Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry

assoc. prof. Janez Povh, Ph.D.¹

¹UNM - Faculty of information studies

Edinburgh, 16. September 2014

Outline

Introduction

Definition of SDP Dual theory

Solving SDP Interior point methods (IPM) Boundary point method

Definition of SDP Dual theory

Some notation

- I unit matrix,
- $X \in \mathbb{R}^{m \times n} \Rightarrow x = \operatorname{vec}(X) \in \mathbb{R}^{mn}$
- $\langle x, y \rangle = x^T y = \sum_i x_i y_i$
- $\langle A, B \rangle = \operatorname{trace}(A^T B) = \sum_{i,j} a_{ij} b_{ij}$

Definition of SDP Dual theory

Some notation

- Symmetric matrices $S_n := \{X \in \mathbb{R}^{n \times n} : X^T = X\}$
- ▶ Cone of **positive semidefinite** matrices $S_n^+ := \{X \in S_n : u^T X u \ge 0, \forall u \in \mathbb{R}^n\}$ - closed convex pointed cone
- ▶ **Positive definite** matrices $S_n^{++} := \{X \in S_n : u^T X u > 0, \forall u \in \mathbb{R}^n\}$
- ► The dual cone: $(\mathcal{S}_n^+)^* = \{Y \in \mathcal{S}_n : \langle Y, X \rangle \ge 0, \forall X \in \mathcal{S}_n^+\} = \mathcal{S}_n^+$ (Note: $\inf_{X \succeq 0} \langle X, Y \rangle = 0 \iff Y \succeq 0$)

For
$$X \in \mathcal{S}_n^+$$
 we use $X \succeq 0$.

Few properties of PSD matrices

- For $A \in S_n$ the following are equivalent
 - ► $A \in S_n^+$,
 - ▶ all eigenvalues of A are nonnegative real numbers,
 - there exist P and D = Diag(d), $d \ge 0$, such that $A = PDP^T$,
 - ▶ det $A_{II} \ge 0$ for every main submatrix A_{II} (A_{II} is main submatrix, if $A = [a_{ij}]$, for $i, j \in I \subseteq \{1, ..., n\}$).
 - $BAB^T \in \mathcal{S}_n^+$, for some non-singular *B*.

Definition of SDF Dual theory

Few properties of PSD matrices

▶ For $X, Y \in S_n^+$: $\langle X, Y \rangle \ge 0$ and $\langle X, Y \rangle = 0 \iff XY = 0$.

Schur's complement: if $A \in S_n^{++}$ then

$$\begin{bmatrix} A & B \\ B^t & C \end{bmatrix} \succeq 0 \iff C - B^t A^{-1} B \succeq 0.$$

Definition of SDP Dual theory

Primal and the dual SDP

 Primal semidefinite programming problem (PSDP)

$$\begin{array}{rcl} \inf & \langle C, X \rangle \\ \text{s. t. } & \langle A_i, X \rangle & = & b_i, \quad \forall i, \\ & X & \in & \mathcal{S}_n^+ \end{array}$$

 Dual semidefinite programming problem (DSDP)

s. t.
$$\sum_{i} y_{i}A_{i} + Z = C$$

 $Z \in S_{n}^{+}$

PSDP and DSDP are dual of each other.

 $\sup b^T v$

Example 1: linear programming (LP)

Linear programming problem (LP) in standard primal form min $c^T x$ p. p. Ax = b $x \ge 0$

▶ LP as PSDP: C = Diag(c), X = Diag(x), $A_i = \text{Diag}(A(i,:))$

	min	$\langle C, X \rangle$		
p. p.	$\langle A_i, X angle X X$	= E	$b_i,\ \mathcal{S}_n^+$	$1 \leq i \leq m$,

