 + (1 − λ)⟪x⟫αp−1

=λ
p

∑
i=p−1

∣x(i)∣ + (1 − λ)∣x(p)∣

=∣x(p)∣ + [p(1 − α) − 1] ∣x(p−1)∣ , (8.1)

where ∣x(p)∣ is the largest of the absolute values of the components of x and ∣x(p−1)∣ is the second
largest.

Now, there are two types of vectors in A, the unit vectors ±ei and the scaled b vectors. For
both these types of vectors

⟪±ei⟫α =1 + [p(1 − α) − 1] × 0 = 1 , and

⟪
1

p(1 − α)
b⟫

α

=
1

p(1 − α)
(1 + [p(1 − α) − 1] × 1) = 1 .

Hence all points in Ap−1 lie on the unit ball of Cα for p−2
p < α <

p−1
p .

8.1.2 Similarity of Atoms for Two Different α

Let the set of points A1 = {±ei}
p
i=1 ∪{ 1

p(1−α)b}, with 0 < α < 1
p . Then the points in A1 lie on the

unit ball of Cα for 0 < α < 1
p

33 and there is a close connection between A1 and Ap−1. To show

this, consider the explicit expression for ⟪x⟫α, for 0 < α < 1
p , which is ⟪x⟫α = ∑

p
i=1 ∣x(i)∣−pα∣x(1)∣.

Then

⟪±ei⟫α =1 − pα × 0 = 1 , and

⟪
1

p(1 − α)
b⟫

α

=
p

p(1 − α)
−

pα

p(1 − α)
= 1 .

Hence, both sets contain the unit vectors ±ei and the scaled binary vectors 1
p(1−α)b. However,

the scaling factor is different for the sets whenever p > 2, as for Ap−1, p−2
p < α <

p−1
p , and for

A1, 0 < α < 1
p . To show that the unit balls look different for these two α, consider x1 =

1
p(1−α)[1,1, . . . ,1]

T and x2 = 1
p(1−α)[1,1, . . . ,−1, . . . ,1]T , i.e., x1 ∈ Rp consists of all ones and

x2 ∈ Rp consists of all ones except a −1 as the ith component, both scaled by 1
p(1−α) . Then

the vectors y = 1
2x1 +

1
2x2 =

1
p(1−α)[1,1, . . . ,0, . . . ,1]

T , x1, and x2, together with 0 < α1 <
1
p and

p−2
p < α2 <

p−1
p have the norms

⟪x1⟫α =1 , for α = α1, α2 ,

⟪x2⟫α =1 , for α = α1, α2 ,

⟪y⟫α1 =
p − 1

p(1 − α1)
< 1 , and

⟪y⟫α2 =1 .

Hence the point y lies on an edge of the unit ball of Cα for p−2
p < α <

p−1
p , but lies inside the

33Just as for Ap−1, this is a conjecture that has yet to be proven.
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unit ball of Cα for 0 < α < 1
p . This can also be seen from Figure 8.1.

Figure 8.1: [17, p. 13] Unit balls of Cα in R3 for 1
3 < α < 2

3 (left) and 0 < α < 1
3 (right).

8.1.3 Numerically Determining Ap−1 in R4

In this subsection, the atoms of Cα for αp−2 < α < αp−1 in R4 are determined in numerical
experiments to provide more evidence that Conjecture 8.1 is true. To do this, 5,000 random
hyperplanes in R4 are projected onto the unit ball of the CVaR norm. If the conjecture is
true, all hyperplanes should be projected onto one of the points in Ap−1.34 Only if there are
projections onto other points, Conjecture 8.1 is can be deemed false [28].

To perform this experiment, a random hyperplane is generated by a zero-mean, unit variance
Gaussian vector, i.e., the hyperplane satisfies gTx = 5, where g ∈ R4 ∼ N(0, I) and x ∈ R4.35 The
projection of the hyperplane onto the unit ball is given by

xU =

arg min
x

⟪x⟫α

min
x

⟪x⟫α
,

with α = 5
8 and the constraint gTx = 5.

Over the 5,000 trials, the hyperplane was projected onto a unit vector 5.86 % of the time
and onto a scaled binary vector 94.14 % of the time, while no hyperplane was projected onto
another point. The complete results of this experiment are shown in Appendix B.7.

This experiments provides evidence that Conjecture 8.1 is true, even though it could not be
proven within the scope of this thesis. Repeating this experiment in higher dimensions or over
more trials should yield the same results.

8.2 Gaussian Width of a Tangent Cone with Respect to the
Scaled Unit Ball of the Cα Norm

To find a bound on the measurements n needed to recover x̂ using Problem 7.1 (for exact
recovery) or Problem 7.10 (for robust recovery) with the CVaR norm, an expression for the
tangent cone or the normal cone of a vector x∗ with respect to Ap−1 needs to be found. The
derivation of expressions for these cones is beyond the scope of this thesis and could be an
area for further research. Here, only an outline of the bounds will be given, if expressions for
TAp−1(x

∗) or NAp−1(x
∗) are available. These bounds are derived using the properties described

in Section 7.3.

34The probability that a random hyperplane is projected onto an edge or surface of the unit ball is equal to
zero.

35The constant 5 is chosen arbitrarily.
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Corollary 7.1 states that to guarantee recovery with high probability, the number of mea-
surements n needs to satisfy

n ≥ w (TAp−1(x
∗
) ∩ Sp−1)

2
+ 1 in the exact case, or

n ≥
w (TAp−1(x

∗) ∩ Sp−1)
2
+ 3/2

(1 − ε)2
in the robust case.

Since the Gaussian width is difficult to calculate directly, the Euclidean distance between a
cone and the point given by a random Gaussian vector could be used to provide a bound for

w (TAp−1(x
∗) ∩ Sp−1)

2
. Using Equation 7.15 and Equation 7.16 gives

w (TAp−1(x
∗
) ∩ Sp−1)

2
≤ Eg [dist (g,NAp−1(x

∗
))]

2

≤ Eg [dist (g,NAp−1(x
∗
))

2
] (8.2)

If an expression for NAp−1(x
∗) is available, Equation 8.2 could be used to determine the

minimum number of measurements n needed to recover x̂ as

n ≥ Eg [dist (g,NAp−1(x
∗
))

2
] + 1 in the exact case, or

n ≥
Eg [dist (g,NAp−1(x

∗))
2
] + 3/2

(1 − ε)2
in the robust case,

when the square of the Euclidean distance (dist (g,NAp−1(x
∗))

2
) can be calculated or bounded.

However, depending on the actual expressions of the tangent and normal cones, other prop-
erties of Gaussian widths (e.g. those stated in [11, p. 819ff.]) could be more useful to derive
bounds on n.

