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Some notation

I I - unit matrix,

I X ∈ Rm×n ⇒ x = vec(X ) ∈ Rmn

I 〈x , y〉 = xT y =
∑

i xi yi

I 〈A, B〉 = trace(AT B) =
∑

i ,j aij bij
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Some notation

I Symmetric matrices Sn := {X ∈ Rn×n : X T = X}
I Cone of positive semidefinite matrices
S+

n := {X ∈ Sn : uT Xu ≥ 0,∀u ∈ Rn} - closed convex
pointed cone

I Positive definite matrices
S++

n := {X ∈ Sn : uT Xu > 0, ∀u ∈ Rn}
I The dual cone:

(S+
n )∗ = {Y ∈ Sn : 〈Y ,X 〉 ≥ 0, ∀X ∈ S+

n } = S+
n

(Note: infX�0〈X , Y 〉 = 0 ⇐⇒ Y � 0)

I For X ∈ S+
n we use X � 0.
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Few properties of PSD matrices

I For A ∈ Sn the following are equivalent

I A ∈ S+
n ,

I all eigenvalues of A are nonnegative real numbers,
I there exist P and D = Diag(d), d ≥ 0, such that A = PDPT ,
I det AII ≥ 0 for every main submatrix AII (AII is main

submatrix, if A = [aij ], for i , j ∈ I ⊆ {1, . . . , n}).
I BABT ∈ S+

n , for some non-singular B.
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Few properties of PSD matrices

I For X ,Y ∈ S+
n : 〈X , Y 〉 ≥ 0 and 〈X , Y 〉 = 0 ⇐⇒ XY = 0.

I Schur’s complement: if A ∈ S++
n then[

A B
B t C

]
� 0 ⇐⇒ C − B tA−1B � 0.
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Primal and the dual SDP

I Primal semidefinite programming
problem (PSDP)

inf 〈C ,X 〉

s. t. 〈Ai , X 〉 = bi , ∀i ,
X ∈ S+

n

I Dual semidefinite programming
problem (DSDP)

sup bT y

s. t.
∑

i yi Ai + Z = C
Z ∈ S+

n

I PSDP and DSDP are dual of each other.
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Example 1: linear programming (LP)

Linear programming problem (LP) in standard primal form

min cT x

p. p. Ax = b
x ≥ 0

I LP as PSDP: C = Diag(c), X = Diag(x), Ai = Diag(A(i , :))

min 〈C ,X 〉

p. p. 〈Ai , X 〉 = bi , 1 ≤ i ≤ m,
X ∈ S+

n
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Example 2: convex quadratic programming

Def. Convex quadratic programming problem (CCP):

inf f0(x)
p. p. fi (x) ≤ 0, i = 1, . . . ,m. (CCP)

where: fi (x) = x tUix − v t
i x − zi , Ui � 0.

I Note

fi (x) ≤ 0⇐⇒ Ai =

[
I U

1/2
i x

(U
1/2
i x)t v t

i x + zi

]
� 0.

Rem.

Ai =

[
I 0
0 zi

]
+x1

[
0 U

1/2
i (:, 1)

U
1/2
i (1, :) vi1

]
+· · ·+xn

[
0 U

1/2
i (:, n)

U
1/2
i (n, :) vin

]
.
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Example 2: convex quadratic programming cnt.

I Finding min of f0(x) is equiv. to finding min. of t with
additional constraint

f0(x) ≤ t.

I (CCP) is equivalent to:

inf t
p. p. Diag(A0,A1, . . . ,Am) � 0,

I where

A0 =

[
I U

1/2
0 x

(U
1/2
0 x)t v t

0x + z0 + t

]
.
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Weak duality

I Let us define

〈Ai , X 〉 = bi =: A(X ) = b∑
i

yi Ai =: AT (y)

OPTP = inf {〈C , X 〉 ; A(X ) = b, X � 0} and

OPTD = sup {bty ; At(y) + Z = C , Z � 0, y ∈ Rm}.

I More definitions sup ∅ = −∞, inf ∅ =∞.
Thm.: OPTP ≥ OPTD .

