Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry

assoc. prof. Janez Povh, Ph.D. ${ }^{1}$
${ }^{1}$ UNM - Faculty of information studies

Edinburgh, 16. September 2014

Outline

Application of SDP to comb. optim.
Max Cut
Graph partitioning problem

Application of SDP to RAG
Commutative RAG
Non-commutative RAG

Some notation

- I- unit matrix,
- $X \in \mathbb{R}^{m \times n} \Rightarrow x=\operatorname{vec}(X) \in \mathbb{R}^{m n}$
- $\langle x, y\rangle=x^{\top} y=\sum_{i} x_{i} y_{i}$
- $\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right)=\sum_{i, j} a_{i j} b_{i j}$
- \mathbf{e} - vector of all ones.

The Max Cut problem

- Given weighted graph $G=(V, E)$ with edge weights W :

The max cut problem (MCP)

The Max Cut problem

- Given weighted graph $G=(V, E)$ with edge weights W.
- Find $S \subset V$ with maximum cut edges.

MCP - formally

- Motivation: network design, cluster analysis.

MCP - formally

- Motivation: network design, cluster analysis.

Def. MCP
Given weighted graph $G=(V, E)$ with edge weights W, find $S \subset V$ such that

$$
\operatorname{cut}(S):=\sum_{i \in S, j \in V \backslash S} w_{i j}
$$

is maximum.

MCP - int. prog. formulation

Def. MCP
Given weighted graph $G=(V, E)$ with edge weights W, solve

$$
\begin{aligned}
\max & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-x_{i} x_{j}\right) \\
& \mathbf{x} \in\{-1,1\}^{n}
\end{aligned}
$$

MCP - int. prog. formulation

Def. MCP
Given weighted graph $G=(V, E)$ with edge weights W, solve

$$
\begin{aligned}
\max & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-x_{i} x_{j}\right) \\
& \mathbf{x} \in\{-1,1\}^{n}
\end{aligned}
$$

Solution for MCP: $S=\left\{i: x_{i}=1\right\}$.
Thm.: (Karp, 1972) MCP is an NP-complete problem.
Thm.: MCP is polynomial if graph is planar (Orlova, Dorfman), weakly bipartite (Grötchel, Pulleyblank), graphs without long odd cycles (Grötchel and Nemhauser), line graphs (Arbib), graphs with bounded tree width (Bodlaender, Jansen) and some others.

MCP - relaxation

Def. MCP
Given weighted graph $G=(V, E)$ with edge weights W, solve

$$
\begin{aligned}
\max & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-x_{i} x_{j}\right) \\
& \mathbf{x} \in\{-1,1\}^{n}
\end{aligned}
$$

MCP - relaxation

Def. MCP
Given weighted graph $G=(V, E)$ with edge weights W, solve

$$
\begin{aligned}
\max & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-x_{i} x_{j}\right) \\
& \mathbf{x} \in\{-1,1\}^{n}
\end{aligned}
$$

Def. MCP-SDP

Given weighted graph $G=(V, E)$ with edge weights W, solve

$$
\begin{aligned}
\max & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right) \\
& \mathbf{v}_{i} \in S_{n-1}
\end{aligned}
$$

MCP - relaxation

Def. MCP
Given weighted graph $G=(V, E)$ with edge weights W, solve

$$
\begin{aligned}
\max & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-x_{i} x_{j}\right) \\
& \mathbf{x} \in\{-1,1\}^{n}
\end{aligned}
$$

Def. MCP-SDP

Given weighted graph $G=(V, E)$ with edge weights W, solve

$$
\begin{aligned}
\max & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right) \\
& \mathbf{v}_{i} \in S_{n-1}
\end{aligned}
$$

Idea: Introduce $Y=\left[y_{i j}\right], \quad y_{i j}=\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle$.