8.3 Numerical Recovery Experiments using the Cα Norm

This section explores the recovery probabilities of a vector given n random measurements and
using CVaR norm minimization. Since Section 8.2 could not provide a bound on the required
number of measurements to ensure recovery, this section investigates under which circumstances
recovery might be likely. However, the results are not promising.

For the following investigation, the goal was to recover two vectors in R100. The first vector
x1 consists of 1 atom (either a unit vector or a scaled binary vector). The second vector x2

consists of 3 atoms, one positive unit vector, one negative unit vector, and one scaled binary
vector. In both cases, the recovery probability was estimated by minimizing the CVaR norm of
a candidate x∗, with n ≤ 100 random measurements (so that Φ ∈ Rn×100 is a random map with
i.i.d. zero mean Gaussian entries having variance 1/n) and α = 0.985 (so that 100−2

100 < α < 100−1
100 ).

For each n, Problem 7.1 was solved 50 times, each time with a new random map Φ. The
probability of exact recovery (over the 50 random trials) was drawn versus the number of mea-
surements n. This is shown in Figure 8.2.
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Figure 8.2: Probability of exact recovery for a vector x ∈ R100 using the CVaR norm as the
atomic norm with n measurements. Left: Recovery probability for x1 consisting of 1 atom
(either a unit vector or a scaled binary vector). Right: Recovery probability for x2 consisting of
3 atoms.

Figure 8.2 shows that if x1 consists of a unit vector, at least 90 measurements are necessary
to ensure recovery, while if x1 consists of a scaled binary vector, recovery could be ensured
with 50-60 measurements. The second vector x2 could never be recovered for n < 95 and even
for n = 99, the recovery probability was just below 80 %. Hence, it seems that if a vector x∗

which is to be recovered consists of both types of atoms (i.e. unit vectors and scaled binary vec-
tors), exact recovery cannot be guaranteed with high probability when n < p. This means that
to recover x∗, one would need as many observations as the dimension of the system. The rea-
son for these unfavourable characteristics might be the tangent cone of x∗ with respect to Ap−1.36

If x∗ consists only of one type of atom, i.e., either of unit vectors or scaled binary vectors,
the model recovery using the CVaR norm could be compared against the model recovery using
the L1 norm or L∞ norm, respectively. Depending on the type of atoms, the Cα norm shows
two different characteristics when compared to the respective Lp norm. When x∗ is a k-sparse
vector37 the norm of choice for model recovery is the L1 norm. By Proposition 3.10 of [11,
p. 823], to recover a k-sparse vector x∗ ∈ R100 using the L1 norm, 2 × k × ln (100

k
) + 5

4 × k + 1
random Gaussian measurements suffice to recover x with high probability. Hence, for a 1-sparse
vector approximately 12 measurements suffice, while for a 3-sparse vector approximately 26
measurements suffice. At the same time, more than 90 measurements are necessary to recover
the same 1-sparse or 3-sparse vector x∗ and same Φ to ensure comparability (see Figure 8.3).

36This assumption can only be confirmed if an expression for TAp−1(x
∗) can be derived.

37A k-sparse vector is a vector where k components are not equal to zero.
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Figure 8.3: Probability of exact recovery for a k-sparse vector x ∈ R100 using the L1 norm or
Cα norm as the atomic norm with n measurements. Left: Recovery probability for a 1-sparse
vector. Right: Recovery probability for 3-sparse vector.

When x∗ is the sum of k scaled binary vectors the norm of choice for model recovery is the
L∞ norm. When trying to recover a vector x∗, that is either 1 scaled binary vector or the sum
of 3 scaled binary vectors, the Cα norm is as good as the L∞ norm, and sometimes the Cα
norm is even slightly better. Drawing the probability of exact recovery with the same x∗ to
be recovered and the same random measurement maps Φ for 40 ≤ n ≤ 80 shows that in certain
cases the recovery probability of x∗ was higher when using the Cα norm (see Figure 8.4).

Figure 8.4: Probability of exact recovery for a vector x ∈ R100 that is the sum of k scaled
binary vectors using the L∞ norm or Cα norm as the atomic norm with n measurements. Left:
Recovery probability for x as 1 scaled binary vector. Right: Recovery probability for x as the
sum of 3 scaled binary vectors.
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8.4 Concluding Remarks on Model Recovery Using the CVaR
Norm

Despite the incomplete proofs, this chapter could show some interesting properties of the CVaR
norm regarding model recovery. It seems that the CVaR norm is not suitable to define an own
type of signal to be recovered (i.e. a signal which consists of the atoms Ap−1), but the CVaR
norm could be an improvement over the L∞ norm for model recovery.

Since the unit balls of Cα differed for different choices of α, it was suggested to take Cα
with p−2

p < α <
p−1
p as the atomic norm for recovering a vector x∗ ∈ Rp. Then the set of atoms

Ap−1 (see Conjecture 8.1) can be interpreted as the union of two sets of atoms of better known
norms, namely the atoms of the L1 norm and the atoms of the L∞ norm, scaled by 1

p(1−α) .38

The parameter α was chosen in the range (
p−2
p ,

p−1
p ) for these investigations, however, when

choosing 0 < α < 1
p , the results might be different. This could be an area for further research.

Unfortunately, a bound on the number of random measurements n could not be established,
as it was not possible to derive expressions for the tangent or normal cones with respect to Ap−1

in the scope of this thesis. As a remedy, numerical experiments were performed to gain insight
into exact recovery probabilities using the CVaR norm.

The numerical experiments in Section 8.3 suggest that it is not possible to recover an arbi-
trary x∗ with a high probability when n < p, i.e. when the number of observations is smaller
than the dimension of the model. Hence, it would not make sense to use the CVaR norm for
the recovery of a signal consisting of the atoms of Ap−1.39 It was also shown that the CVaR
norm is not suitable to recover a k-sparse vector. However, the CVaR norm showed a slight
improvement over the L∞ norm in the experiments, when trying to recover signals x∗ that are
formed as the sum of k scaled binary vectors. The reason for this is probably that the tangent
cone with respect to Ap−1 at x∗ is smaller than the tangent cone with respect to the atoms of
the L∞ norm. This would need to be confirmed in further research, as it was not possible to
derive an expression for TAp−1(x

∗) in the scope of this thesis. Also, the practical implications of
this need to be considered, as the gains of a smaller tangent cone might be offset by the greater
effort to calculate the CVaR norm compared to the L∞ norm.

Again, it should be stressed that the numerical experiments were done by choosing α as p−2
p <

α <
p−1
p . Choosing a different α gives a different unit ball and therefore different characteristics

for the model recovery problem. This could all be evaluated in further research.