Example 2: convex quadratic programming

Def. Convex quadratic programming problem (CCP):

$$\begin{array}{lll} \inf & f_0(x) \\ \mathrm{p. p.} & f_i(x) & \leq & 0, \quad i=1,\ldots,m. \quad (\mathrm{CCP}) \end{array}$$

where: $f_i(x) = x^t U_i x - v_i^t x - z_i, U_i \succeq 0.$

Note

$$f_i(x) \leq 0 \iff A_i = \begin{bmatrix} I & U_i^{1/2}x \ (U_i^{1/2}x)^t & v_i^tx + z_i \end{bmatrix} \succeq 0.$$

Rem.

$$A_{i} = \begin{bmatrix} I & 0 \\ 0 & z_{i} \end{bmatrix} + x_{1} \begin{bmatrix} 0 & U_{i}^{1/2}(:,1) \\ U_{i}^{1/2}(1,:) & v_{i1} \end{bmatrix} + \dots + x_{n} \begin{bmatrix} 0 & U_{i}^{1/2}(:,n) \\ U_{i}^{1/2}(n,:) & v_{in} \end{bmatrix}$$

Example 2: convex quadratic programming cnt.

Finding min of $f_0(x)$ is equiv. to finding min. of t with additional constraint

$$f_0(x) \leq t.$$

(CCP) is equivalent to:

$$\begin{array}{lll} \inf & t \\ \text{p. p. } & \text{Diag}(A_0, A_1, \dots, A_m) & \succeq & 0, \end{array}$$

where

$$A_0 = \begin{bmatrix} I & U_0^{1/2} x \\ (U_0^{1/2} x)^t & v_0^t x + z_0 + t \end{bmatrix}$$

٠

Definition of SDP Dual theory

Weak duality

Let us define

$$\begin{array}{lll} \langle A_i, X \rangle &= b_i &=: \mathcal{A}(X) = b \\ \sum_i y_i A_i &=: \mathcal{A}^T(y) \\ OPT_P &= &\inf \left\{ \langle C, X \rangle ; \ \mathcal{A}(X) = b, \ X \succeq 0 \right\} & \text{and} \\ OPT_D &= &\sup \left\{ b^t y ; \ \mathcal{A}^t(y) + Z = C, \ Z \succeq 0, \ y \in \mathbb{R}^m \right\}. \end{array}$$

• More definitions $\sup \emptyset = -\infty$, $\inf \emptyset = \infty$. **Thm.:** $OPT_P \ge OPT_D$. **Proof:**

► **Duality gap:** $OPT_P - OPT_D = \langle C, X_{opt} \rangle - b^T y_{opt} = \langle X_{opt}, Z_{opt} \rangle.$

Strong duality

Def.: PSDP is strictly feasible, if there exists $X \in S_n^{++}$ such that $\mathcal{A}(X) = b$. **DSDP** is strictly feasible, if there exists pair $(y, Z) \in \mathbb{R}^m \times S_n^{++}$ such that $\mathcal{A}^T(y) + Z = C$. **Thm.:** Let (*DSDP*) be strictly feasible. Then $\triangleright \ OPT_P = OPT_D$. $\triangleright \ If \ OPT_P < \infty$ then there exists $X \succeq 0$ s.t. $\mathcal{A}(X) = b$ and $\langle C, X \rangle = OPT_P$. Introduction De Solving SDP Du

Definition of SDP Dual theory

Example 3: optimum is not attained

$$\begin{array}{rcl} \min & \left\langle \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, X \right\rangle \\ & & \text{p. p. } \left\langle \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, X \right\rangle &=& 2, X \succeq 0. \end{array}$$

$$\begin{array}{rcl} \text{Feasible solutions:} & X = \begin{bmatrix} x_{11} & 1 \\ 1 & x_{22} \end{bmatrix} \text{ with } x_{22} > 0 \text{ in } \\ & x_{11}x_{22} \ge 1. \end{array}$$

• $OPT_P = 0$, but OPT_P is not attained.

Interpretation : DSDP has no strictly feasible solution.

Definition of SDF Dual theory

Example 4: positive duality gap

$$\begin{array}{ll} \min & \left\langle \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, X \right\rangle \\ \text{p. p. } \left\langle \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, X \right\rangle = 0, \quad \left\langle \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}, X \right\rangle = 2, \quad X \succeq 0.$$

• $OPT_P = 1, \ OPT_D = 0.$

Definition of SDF Dual theory

Optimal conditions for SDP

Let PSDP and DSDP be strictly feasible.