MCP - relaxation

Def. MCP-SDP

Given weighted graph $G=(V, E)$ with edge weights W, solve

$$
\begin{aligned}
\max & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right) \\
& \mathbf{v}_{i} \in S_{n-1}
\end{aligned}
$$

MCP - relaxation

Def. MCP-SDP
Given weighted graph $G=(V, E)$ with edge weights W, solve

$$
\begin{aligned}
\max & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right) \\
& \mathbf{v}_{i} \in S_{n-1}
\end{aligned}
$$

Def. MCP-SDP

Given weighted graph $G=(V, E)$ with edge weights W, solve

$$
\begin{aligned}
\max & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-y_{i j}\right) \\
& Y \succeq 0, \quad y_{i i}=1 \forall i .
\end{aligned}
$$

MCP - relaxation

Def. MCP-SDP
Given weighted graph $G=(V, E)$ with edge weights W, solve

$$
\begin{aligned}
\max & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle\right) \\
& \mathbf{v}_{i} \in S_{n-1}
\end{aligned}
$$

Def. MCP-SDP

Given weighted graph $G=(V, E)$ with edge weights W, solve

$$
\begin{aligned}
\max & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-y_{i j}\right) \\
& Y \succeq 0, \quad y_{i i}=1 \forall i .
\end{aligned}
$$

Back: Compute $v_{i} \in \mathbb{R}^{n}$ such that $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=y_{i j}$.

How to obtain a good cut?

1. Input: $\left\{\mathbf{v}_{i}\right\}$ obtained from SDP relaxation MCP-SDP.
2. Generate random $\mathbf{r} \in S_{n-1}$.
3. Define $S=\left\{i:\left\langle r, v_{i}\right\rangle \geq 0\right\}$.

Thm.: (Goemans, Williamson, 1995) Let $\mathbf{r} \in S_{n-1}$ be obtained by uniform distribution yielding S. Then

$$
\mathbb{E}(\operatorname{cut}(S))>0.87856 \cdot \operatorname{cut}\left(S^{o p t}\right)
$$

Solving to optimality

- Common approach: Branch and Bound.
- Good lower bound and upper bounds are needed.
- Good upper bounds obtained by SDP relaxations (improved by further constraints - see Rendl, Rinaldi, Wiegele 2010).
- Biq Mac (Wiegele) - web based solver for MCP (up to 300 vertices).
- Solving MCP and and MkCP in practise: heuristics.

The graph partitioning problem - a picture

- Partition the nodes of a graph into sets with prescribed sizes such that the number of edges between different sets is minimal.

Slika: $\operatorname{cut}\left(S_{1}, S_{2}, S_{3}\right)=4$

Motivations and complexity

- GP problem appears in floor planning, analysis of networks etc.
- GP is connected with vertex separator problem and bandwidth problem.

Motivations and complexity

- GP problem appears in floor planning, analysis of networks etc.
- GP is connected with vertex separator problem and bandwidth problem.
- If $k=2, m_{1}=\left\lceil\frac{n}{2}\right\rceil, m_{2}=\left\lfloor\frac{n}{2}\right\rfloor$, we get an NP-complete graph bisection problem as a special case.

Application to the graph partitioning problem

- INPUT Graph $G=(V, E), k \in \mathbb{N}, \mathbf{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}$.

Application to the graph partitioning problem

- INPUT Graph $G=(V, E), k \in \mathbb{N}, \mathbf{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}$.
- Problem: find a partition of graph nodes into sets $S_{1}, \ldots S_{k}$ with $\left|S_{i}\right|=m_{i}$, which gives minimum cut edges.

Application to the graph partitioning problem

- INPUT Graph $G=(V, E), k \in \mathbb{N}, \mathbf{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}$.
- Problem: find a partition of graph nodes into sets $S_{1}, \ldots S_{k}$ with $\left|S_{i}\right|=m_{i}$, which gives minimum cut edges.

$$
\begin{aligned}
O P T_{G P P} & =\min \frac{1}{2}\langle X, A X B\rangle \\
\text { s. t. } X & \in \mathbb{R}_{+}^{n \times k}, \\
X^{T} X & =M:=\operatorname{Diag}(\mathbf{m}) \\
\operatorname{diag}\left(X X^{T}\right) & =u_{n}
\end{aligned}
$$

A...adjacency matrix of $G, B=J-I$.