38The proof Conjecture 8.1 still needs to be completed.
39A real world occurrence of this type of signal (or model) could not be identified during this thesis.
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Chapter 9

Conclusion

This thesis covered a wide range of theory on CVaR, both as a risk measure and a vector norm.
It was shown how the CVaR is defined for a univariate loss distribution and how this definition
can be extended to define the CVaR of a portfolio of assets, i.e. for multivariate loss distribu-
tions. The CVaR concept was then abstracted to define a new family of vector norms in Rn,
which were then analysed in detail. In the last part of the thesis, model recovery problems were
introduced and it was shown how the new CVaR norm could be used in the context of model
recovery problems.

Chapter 2 started by introducing Value-at-Risk, and showed how the Conditional Value-at-
Risk can be derived from VaR in the case of a continuous random variable. Then, the notion
of a coherent risk measure was introduced and it was explained why VaR fails to be coherent,
whereas CVaR is. After this intuitive introduction, CVaR was properly defined and analysed in
Section 2.3. CVaR can be calculated as the expectation of the generalized α tail distribution.
Alternatively, CVaR can be calculated as a weighted average of VaR and CVaR+ by the Convex
Combination Formula (see Equation 2.15). Another possibility to calculate CVaR is to use
Acerbi’s Integral Formula (presented in Section 2.4), for which a novel proof for continuous loss
distributions was given in Subsection 2.4.1.

Chapter 3 then extended the ideas developed in Chapter 2 to multivariate loss distributions
which arise in portfolio selection. To introduce portfolio optimization problems, Section 3.1
presented the first model that was developed to minimize portfolio risk, i.e. the Markowitz
Model (see Problem 3.3). It was also shown that it is always favourable to diversify a portfolio
in order to reduce risk. The optimal risk/return combinations that can be achieved in a portfolio
were drawn to explain the efficient frontier. Motivated by some shortcomings of the Markowitz
Model, the Rockafellar and Uryasev Model was presented in Section 3.2 to demonstrate how
a portfolio can be optimized with regards to minimizing the portfolio’s tail risk. The model
and associated linear optimization programme that has been developed in [29] was analysed in
detail, before establishing a connection between the Markowitz Model and the Rockafellar and
Uryasev Model. Section 3.3 concluded the chapter by providing two numerical examples. The
first example showed that in certain cases, Mean-Variance and CVaR optimization indeed give
the same optimal portfolio, while the second example showed that for skewed loss distributions
CVaR optimization is preferable over Mean-Variance optimization.

For situations in which a portfolio has already been formed, but for which the investor wishes
to hedge risks, a procedure was presented in Chapter 4. Since the example was a trader’s portfo-
lio consisting of stock options, the financial background on options was presented in Section 4.1,
while Section 4.2 showed how a risk managers can estimate the daily asset volatilities to properly
manage the risk on a daily basis. The trader’s portfolio was described in Section 4.3 and the
hedging procedure was outlined in detail in Section 4.4. The original contribution of Section 4.4
was the explicit formulation of the linear programme to minimize the CVaR of the portfolio.
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Next, the focus shifted away from financial applications of CVaR. The fairly new concept
of CVaR norms was introduced in Chapter 5. The first one, the Scaled CVaR norm, was
presented in Section 5.1, with its definition and alternative characterization given by Pavlikov
and Uryasev in [25]. A novel contribution was an alternative proof for the equivalence of the
two characterizations. Next, the Non-Scaled CVaR norm (or simply CVaR norm) was presented
in Section 5.2, by showing how it can be derived from the Scaled CVaR norm. Also, it was
shown how the CVaR norm can be interpreted as the optimal value of the knapsack problem.
To provide a better understanding of these new norms, Section 5.3 stated some of the quite
different properties that the two CVaR norms have. A new property of the Scaled CVaR norm,
i.e. piecewise convexity, was proposed and proven, which was again an original contribution
of this thesis. Finally, the computational efficiencies of the different characterizations of the
CVaR norms were investigated in Section 5.4. This comparison of computing times was another
original contribution.

After introducing the Scaled CVaR norm and CVaR norm, comparisons to the more familiar
family of Lp norms were drawn in Chapter 6. The main goal of this chapter was to show how
CSα and Cα behave in comparison to LSp and Lp for different combinations of α and p. Also,
in Section 6.2 it was analysed how to choose α in relation to p so that the Cα most closely
approximates the Lp norm.

A possible application of the CVaR norm was investigated for model recovery problems. The
theoretical background for model recovery problems was presented in Chapter 7. The aim of
these problems is to recover models or signals of dimension p with n < p random measurements.
Atomic norms and important concepts from convex geometry, such as tangent and normal cones,
were introduced in Section 7.1. The recovery conditions (which are based on atomic norms and
convex geometry) were presented in Section 7.2. For these conditions, the Gaussian width of a
set plays a crucial role, but it is generally difficult to determine the Gaussian width of arbitrary
sets. Therefore, Section 7.3 presented selected properties of Gaussian widths, which might be
useful in calculating bounds on Gaussian widths relating to the CVaR norm.

The final chapter, Chapter 8, contained completely original work. The goal of this chapter
was to show how the CVaR norm could be used for model recovery problems. Due to the
limited scope of this thesis, only partial results could be presented so that this chapter might
form a basis for further research in this area. Section 8.1 gave a conjecture on the set of atoms
relating to the CVaR norm for p−2

p < α <
p−1
p (Conjecture 8.1), which was partially proven. A

comparison of unit balls of the Cα norm for p−2
p < α <

p−1
p and 0 < α < 1

p was given, and a

numerical experiment was performed in R4 to provide evidence for Conjecture 8.1. The final
section, Section 8.3, then performs numerical experiments to show the recovery rate for different
x∗ using the CVaR norm as the atomic norm. From these experiments, it appears that the
CVaR norm is not suitable to recover an own type of signal, as recovery could not be guaranteed
with high probability for n < p. For other types of x∗ (i.e. k-sparse vectors and vectors that are
the sum of k binary vectors), model recovery using the CVaR norm was compared to using the
L1 norm and L∞ norm, respectively. While the CVaR norm performed considerably worse than
the L1 norm for recovering k-sparse vectors, the CVaR norm was marginally better than the L∞
norm for recovering vectors that are the sum of k binary vectors. As these experiments were
carried out with a particular choice of α, different α might yield different results, as the unit
balls of the CVaR are quite different depending on α. Hence, it might be promising to conduct
further research in this area.
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Appendix A