Proof:

I Duality gap:
OPTP − OPTD = 〈C , Xopt〉 − bT yopt = 〈Xopt ,Zopt〉.
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Strong duality

Def.: PSDP is strictly feasible, if there exists X ∈ S++
n such that

A(X ) = b.
DSDP is strictly feasible, if there exists pair
(y ,Z ) ∈ Rm × S++

n such that AT (y) + Z = C .

Thm.: Let (DSDP) be strictly feasible. Then
I OPTP = OPTD .
I If OPTP <∞ then there exists X � 0 s.t. A(X ) = b and
〈C , X 〉 = OPTP .

Janez Povh SDP, CO and RAG



Introduction
Solving SDP

Definition of SDP
Dual theory

Example 3: optimum is not attained

min
〈[1 0

0 0

]
, X
〉

p. p.
〈[0 1

1 0

]
, X
〉

= 2, X � 0.

I Feasible solutions: X =

[
x11 1
1 x22

]
with x22 > 0 in

x11x22 ≥ 1.

I OPTP = 0, but OPTP is not attained.

I Interpretation : DSDP has no strictly feasible solution.

Janez Povh SDP, CO and RAG



Introduction
Solving SDP

Definition of SDP
Dual theory

Example 4: positive duality gap

min
〈0 0 0

0 0 0
0 0 1

 , X
〉

p. p.
〈1 0 0

0 0 0
0 0 0

 , X
〉

= 0,
〈0 1 0

1 0 0
0 0 2

 , X
〉

= 2, X � 0.

I OPTP = 1, OPTD = 0.
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Optimal conditions for SDP

Let PSDP and DSDP be strictly feasible.

Thm.: X ∗ in (y∗,Z ∗) are optimal for PSDP and DSDP if and only if:

(prim. dop.) A(X ) = b, X � 0
(dual. dop.) AT (y) + Z = C , Z � 0
(zero duality gap) XZ = 0 (bT y = 〈C , X 〉)
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Central path

I Assumptions
I eqs. 〈Ai , X 〉 = bi linearly independant
I PSDP and DSDP strictly feasible

I Then the system

(prim. dop.) A(X ) = b, X � 0
(dual. dop.) AT (y) + Z = C , Z � 0

XZ = µI µ > 0

has a unique solution (Xµ, yµ,Zµ).

Def.: The central path: {(Xµ, yµ,Zµ) : µ > 0}.
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Example

I PSDP

min
〈[1 0

0 1

]
, X
〉

p. p.
〈[0 1

1 0

]
, X
〉

= 2, X � 0.

I DSDP

max 2y p. p. Z =

[
1 −y
−y 1

]
� 0.
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The central path (primal part)

Janez Povh SDP, CO and RAG



Introduction
Solving SDP

Interior point methods (IPM)
Boundary point method

The properties of the central path

Thm: The central path is a smooth curve parameterized by µ.

Thm: The central path always converge
limµ↓0(Xµ, yµ,Zµ) = (X ∗, y∗,Z ∗). Limit point is maximally
complementary primal dual optimal solution.

Def: Let (X ∗, y∗,Z ∗) be primal dual optimal solution. It is
maximally complementary if rank(X ∗) is maximal among all
primal optimal solutions and rank(Y ∗) is maximal among all
dual optimal solutions.

Proof: See e.g. H. Wolkowicz, R. Saigal, L. Vanderberghe (ed.):
Handbook of Semidefinite Programming. Kluwer Academic
Publishers, Boston-Dordrecht-London, 2000.
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Path following IPMs

Idea: We solve approximately the equations defining the central
path (we follow the central path approximately).
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Path following IPMs - more precisely

Input: A, b ∈ Rm, C ∈ Sn, ε > 0, σ ∈ (0, 1) and (X0, y0,Z0) strictly feasible for
PSDP in DSDP

1. Set k := 0.

2. Repeat

2.1 µk = 〈Xk ,Zk 〉/n
2.1 Solve

A(Xk + ∆X ) = b,

AT (yk + ∆y) + Z + ∆Z = C ,

(Xk + ∆X )(Zk + ∆Z) = σµk I .