Application to the graph partitioning problem

- INPUT Graph $G=(V, E), k \in \mathbb{N}, \mathbf{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}$.
- Problem: find a partition of graph nodes into sets $S_{1}, \ldots S_{k}$ with $\left|S_{i}\right|=m_{i}$, which gives minimum cut edges.

$$
\begin{aligned}
O P T_{G P P} & =\min \frac{1}{2}\langle X, A X B\rangle \\
\text { s. t. } X & \in \mathbb{R}_{+}^{n \times k}, \\
X^{T} X & =M:=\operatorname{Diag}(\mathbf{m}) \\
\operatorname{diag}\left(X X^{T}\right) & =u_{n}
\end{aligned}
$$

A...adjacency matrix of $G, B=J-I$.

Adding redundant constraints

Every partition matrix X satisfies $X M^{-1} X^{T} \preceq I, \mathbf{e}_{n}^{T} X \mathbf{e}_{k}=n$.

$$
\begin{aligned}
O P T_{G P P} & =\min \frac{1}{2}\langle X, A X B\rangle \\
\text { s.t. } X & \in \mathbb{R}_{+}^{n \times k}, \\
X^{T} X & =M:=\operatorname{Diag}(\mathbf{m}) \\
\operatorname{diag}\left(X X^{T}\right) & =u_{n} \\
X M^{-1} X^{T} & \preceq l
\end{aligned}
$$

We use $\mathbf{x}=\operatorname{vec}(X)$ and $\langle X, A X B\rangle=\left\langle B \otimes A, \mathbf{x x}^{\top}\right\rangle$.

SDP bounds for GPP

- We introduce $V=\mathbf{x x}^{T} \in \mathcal{S}_{k n}^{+}$.

$$
\begin{aligned}
O P T_{G P P} \geq & O P T_{D H}=\min \langle B \otimes A, V\rangle \\
& V \in \mathcal{S}_{k n}^{+}, W \in \mathcal{S}_{n}^{+} \\
& \sum_{i=1}^{k} \frac{1}{m_{i}} V^{i i}+W=I,\left\langle I, V^{i j}\right\rangle=m_{i} \delta_{i j}, \forall i, j \\
& \left\langle I \otimes E_{i i}, V\right\rangle=1,1 \leq i \leq n
\end{aligned}
$$

SDP bounds for GPP

- We introduce $V=\mathbf{x x}^{T} \in \mathcal{S}_{k n}^{+}$.

$$
\begin{aligned}
O P T_{G P P} \geq & O P T_{D H}=\min \langle B \otimes A, V\rangle \\
& V \in \mathcal{S}_{k n}^{+}, W \in \mathcal{S}_{n}^{+} \\
& \sum_{i=1}^{k} \frac{1}{m_{i}} V^{i i}+W=I,\left\langle I, V^{i j}\right\rangle=m_{i} \delta_{i j}, \forall i, j \\
& \left\langle I \otimes E_{i i}, V\right\rangle=1,1 \leq i \leq n
\end{aligned}
$$

Thm. (P. 2009) The semidefinite bound $O P T_{D H}$ is exactly the Donath-Hoffman eigenvalue bound for $O P T_{G P P}$

$$
O P T_{D H}=\max \left\{\frac{1}{2} \sum_{i=1}^{k} m_{k-i+1} \lambda_{i}(L+D): D=\operatorname{Diag}(\mathbf{d}), \mathbf{e}^{T} \mathbf{d}=0\right\}
$$

Improved SDP bounds for GPP

- If we add $\mathbf{e}_{n}^{T} X \mathbf{e}_{k}=n$ (actually: $\left\langle X, J_{n} X J_{k}\right\rangle=n^{2}$), we obtain:

$$
\begin{aligned}
O P T_{G P P} \geq & O P T_{\text {new } 1}=\min \langle B \otimes A, V\rangle \\
& V \in \mathcal{S}_{k n}^{+}, W \in \mathcal{S}_{n}^{+} \\
& \sum_{i=1}^{k} \frac{1}{m_{i}} V^{i i}+W=I, \quad\left\langle I, V^{i j}\right\rangle=m_{i} \delta_{i j}, \forall i, j \\
& \left\langle I \otimes E_{i j}, V\right\rangle=1,1 \leq i \leq n \\
& \left\langle J_{k n}, V\right\rangle=n^{2} .
\end{aligned}
$$