Matlab Code

A.1 List of Matlab Code Developed During this Dissertation

# Filename Purpose of Code Used for

1 CVaR Norm Component.m
Calculate the CVaR norm of x ∈ Rn at a given α
using Definition 5.2 (see Appendix A.4)

CVaR norm
calculations

2 CVaR Norm Optimization.m
Calculate the CVaR norm of x ∈ Rn at a given α
using Proposition 5.2 (see Appendix A.5)

CVaR norm
calculations

3
Scaled CVaR Norm
Component.m

Calculate the Scaled CVaR norm of x ∈ Rn at a
given α using Definition 5.1 (see Appendix A.2)

Scaled CVaR norm
calculations

4
Scaled CVaR Norm
Optimization.m

Calculate the Scaled CVaR norm of x ∈ Rn at a
given α using Proposition 5.1 (see Appendix A.3)

Scaled CVaR norm
calculations

5
Experiment01 CVaR Norms
Computing Times.m

Compare computing times of codes 1-4
Table 5.1,
Table 5.2,
Appendix B.6

6
Experi-
ment03 CVaR Norm on 2D grid.m

Draw surface plots of Cα and Lp of x ∈ R2 for
different α and p

Figure 6.6,
Appendix C.3

7
Experiment05 CVaR Lp Norm as
functions of alpha p.m

Calculate CSα , Cα and corresponding Lp, LSp for
α ∈ [0,1]

Figure 6.1,
Figure 6.4

8
Experiment06 Projecting Points
onto unit ball.m

Project a circle in R3 onto the unit ball
x21 + x

2
2 = 1, x3 = 1 using L2 norm and Cα norm

minimization for different α

Figure 6.7,
Appendix C.4

9
Experiment07 UL ratio for Lp
approximation by CVaR norm.m

Calculate and draw proximity ratio of Cα and Lp
for different p

Figure 6.3

10
Experiment10 MVO CVaR
Optimization Normal Dist.m

Compute Mean-Variance and CVaR optimal
portfolios for normally distributed losses

Table 3.3

11
Experiment11 MVO CVaR
Optimization Skewed Dist.m

Compute Mean-Variance and CVaR optimal
portfolios for skewed loss distributions, draw
histogram of simulated portfolio losses, give risk
metrics of optimal portfolios

Table 3.6,
Table 3.5,
Appendix C.2

12 Experiment12 Hedging.m

Perform Hedging procedure described in
Section 4.4, draw option payoff profiles before /
after hedging, draw loss distribution before / after
hedging, give risk metrics of portfolio before / after
hedge

Figure 4.4,
Figure 4.6,
Figure 4.5,
Figure 4.7,
Table 4.2,
Appendix B.4,
Appendix B.5

13
Experiment13 VaR
CVaR pdf cdf.m

Draw pdf and cdf of a normal random variable to
explain VaR and CVaR

Figure 2.1

14
Experiment14 MVO
Efficient Frontier.m

Calculate Mean-Variance optimal portfolio for
different required expected returns R and draw
efficient frontier

Figure 3.1

15
Experiment15 Find
CVaR Graphically.m

Draw φα(c) (Equation 3.8)for different c Figure 3.2

16
Experiment16a Scaled
CVaR own examples.m

Draw unit balls of CSα for different values of α Figure 5.1

17
Experiment16b CVaR
own examples.m

Draw unit balls of Cα for different values of α Figure 5.2

18
Experiment17 Show Piecewise
Convexity CSalpha.m

Draw CSα of 4 different x versus α Figure 5.3

Continued on next page...
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... continued from previous page

# Filename Purpose of Code Used for

19
Experiment20 CVaR
Model Recovery.m

Test model recovery of different x∗ using CVaR
norm

Figure 8.2

20
Experiment20a L1
Model Recovery.m

Compare recovery probability of different x∗ using
CVaR norm versus L1 norm

Figure 8.3

21
Experiment20b Linfty
Model Recovery.m

Compare recovery probability of different x∗ using
CVaR norm versus L∞ norm

Figure 8.4

22 Experiment21 CVaR Atoms R4.m
Project random hyperplanes onto unit ball of
C0.625 in R4 Appendix B.7

A.2 Scaled CVaR Calculation based on Definition 5.1

1 % Author :
2 % Jakob Ki s i a l a , June 2015
3 % Computes the s c a l e d CVaR norm of a vec to r at a g iven alpha , us ing
4 % componentwise d e f i n i t i o n
5

6 % INPUT:
7 % x = n−by−1 vec to r o f va lue s
8 % alpha = s c a l a r between 0 and 1
9 % OUTPUT:

10 % C S alpha = << x >>ˆS { alpha }
11

12 f unc t i on C S alpha = Scaled CVaR Norm Component (x , alpha )
13 C S alpha = 0 ;
14 % check i f alpha i s admi s s i b l e
15 i f ( alpha < 0 | | alpha > 1)
16 d i s p l ay ( ’ P lease put in an alpha such that 0 <= alpha <= 1 − Sca led CVaR could not be

c a l c u l a t e d ’ ) ;
17 r e turn
18 end
19

20 % check i f x i s a vec to r
21 s i z e x = s i z e ( x ) ;
22 dim x = length ( s i z e x ) ;
23

24 i f ( dim x > 2) % x has more than 2 dimensions
25 d i s p l ay ( ’ P lease only input v e c to r s x − Sca led CVaR could not be c a l c u l a t e d ’ ) ;
26 r e turn
27 end
28 i f ( s i z e x (1 ) > 1 && s i z e x (2 ) > 1) % x i s a matrix
29 d i s p l ay ( ’ P lease only input v e c to r s x − Sca led CVaR could not be c a l c u l a t e d ’ ) ;
30 r e turn
31 end
32

33 n = length ( x ) ;
34

35 % check four ca s e s :
36 % 0 : alpha = 0
37 % 1 : alpha > (n−1)/n
38 % 2 : alpha equal to some a l p h a j
39 % 3 : alpha between a l p h a j and a lpha { j +1}
40

41 % case 0 : alpha = 0
42 i f ( alpha == 0)
43 C S alpha = sum( abs ( x ) ) /n ;
44 r e turn
45 end
46

47 % f o r the remaining three ca s e s a d d i t i o n a l v e c t o r s are needed :
48 a l p h a j v e c t o r = ( [ 0 : n−1 ] ’ ) /n ;
49

50 % case 1 : alpha > (n−1)/n
51 i f ( alpha > a l p h a j v e c t o r (n) )
52 C S alpha = max( abs ( x ) ) ;
53 r e turn
54 end
55

56 % s o r t vec to r x by magnitude o f components
57 x a b s s o r t e d = s o r t ( abs ( x ) ) ;
58
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59 e p s i l o n = 1e −10;
60 temp vector = a l p h a j v e c t o r − alpha ;
61