Thm.: X^* in (y^*, Z^*) are optimal for PSDP and DSDP if and only if:

Central path

Assumptions

- eqs. $\langle A_i, X \rangle = b_i$ linearly independant
- PSDP and DSDP strictly feasible
- Then the system

has a unique solution $(X_{\mu}, y_{\mu}, Z_{\mu})$. **Def.:** The **central path:** $\{(X_{\mu}, y_{\mu}, Z_{\mu}): \mu > 0\}$.

Interior point methods (IPM) Boundary point method

Example

PSDP min $\left\langle \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, X \right\rangle$ p. p. $\left\langle \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, X \right\rangle = 2, X \succeq 0.$ DSDP max 2y p. p. $Z = \begin{bmatrix} 1 & -y \\ -y & 1 \end{bmatrix} \succeq 0.$

Interior point methods (IPM) Boundary point method

The central path (primal part)

The properties of the central path

Thm: The central path is a smooth curve parameterized by μ .

Thm: The central path always converge $\lim_{\mu \downarrow 0} (X_{\mu}, y_{\mu}, Z_{\mu}) = (X^*, y^*, Z^*)$. Limit point is *maximally complementary* primal dual optimal solution.

- **Def:** Let (X^*, y^*, Z^*) be primal dual optimal solution. It is maximally complementary if rank (X^*) is maximal among all primal optimal solutions and rank (Y^*) is maximal among all dual optimal solutions.
- **Proof:** See e.g. H. Wolkowicz, R. Saigal, L. Vanderberghe (ed.): *Handbook of Semidefinite Programming*. Kluwer Academic Publishers, Boston-Dordrecht-London, 2000.

Interior point methods (IPM) Boundary point method

Path following IPMs

Idea: We solve approximately the equations defining the central path (we follow the central path approximately).

Path following IPMs - more precisely

Input: A, $b \in \mathbb{R}^m$, $C \in S_n$, $\varepsilon > 0$, $\sigma \in (0, 1)$ and (X_0, y_0, Z_0) strictly feasible for PSDP in DSDP

- 1. Set k := 0.
- 2. Repeat
 - 2.1 $\mu_k = \langle X_k, Z_k \rangle / n$ 2.1 Solve

$$\mathcal{A}(X_k + \Delta X) = b,$$

$$\mathcal{A}^T(y_k + \Delta y) + Z + \Delta Z = C,$$

$$(X_k + \Delta X)(Z_k + \Delta Z) = \sigma \mu_k I.$$

2.2
$$\Delta X = (\Delta X + (\Delta X)^T)/2.$$

2.3 $(X_{k+1}, y_{k+1}, Z_{k+1}) := (X_k + \Delta X, y_k + \Delta y, Z_k + \Delta Z).$
2.4 $k := k + 1.$
3. until $\langle X_{k+1}, Z_{k+1} \rangle \le \varepsilon.$
Output: $(X_k, y_k, Z_k).$

Solving the system

Note that the starting point is strictly feasible.

$$\begin{aligned} \mathcal{A}(\Delta X) &= 0, \\ \mathcal{A}^{T}(\Delta y) + \Delta Z &= 0, \\ \Delta X Z_{k} + X_{k} \Delta Z &= \mu_{k} I - X_{k} Z_{k}, \\ \Delta X &= (\Delta X + (\Delta X)^{T})/2, \end{aligned}$$

• **FIRSTLY**: $\Delta Z = -\mathcal{A}^T(\Delta y)$

- THEN: $\Delta X = (\mu I X_k Z_k X_k \Delta Z) Z_k^{-1}$
- FINALLY:

 $\mathcal{A}(X_k \mathcal{A}^T(\Delta y)Z_k^{-1}) = -\mathcal{A}(\mu Z_k^{-1}) + \mathcal{A}(X_k) = b - \mathcal{A}(\mu Z_k^{-1}).$