Improved SDP bounds for GPP

- If we further add $x_{i j} x_{i \ell}=0 \quad \forall i, j, \ell, j \neq \ell$, we obtain:

$$
\begin{aligned}
O P T_{G P P} \geq & O P T_{\text {new }}=\min \langle B \otimes A, V\rangle \\
& V \in \mathcal{S}_{k n}^{+}, W \in \mathcal{S}_{n}^{+} \\
& \sum_{i=1}^{k} \frac{1}{m_{i}} V^{i i}+W=I,\left\langle I, V^{i j}\right\rangle=m_{i} \delta_{i j}, \forall i, j \\
& \left\langle I \otimes E_{i i}, V\right\rangle=1,1 \leq i \leq n \\
& \left\langle J_{k n}, V\right\rangle=n^{2} \\
& \left\langle E_{\left.j \ell \otimes E_{i i}, V\right\rangle=0 \quad \forall i, j, \ell, j \neq \ell .}\right.
\end{aligned}
$$

Numerical results

name	n	$\|E\|$	$O P T_{D H}$	$O P T_{\text {new1 }}$	$O P T_{\text {new2 }}$	PRGP [WoZh 99]
g50.01	50	111	17.922	22.762	23.570	23.549
g50.02	50	256	81.956	95.920	99.983	99.423
g50.03	50	342	124.718	148.701	152.231	151.225
g50.04	50	478	204.303	236.697	242.578	242.063
g50.05	50	611	287.204	332.791	338.494	338.529
g50.06	50	759	378.250	440.780	443.184	442.966
g50.07	50	897	470.157	544.238	550.335	549.934
g50.08	50	984	530.486	615.035	620.326	620.168
g50.09	50	1098	618.867	719.456	722.990	722.270

Tabela: Semidefinite lower bounds for Graph partitioning problem, where $m=(5,10,15,20)$

Stronger relaxations

- Further strengthening: adding new constraints, redundant from original constraints:
- Triangle constraints for 0-1 programs.
- Row sum/column sum constraints.
- Completely positive constraint:

Def. X is completely positive iff $X=\sum_{i=1}^{r} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$ for some $r \in \mathbb{N}$ and $\mathbf{x}_{i} \geq 0$.
Def. The cone of completely positive matrices $\mathcal{C P}$.
Def. The cone of copositive matrices

$$
\mathcal{C O P}=\left\{A \in \mathcal{S}: \mathbf{x}^{\top} A \mathbf{x} \geq 0 \forall \mathbf{x} \geq 0\right\} .
$$

Second main result

Theorem 2 (P., 2009) Adding completely positive constraint $V \in \mathcal{C} \mathcal{P}_{k n}$ to $O P T_{\text {new } 1}$ we obtain the exact value for GPP.

$$
\begin{aligned}
O P T_{G P P}= & \min \langle B \otimes A, V\rangle \\
& V \in \mathcal{C} \mathcal{P}_{k n}, W \in \mathcal{S}_{n}^{+} \\
& \sum_{i} \frac{1}{m_{i}} V^{i i}+W=I,\left\langle I, V^{i j}\right\rangle=m_{i} \delta_{i j}, \forall i, j \\
& \left\langle I \otimes E_{i i}, V\right\rangle=1,1 \leq i \leq n \\
& \left\langle J_{k n}, V\right\rangle=n^{2} .
\end{aligned}
$$

- Proof technique:
- If V is feasible solution of completely positive program, then

$$
V=\sum_{i} \lambda_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T},
$$

where $\mathbf{x}_{i}=\operatorname{vec}\left(X_{i}\right)$ and X_{i} feasible for GPP.

- We explore the structure of the equations.