62 % case 2 : alpha equal to some a l p h a j
63

64 i f ( any ( abs ( temp vector ) < e p s i l o n ) )
65 C S alpha = c a l c u l a t e N o r m f o r a l p h a j ( x abs so r t ed , alpha ) ;
66 r e turn
67 end
68

69 % case 3 : alpha between a l p h a j and a lpha { j +1}
70 % f i n d a l p h a j
71 temp index = temp vector < 0 ;
72 a l p h a j = max( a l p h a j v e c t o r ( temp index ) ) ;
73 % f i n d a lpha { j +1}
74 temp index = temp vector > 0 ;
75 a lpha jP lu s1 = min ( a l p h a j v e c t o r ( temp index ) ) ;
76

77 mu = ( ( a lpha jP lu s1 − alpha ) ∗(1 − a l p h a j ) ) / ( ( a lpha jP lu s1 − a l p h a j ) ∗(1 − alpha ) ) ;
78

79 C aj = c a l c u l a t e N o r m f o r a l p h a j ( x abs so r t ed , a l p h a j ) ;
80 C ajPlus1 = c a l c u l a t e N o r m f o r a l p h a j ( x abs so r t ed , a lpha jP lu s1 ) ;
81

82 C S alpha = mu∗C aj + (1 − mu) ∗ C ajPlus1 ;
83

84 % func t i on to c a l c u l a t e the Cˆ S { alpha } f o r a l p h a j
85 f unc t i on C S alpha1 = c a l c u l a t e N o r m f o r a l p h a j ( vector , a l p h a j )
86 j = f i n d ( abs ( a l p h a j v e c t o r − a l p h a j ) < 1e −10) − 1 ;
87 C S alpha1 = (1 / (n − j ) ) ∗ sum( vec to r ( j +1:n) ) ;
88 end
89 end

A.3 Scaled CVaR Calculation based on Proposition 5.1

1 % Author :
2 % Jakob Ki s i a l a , June 2015
3 % Computes the s c a l e d CVaR norm of a vec to r at a g iven alpha , us ing
4 % CVaR opt imiza t i on
5

6 % INPUT:
7 % x = n−by−1 vec to r o f va lue s
8 % alpha = s c a l a r between 0 and 1
9 % OUTPUT:

10 % C S alpha = << x >>ˆS { alpha }
11

12 f unc t i on C S alpha = Scaled CVaR Norm Optimization (x , alpha )
13 C S alpha = 0 ;
14 % check i f alpha i s admi s s i b l e
15 i f ( alpha < 0 | | alpha > 1)
16 d i s p l ay ( ’ P lease put in an alpha such that 0 <= alpha <= 1 − Sca led CVaR could not be

c a l c u l a t e d ’ ) ;
17 r e turn
18 end
19

20 % check i f x i s a vec to r
21 s i z e x = s i z e ( x ) ;
22 dim x = length ( s i z e x ) ;
23

24 i f ( dim x > 2) % x has more than 2 dimensions
25 d i s p l ay ( ’ P lease only input v e c to r s x − Sca led CVaR could not be c a l c u l a t e d ’ ) ;
26 r e turn
27 end
28 i f ( s i z e x (1 ) > 1 && s i z e x (2 ) > 1) % x i s a matrix
29 d i s p l ay ( ’ P lease only input v e c to r s x − Sca led CVaR could not be c a l c u l a t e d ’ ) ;
30 r e turn
31 end
32

33 x abs = abs ( x ) ;
34

35 % s p e c i a l case : alpha = 1
36 i f ( alpha == 1)
37 C S alpha = max( x abs ) ;
38 r e turn
39 end
40

III



41 % use CVaR opt imiza t i on to c a l c u l a t e norm
42 n = length ( x ) ;
43 e = ones (n , 1 ) ;
44

45 cvx beg in
46 cvx qu i e t ( t rue ) % s u p r e s s e s cvx ’ s output
47 v a r i a b l e s z (n) c
48 minimize ( c + (1/( n∗(1− alpha ) ) ) ∗( e ’∗ z ) )
49 s ub j e c t to
50 z >= x abs − c ;
51 z >= 0 ;
52 cvx end
53

54 C S alpha = cvx optva l ;
55

56 end

A.4 CVaR Calculation based on Definition 5.2

1 % Author :
2 % Jakob Ki s i a l a , June 2015
3 % Computes the ( non− s c a l e d ) CVaR norm of a vec to r at a g iven alpha , us ing
4 % componentwise d e f i n i t i o n
5

6 % INPUT:
7 % x = n−by−1 vec to r o f va lue s
8 % alpha = s c a l a r between 0 and 1
9 % OUTPUT:

10 % C alpha = << x >> { alpha }
11

12 f unc t i on C alpha = CVaR Norm Component (x , alpha )
13 C alpha = 0 ;
14 % check i f alpha i s admi s s i b l e
15 i f ( alpha < 0 | | alpha >= 1)
16 d i s p l ay ( ’ P lease put in an alpha such that 0 <= alpha < 1 − CVaR could not be

c a l c u l a t e d ’ ) ;
17 r e turn
18 end
19

20 % check i f x i s a vec to r
21 s i z e x = s i z e ( x ) ;
22 dim x = length ( s i z e x ) ;
23

24 i f ( dim x > 2)
25 d i s p l ay ( ’ P lease only input v e c to r s x − CVaR could not be c a l c u l a t e d ’ ) ;
26 r e turn
27 end
28 i f ( s i z e x (1 ) > 1 && s i z e x (2 ) > 1)
29 d i s p l ay ( ’ P lease only input v e c to r s x − CVaR could not be c a l c u l a t e d ’ ) ;
30 r e turn
31 end
32

33 % check four ca s e s :
34 % 0 : alpha = 0
35 % 1 : alpha > (n−1)/n
36 % 2 : alpha equal to some a l p h a j
37 % 3 : alpha between a l p h a j and a lpha { j +1}
38

39 % case 0 : alpha = 0
40 i f ( alpha == 0)
41 C alpha = sum( abs ( x ) ) ;
42 r e turn
43 end
44

45 % f o r the remaining three ca s e s a d d i t i o n a l v e c t o r s are needed :
46 n = length ( x ) ;
47 a lpha t imes n = alpha ∗n ;
48

49 % case 1 : alpha > (n−1)/n
50 i f ( a lpha t imes n > n−1)
51 C alpha = n∗(1− alpha ) ∗max( abs ( x ) ) ;
52 r e turn
53 end
54

55 % x vector , in abos lu t e va lue s so r t ed in ascending order
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56 x a b s s o r t e d = s o r t ( abs ( x ) ) ;
57