Solving the system: bottlenecks

- On each step we have to
 - compute one inverse (Z_k^{-1})
 - compose the system matrix $M\Delta y = \tilde{b}$. Each $m_{ij} = \langle A_i, XA_j Z_k^{-1} \rangle$ takes $\mathcal{O}(m^2 n^2 + mn^3)$ flops.
 - Solve the system $M\Delta y = ilde{b}$ (takes $\mathcal{O}(m^3)$ flops)
 - Compute ΔZ in ΔX (takes $\mathcal{O}(mn^2 + n^3)$ flops)

Theoretical guaranty

Thm.: Let (X_0, y_0, Z_0) be strictly feasible starting point with

$$\|Z^{1/2}XZ^{1/2} - \mu I\| \le \theta \langle X, Z \rangle.$$

The described path following IPM gives ε -optimal solution in at most $\lceil \sqrt{n}/\delta \log(\varepsilon^{-1} \langle X_0, S_0 \rangle) \rceil$ iterations, where

$$\delta = \sqrt{n}(1-\sigma).$$

$$\frac{(1+\theta)^{\frac{1}{2}}}{2(1-\theta)^{\frac{3}{2}}}(\theta^2 + n(1-\sigma)^2) \le \sigma\theta.$$

Introduction Interior point methods (Solving SDP Boundary point method

Boundary point method (Povh, Rendl, Wiegele, 2005)

- Relaxed optimality conditions

Introduction Interior point methods (Solving SDP Boundary point method

Boundary point method (Povh, Rendl, Wiegele, 2005)

- Relaxed optimality conditions

Idea behind the Boundary point method

Augmented Lagrangian approach to DSDP

$$\sup\{b^T y \colon \mathcal{A}^T y + Z = C, Z \in \mathcal{S}_n^+\}$$

Replace DSDP by DSDP-L:

$$\min \{ b^T y + \langle X, C - \mathcal{A}^T(y) - Z \rangle + \frac{\sigma}{2} \| C - \mathcal{A}^T(y) - Z \|^2 \colon Z \succeq 0 \}$$

BPM: algorithm

• Efficient idea: alternating y and Z.

Solving SDP in praxis - we use software packages

Nekaj najbolj razširjenih in robustnih paketa

- SEDUMI (http://sedumi.ie.lehigh.edu/).
- SDPT3 (http://www.math.nus.edu.sg/ mattohkc/sdpt3.html).
- SDPA (http://sdpa.sourceforge.net/).
- MOSEK (http://www.mosek.com/).
- YALMIP (http://users.isy.liu.se/johanl/yalmip/).
- ▶ To solve large SDP (*m* is large) we can use:
 - SDPLR (http://dollar.biz.uiowa.edu/ burer/software/SDPLR/)
 - spectral bundle method
 - (http://www-user.tu-chemnitz.de/ helmberg/SBmethod/).
 - boundary point method

(http://www.math.uni-klu.ac.at/or/Software/).

Literature

- 1. Miguel F. Anjos and Jean B. Lasserre. Handbook of Semidefinite, Conic and Polynomial Optimization: Theory, Algorithms, Software and Applications, volume 166 of International Series in Operational Research and Management Science. Springer, 2012
- 2. E. de Klerk: Aspects of Semidefinite Programming Interior Point Algorithms and Selected Applications. Kluwer Academic Publishers, Dordrecht, 2002.
- M. Laurent. Sums of squares, moment matrices and optimization over polynomials, volume 149 of The IMA Volumes in Mathematics and its Applications, str. 157–270. Springer, 2009.
- 4. J. Povh: Semidefinitno programiranje in kombinatorična optimizacija: magistrsko delo. Ljubljana, 2002
- 5. J. Povh: Semidefinitno programiranje. Obz. mat. fiz., 2002, letn. 49, št. 6, str. 161-173
- H. Wolkowicz, R. Saigal, L. Vanderberghe (ed.): Handbook of Semidefinite Programming. Kluwer Academic Publishers, Boston-Dordrecht-London, 2000.