2.2 ∆X = (∆X + (∆X )T )/2.
2.3 (Xk+1, yk+1,Zk+1) := (Xk + ∆X , yk + ∆y ,Zk + ∆Z).
2.4 k := k + 1.

3. until 〈Xk+1, Zk+1〉 ≤ ε.

Output: (Xk , yk ,Zk ).
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Solving the system

I Note that the starting point is strictly feasible.

A(∆X ) = 0,

AT (∆y) + ∆Z = 0,

∆XZk + Xk ∆Z = µk I − Xk Zk ,

∆X = (∆X + (∆X )T )/2,

I FIRSTLY: ∆Z = −AT (∆y)

I THEN: ∆X = (µI − Xk Zk − Xk ∆Z )Z−1
k

I FINALLY:
A(XkAT (∆y)Z−1

k ) = −A(µZ−1
k )+A(Xk ) = b−A(µZ−1

k ).
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Solving the system: bottlenecks

I On each step we have to

- compute one inverse (Z−1
k )

- compose the system matrix M∆y = b̃. Each
mij = 〈Ai ,XAj Z

−1
k 〉 takes O(m2n2 + mn3) flops.

- Solve the system M∆y = b̃ (takes O(m3) flops)
- Compute ∆Z in ∆X (takes O(mn2 + n3) flops)

Janez Povh SDP, CO and RAG



Introduction
Solving SDP

Interior point methods (IPM)
Boundary point method

Theoretical guaranty

Thm.: Let (X0, y0,Z0) be strictly feasible starting point with

‖Z 1/2XZ 1/2 − µI‖ ≤ θ〈X ,Z 〉.

The described path following IPM gives ε-optimal solution in
at most d

√
n/δ log(ε−1 〈X0, S0〉)e iterations, where

I δ =
√

n(1− σ).

I (1+θ)
1
2

2(1−θ)
3
2

(θ2 + n(1− σ)2) ≤ σθ.
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Boundary point method (Povh, Rendl, Wiegele, 2005)

I Relaxed optimality conditions

(primal feas.) A(X ) ≈ b, X � 0
(dual feas.) AT (y) + Z ≈ C , Z � 0
(zero opt. dual. gap) XZ = 0

I
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Boundary point method (Povh, Rendl, Wiegele, 2005)

I Relaxed optimality conditions

(primal feas.) A(X ) ≈ b, X � 0
(dual feas.) AT (y) + Z ≈ C , Z � 0
(zero opt. dual. gap) XZ = 0

I
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Idea behind the Boundary point method

I Augmented Lagrangian approach to DSDP

sup{bT y : AT y + Z = C ,Z ∈ S+
n }

I Replace DSDP by DSDP-L:

min {bT y +〈X , C−AT (y)−Z 〉+σ

2
‖C−AT (y)−Z‖2 : Z � 0}
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BPM: algorithm

I

INPUT: A, b,C ∈ Sn.

1. Select σ > 0, X 0 � 0.
2. k = 0.
3. Repeat

3.1 Solve DSDP-L approximately to get y k and Z k � 0.
3.2 Update X k+1 := X k + σ(Z k − C +AT (y k))
3.3 k := k + 1.

4. Until: stopping criteria is satisfied.

OUTPUT: X k , y k ,Z k .

I Efficient idea: alternating y and Z .
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Solving SDP in praxis - we use software packages

I Nekaj najbolj razširjenih in robustnih paketa

- SEDUMI (http://sedumi.ie.lehigh.edu/).
- SDPT3 (http://www.math.nus.edu.sg/ mattohkc/sdpt3.html).
- SDPA (http://sdpa.sourceforge.net/).
- MOSEK (http://www.mosek.com/).
- YALMIP (http://users.isy.liu.se/johanl/yalmip/).

I To solve large SDP (m is large) we can use:

- SDPLR (http://dollar.biz.uiowa.edu/ burer/software/SDPLR/)
- spectral bundle method

(http://www-user.tu-chemnitz.de/ helmberg/SBmethod/).
- boundary point method

(http://www.math.uni-klu.ac.at/or/Software/).
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