58 e p s i l o n = 1e −10;
59

60 % case 2 : alpha equal to some a l p h a j
61

62 i f (mod( a lpha t imes n , 1 ) < e p s i l o n )
63 %j = f i n d ( abs ( a l p h a j v e c t o r − alpha ) < 1e −10) − 1 ;
64 %C S alpha = (1 / (n − j ) ) ∗ sum( x a b s s o r t e d ( j +1:n) ) ;
65 C alpha = c a l c u l a t e N o r m f o r a l p h a j ( x abs so r t ed , round ( a lpha t imes n ) ) ;
66 r e turn
67 end
68

69 % case 3 : alpha between a l p h a j and a lpha { j +1}
70 % f i n d a l p h a j
71 j = f l o o r ( a lpha t imes n ) ;
72 a l p h a j = j /n ;
73 % f i n d a lpha { j +1}
74 jP lus1 = c e i l ( a lpha t imes n ) ;
75 a lpha jP lu s1 = jPlus1 /n ;
76

77 lambda = ( a lpha jP lu s1 − alpha ) / ( a lpha jP lu s1 − a l p h a j ) ;
78

79 C aj = c a l c u l a t e N o r m f o r a l p h a j ( x abs so r t ed , j ) ;
80 C ajPlus1 = c a l c u l a t e N o r m f o r a l p h a j ( x abs so r t ed , jP lus1 ) ;
81

82 C alpha = lambda∗C aj + (1 − lambda ) ∗ C ajPlus1 ;
83

84 % func t i on to c a l c u l a t e the Cˆ S { alpha } f o r a l p h a j
85 f unc t i on C alpha1 = c a l c u l a t e N o r m f o r a l p h a j ( vector , j )
86 C alpha1 = sum( vec to r ( j +1:n) ) ;
87 end
88 end

A.5 CVaR Calculation based on Proposition 5.2

1 % Author :
2 % Jakob Ki s i a l a , June 2015
3 % Computes the ( non− s c a l e d ) CVaR norm of a vec to r at a g iven alpha , us ing
4 % CVaR opt imiza t i on
5

6 % INPUT:
7 % x = n−by−1 vec to r o f va lue s
8 % alpha = s c a l a r between 0 and 1
9 % OUTPUT:

10 % C alpha = << x >> { alpha }
11

12 f unc t i on C alpha = CVaR Norm Optimization (x , alpha )
13 C alpha = 0 ;
14 % check i f alpha i s admi s s i b l e
15 i f ( alpha < 0 | | alpha >= 1)
16 d i s p l ay ( ’ P lease put in an alpha such that 0 <= alpha < 1 − CVaR could not be

c a l c u l a t e d ’ ) ;
17 r e turn
18 end
19

20 % check i f x i s a vec to r
21 s i z e x = s i z e ( x ) ;
22 dim x = length ( s i z e x ) ;
23

24 i f ( dim x > 2)
25 d i s p l ay ( ’ P lease only input v e c to r s x − CVaR could not be c a l c u l a t e d ’ ) ;
26 r e turn
27 end
28 i f ( s i z e x (1 ) > 1 && s i z e x (2 ) > 1)
29 d i s p l ay ( ’ P lease only input v e c to r s x − CVaR could not be c a l c u l a t e d ’ ) ;
30 r e turn
31 end
32

33 x abs = abs ( x ) ;
34

35 % use CVaR opt imiza t i on to c a l c u l a t e norm
36 n = length ( x ) ;
37 e = ones (n , 1 ) ;
38

V



39 cvx beg in
40 cvx qu i e t ( t rue ) % s u p r e s s e s cvx ’ s output
41 v a r i a b l e s z (n) c
42 minimize (n∗(1 − alpha ) ∗c + e ’∗ z )
43 s ub j e c t to
44 z >= x abs − c ;
45 z >= 0 ;
46 cvx end
47

48 C alpha = cvx optva l ;
49 end

VI



Appendix B

Extended Tables

B.1 Option Prices on NASDAQ:YHOO on 22 July 2015, 9:00
a.m. New York Time

Underlying Option Strike Price Underlying Option Strike Price
Yahoo Call 31.5 7.050 Yahoo Put 31.5 0.170
Yahoo Call 34.0 4.625 Yahoo Put 34.0 0.020
Yahoo Call 35.0 3.650 Yahoo Put 35.0 0.025
Yahoo Call 35.5 3.125 Yahoo Put 35.5 0.030
Yahoo Call 36.0 2.520 Yahoo Put 36.0 0.040
Yahoo Call 36.5 2.305 Yahoo Put 36.5 0.045
Yahoo Call 37.0 1.790 Yahoo Put 37.0 0.060
Yahoo Call 37.5 1.330 Yahoo Put 37.5 0.080
Yahoo Call 38.0 0.905 Yahoo Put 38.0 0.130
Yahoo Call 38.5 0.575 Yahoo Put 38.5 0.285
Yahoo Call 39.0 0.305 Yahoo Put 39.0 0.480
Yahoo Call 39.5 0.155 Yahoo Put 39.5 0.880
Yahoo Call 40.0 0.085 Yahoo Put 40.0 1.260
Yahoo Call 40.5 0.060 Yahoo Put 40.5 1.740
Yahoo Call 41.0 0.040 Yahoo Put 41.0 2.195
Yahoo Call 41.5 0.025 Yahoo Put 41.5 2.715
Yahoo Call 42.0 0.030 Yahoo Put 42.0 3.225
Yahoo Call 42.5 0.035 Yahoo Put 42.5 3.725
Yahoo Call 43.0 0.015 Yahoo Put 43.0 4.225
Yahoo Call 43.5 0.065 Yahoo Put 43.5 4.650
Yahoo Call 44.0 0.025 Yahoo Put 44.0 5.275
Yahoo Call 44.5 0.170 Yahoo Put 44.5 5.675
Yahoo Call 45.0 0.015 Yahoo Put 45.0 6.150
Yahoo Call 46.5 0.010 Yahoo Put 46.5 7.700
Yahoo Call 49.5 0.010 Yahoo Put 49.5 10.500
Yahoo Call 50.0 0.010 Yahoo Put 50.0 11.025
Yahoo Call 50.5 0.010 Yahoo Put 50.5 11.525
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B.2 Option Prices on NASDAQ:GOOGL on 22 July 2015, 9:00
a.m. New York Time

Underlying Option Strike Price Underlying Option Strike Price
Google Call 510.0 194.200 Google Put 510.0 0.030
Google Call 535.0 169.400 Google Put 535.0 0.155
Google Call 545.0 158.950 Google Put 545.0 0.180
Google Call 550.0 153.950 Google Put 550.0 0.030
Google Call 560.0 144.200 Google Put 560.0 0.055
Google Call 565.0 139.200 Google Put 565.0 0.130
Google Call 570.0 134.200 Google Put 570.0 0.130
Google Call 580.0 124.200 Google Put 580.0 0.205
Google Call 590.0 114.200 Google Put 590.0 0.180
Google Call 597.5 106.500 Google Put 597.5 0.155
Google Call 600.0 104.250 Google Put 600.0 0.030
Google Call 615.0 88.950 Google Put 615.0 0.155
Google Call 620.0 83.950 Google Put 620.0 0.155
Google Call 630.0 74.000 Google Put 630.0 0.155
Google Call 650.0 54.350 Google Put 650.0 0.150
Google Call 652.5 52.100 Google Put 652.5 0.275
Google Call 655.0 49.500 Google Put 655.0 0.275
Google Call 657.5 46.850 Google Put 657.5 0.275
Google Call 660.0 44.550 Google Put 660.0 0.300
Google Call 665.0 39.550 Google Put 665.0 0.425
Google Call 667.5 36.900 Google Put 667.5 0.525
Google Call 670.0 34.650 Google Put 670.0 0.600
Google Call 675.0 29.950 Google Put 675.0 0.800
Google Call 677.5 27.600 Google Put 677.5 0.950
Google Call 680.0 25.400 Google Put 680.0 1.150
Google Call 682.5 23.150 Google Put 682.5 1.375
Google Call 685.0 20.900 Google Put 685.0 1.700
Google Call 687.5 18.650 Google Put 687.5 2.075
Google Call 690.0 16.800 Google Put 690.0 2.600
Google Call 692.5 14.750 Google Put 692.5 3.175
Google Call 695.0 12.850 Google Put 695.0 3.850
Google Call 697.5 11.350 Google Put 697.5 4.700
Google Call 700.0 9.900 Google Put 700.0 5.600
Google Call 702.5 8.450 Google Put 702.5 6.750
Google Call 705.0 7.250 Google Put 705.0 8.100
Google Call 710.0 5.050 Google Put 710.0 10.950
Google Call 712.5 4.250 Google Put 712.5 12.550
Google Call 715.0 3.450 Google Put 715.0 14.250
Google Call 717.5 2.875 Google Put 717.5 16.100
Google Call 720.0 2.425 Google Put 720.0 18.200
Google Call 725.0 1.675 Google Put 725.0 22.550
Google Call 730.0 1.175 Google Put 730.0 27.200
Google Call 735.0 0.775 Google Put 735.0 31.350
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B.3 Trader’s positions on 22 July 2015, 9:00 a.m. New York
Time before hedging

Underlying Option Strike Position Cost of Position (USD)
Yahoo Call 31.5 35 24,675
Yahoo Call 34.0 40 18,500
Yahoo Call 35.0 25 9,125
Yahoo Call 35.5 30 9,375
Yahoo Call 36.0 45 11,340
Yahoo Call 37.0 35 6,265
Yahoo Call 38.0 40 3,620
Yahoo Call 38.5 50 2,875
Yahoo Call 39.0 -50 -1,525
Yahoo Call 40.0 10 85
Yahoo Call 40.5 -10 -60
Yahoo Call 41.5 50 125
Yahoo Call 42.0 -1,100 -3,300
Yahoo Call 42.5 -50 -175
Yahoo Call 43.0 -40 -60
Yahoo Call 43.5 -40 -260
Yahoo Call 44.5 -35 -595
Yahoo Call 45.0 -45 -68
Yahoo Put 31.5 -10 -170
Yahoo Put 37.5 -1,050 -8,400
Yahoo Put 38.0 6 78
Yahoo Put 39.0 50 2,400
Yahoo Put 39.5 49 4,312
Yahoo Put 40.0 50 6,300
Yahoo Put 41.5 50 13,575
Yahoo Put 42.0 -50 -16,125
Yahoo Put 42.5 -50 -18,625
Yahoo Put 43.0 -50 -21,125
Yahoo Put 45.0 50 30,750
Yahoo Put 49.5 50 52,500
Yahoo Put 50.0 50 55,125
Yahoo Put 50.5 50 57,625
Google Call 730.0 -100 -11,750
Google Put 665.0 -100 -4,250

Total 222,163
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B.4 Trader’s positions in Yahoo Options on 22 July 2015, 9:00
a.m. New York Time after hedging

Underlying Strike
Call

Position

Cost of Call
Position
(USD)

Put
Position

Cost of Put
Position
(USD)

Net Cost of
Position
(USD)

Yahoo 31.5 85 59,925 -60 -1,020 58,905
Yahoo 34 90 41,625 -50 -100 41,525
Yahoo 35 75 27,375 -50 -125 27,250
Yahoo 35.5 80 25,000 -50 -150 24,850
Yahoo 36 95 23,940 -50 -200 23,740
Yahoo 36.5 -50 -11,525 -50 -225 -11,750
Yahoo 37 85 15,215 -50 -300 14,915
Yahoo 37.5 50 6,650 -1100 -8,800 -2,150
Yahoo 38 90 8,145 -44 -572 7,573
Yahoo 38.5 49 2,818 -50 -1,425 1,393
Yahoo 39 -100 -3,050 100 4,800 1,750
Yahoo 39.5 50 775 49 4,312 5,087
Yahoo 40 60 510 100 12,600 13,110
Yahoo 40.5 40 240 50 8,700 8,940
Yahoo 41 50 200 50 10,975 11,175
Yahoo 41.5 100 250 100 27,150 27,400
Yahoo 42 -1150 -3,450 -100 -32,250 -35,700
Yahoo 42.5 -100 -350 -100 -37,250 -37,600
Yahoo 43 -90 -135 -100 -42,250 -42,385
Yahoo 43.5 -90 -585 50 23,250 22,665
Yahoo 44 -50 -125 -50 -26,375 -26,500
Yahoo 44.5 -85 -1,445 50 28,375 26,930
Yahoo 45 -95 -143 100 61,500 61,358
Yahoo 46.5 -50 -50 50 38,500 38,450
Yahoo 49.5 -50 -50 100 105,000 104,950
Yahoo 50 -50 -50 100 110,250 110,200
Yahoo 50.5 -50 -50 100 115,250 115,200

Total 591,280
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B.5 Trader’s positions in Google Options on 22 July 2015, 9:00
a.m. New York Time after hedging

Underlying Strike
Call

Position

Cost of Call
Position
(USD)

Put
Position

Cost of Put
Position
(USD)

Net Cost of
Position
(USD)

Google 510 -5 -97,100 -5 -15 -97,115
Google 535 -5 -84,700 -5 -78 -84,778
Google 545 5 79,475 -5 -90 79,385
Google 550 5 76,975 -5 -15 76,960
Google 560 -5 -72,100 -5 -28 -72,128
Google 565 -5 -69,600 -5 -65 -69,665
Google 570 -5 -67,100 -5 -65 -67,165
Google 580 -5 -62,100 -5 -103 -62,203
Google 590 -5 -57,100 -5 -90 -57,190
Google 597.5 5 53,250 -5 -78 53,173
Google 600 -5 -52,125 -5 -15 -52,140
Google 615 5 44,475 -5 -78 44,398
Google 620 5 41,975 -5 -78 41,898
Google 630 5 37,000 -5 -78 36,923
Google 650 -5 -27,175 5 75 -27,100
Google 652.5 -5 -26,050 -5 -138 -26,188
Google 655 -5 -24,750 -5 -138 -24,888
Google 657.5 5 23,425 5 138 23,563
Google 660 1 4,455 5 150 4,605
Google 665 5 19,775 -95 -4,038 15,738
Google 667.5 5 18,450 5 263 18,713
Google 670 5 17,325 5 300 17,625
Google 675 5 14,975 5 400 15,375
Google 677.5 5 13,800 5 475 14,275
Google 680 5 12,700 5 575 13,275
Google 682.5 4 9,260 5 688 9,948
Google 685 -5 -10,450 5 850 -9,600
Google 687.5 5 9,325 -5 -1,038 8,288
Google 690 -5 -8,400 5 1,300 -7,100
Google 692.5 5 7,375 -5 -1,588 5,788
Google 695 5 6,425 -5 -1,925 4,500
Google 697.5 5 5,675 -5 -2,350 3,325
Google 700 -5 -4,950 5 2,800 -2,150
Google 702.5 -5 -4,225 5 3,375 -850
Google 705 4 2,900 -4 -3,240 -340
Google 710 5 2,525 -5 -5,475 -2,950
Google 712.5 -5 -2,125 5 6,275 4,150
Google 715 -5 -1,725 5 7,125 5,400
Google 717.5 -5 -1,438 5 8,050 6,613
Google 720 -3 -728 5 9,100 8,373
Google 725 5 838 5 11,275 12,113
Google 730 -105 -12,338 -5 -13,600 -25,938
Google 735 -5 -388 5 15,675 15,288

Total -149,800
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B.6 Computation times of Scaled and (non-scaled) CVaR Norm
in ms

Computation time in ms
Component-wise Optimization

α n
⟪x⟫Sα

(Definition 5.1)

⟪x⟫α
(Definition 5.2)

⟪x⟫Sα
(Proposition 5.1)

⟪x⟫α
(Proposition 5.2)

0

2 0.62 0.50 220.44 197.76
3 0.11 0.03 211.03 179.15

10 0.11 0.03 181.00 173.62
100 0.12 0.03 196.84 194.83

1000 0.21 0.04 202.81 199.38
10000 1.05 0.05 455.95 435.50

100000 4.94 0.27 3766.36 3497.11

0.1

2 0.18 0.12 216.77 188.06
3 0.19 0.12 189.60 182.71

10 0.12 0.08 199.62 186.78
100 0.14 0.10 229.93 226.96

1000 0.19 0.14 244.86 236.01
10000 1.00 0.94 625.06 599.35

100000 5.25 5.03 6175.45 5843.76

0.25

2 0.20 0.12 181.25 175.68
3 0.18 0.12 181.29 184.35

10 0.19 0.13 265.65 242.76
100 0.14 0.10 214.34 217.70

1000 0.19 0.14 229.73 271.94
10000 1.06 0.98 600.00 584.77

100000 5.61 5.02 5772.24 5277.92

0.5

2 0.13 0.08 178.59 174.96
3 0.18 0.12 180.96 179.34

10 0.13 0.08 184.33 181.49
100 0.15 0.10 217.66 213.11

1000 0.19 0.14 323.36 239.72
10000 1.00 0.92 571.45 551.93

100000 5.64 5.00 5516.37 5128.19

0.7

2 0.05 0.04 179.90 176.37
3 0.05 0.03 184.08 188.00

10 0.13 0.08 187.39 189.06
100 0.14 0.10 250.00 267.46

1000 0.19 0.15 252.11 241.46
10000 0.97 0.92 624.84 612.85

100000 5.57 5.06 6201.42 5965.34

0.9

2 0.05 0.04 177.20 178.02
3 0.05 0.04 182.70 183.60

10 0.12 0.08 177.95 180.54
100 0.14 0.10 231.81 231.11

1000 0.19 0.14 289.31 249.22
10000 0.98 0.91 749.50 713.43

100000 5.26 5.02 8122.91 7767.68
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B.7 Ratio of Projections of Random Hyperplanes onto Cα Unit
Ball in R4 over 5,000 Trials

Projected onto Ratio

x = [1,0,0,0]T 0.62 %

x = [0,1,0,0]T 0.88 %

x = [0,0,1,0]T 0.70 %

x = [0,0,0,1]T 0.72 %

x = [−1,0,0,0]T 0.66 %

x = [0,−1,0,0]T 0.80 %

x = [0,0,−1,0]T 0.86 %

x = [0,0,0,−1]T 0.62 %

x = (2/3) × [1,1,1,1]T 5.64 %

x = (2/3) × [1,1,1,−1]T 6.14 %

x = (2/3) × [1,1,−1,1]T 6.24 %

x = (2/3) × [1,1,−1,−1]T 5.84 %

x = (2/3) × [1,−1,1,1]T 5.76 %

x = (2/3) × [1,−1,1,−1]T 6.08 %

x = (2/3) × [1,−1,−1,1]T 5.44 %

x = (2/3) × [1,−1,−1,−1]T 5.04 %

x = (2/3) × [−1,1,1,1]T 5.42 %

x = (2/3) × [−1,1,1,−1]T 6.16 %

x = (2/3) × [−1,1,−1,1]T 6.16 %

x = (2/3) × [−1,1,−1,−1]T 5.86 %

x = (2/3) × [−1,−1,1,1]T 6.22 %

x = (2/3) × [−1,−1,1,−1]T 6.00 %

x = (2/3) × [−1,−1,−1,1]T 6.28 %

x = (2/3) × [−1,−1,−1,−1]T 5.86 %
other x 0.00 %
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Appendix C

Extended Diagrams

C.1 Monte Carlo simulated loss distributions of single assets
(Scenario 2 of Section 3.3)
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C.2 Monte Carlo simulated loss distributions of optimal port-
folios (Scenario 2 of Section 3.3)
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C.3 Cα and Lp∗ norm surface plots of x ∈ Rn for different α and
p∗
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C.4 Projection of a circle onto the unit ball in R3 using L2 and
Cα norms
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