The contribution of copositive formulation

- The GPP problem remains NP-hard.
- GPP can be rewritten as completely positive program using other techniques (Burer 2008, P. 2007, P. 2009).
- We can approximate $O P T_{G P P}$ using semidefinite approximations of cone $\mathcal{C} \mathcal{P}_{k n}$ (De Klerk, Pasechnik, 2002) or direct heuristics (Bomze, Jarre, Rendl, 2009; Duer, Bundfuss, 2008, 2009).

Real algebraic geometry

Problem: Let $f \in \mathbb{R}[\mathbf{x}]$. Is $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$?

Real algebraic geometry

Problem: Let $f \in \mathbb{R}[\mathbf{x}]$. Is $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$?
Ex. Motzkin polinomial:

$$
M(x, y)=x^{2} y^{4}+x^{4} y^{2}+1-3 x^{2} y^{2}
$$

$$
\begin{aligned}
\left(x^{2}+y^{2}+1\right) M(x, y)= & \left(x^{2} y-y\right)^{2}+\left(x y^{2}-x\right)^{2}+\left(x^{2} y^{2}-1\right)^{2}+ \\
& +\frac{1}{4}\left(x y^{3}-x^{3} y\right)^{2}+\frac{3}{4}\left(x y^{3}+x^{3} y-2 x y\right)^{2}
\end{aligned}
$$

Real algebraic geometry

Problem: Let $f \in \mathbb{R}[\mathbf{x}]$. Is $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$?
Ex. Motzkin polinomial:

$$
M(x, y)=x^{2} y^{4}+x^{4} y^{2}+1-3 x^{2} y^{2}
$$

$$
\begin{aligned}
\left(x^{2}+y^{2}+1\right) M(x, y)= & \left(x^{2} y-y\right)^{2}+\left(x y^{2}-x\right)^{2}+\left(x^{2} y^{2}-1\right)^{2}+ \\
& +\frac{1}{4}\left(x y^{3}-x^{3} y\right)^{2}+\frac{3}{4}\left(x y^{3}+x^{3} y-2 x y\right)^{2}
\end{aligned}
$$

Application of SDP in real algebraic geometry

Problem: Let $f \in \mathbb{R}[\mathbf{x}]$. Is $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$?

Application of SDP in real algebraic geometry

Problem: Let $f \in \mathbb{R}[\mathbf{x}]$. Is $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$?
Ex. $f_{A}(\mathbf{x})=\sum_{i, j} a_{i j} x_{i}^{2} x_{j}^{2} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$ IFF A is copositive.
Rem. The strong membership problems for $\mathcal{C P}$ and $\mathcal{C O P}$ are NP-hard (Dickinson and Gijben, 2014).

- The Hilbert 17th problem (1900): Is every non-negative polynomial with real coefficients a sum of squares of rational functions?
- Positive answer by Emil Artin in 1927.
- Additional question: Is every non-negative polynomial with real coefficients a sum of squares of real polynomials?
- The answer: NO (known already by Hilbert).

Positivity of polynomials

Def. Let $P S D_{n, d}$ be the set (cone) of all non-negative polynomials in n variables of degree $\leq d$.

Positivity of polynomials

Def. Let $P S D_{n, d}$ be the set (cone) of all non-negative polynomials in n variables of degree $\leq d$.
Def. $f \in \mathbb{R}[\mathbf{x}]$ is sum of squares (SOS) iff $f=\sum_{i} p_{i}^{2}$ for some $p_{i} \in \mathbb{R}[\mathbf{x}]$.

Positivity of polynomials

Def. Let $P S D_{n, d}$ be the set (cone) of all non-negative polynomials in n variables of degree $\leq d$.
Def. $f \in \mathbb{R}[\mathbf{x}]$ is sum of squares (SOS) iff $f=\sum_{i} p_{i}^{2}$ for some $p_{i} \in \mathbb{R}[\mathbf{x}]$.
Def. Let $S O S_{n, 2 d}$ be the set (cone) of polynomials in n vars with degree $\leq 2 d$, which are SOS.

Positivity of polynomials

Def. Let $P S D_{n, d}$ be the set (cone) of all non-negative polynomials in n variables of degree $\leq d$.
Def. $f \in \mathbb{R}[\mathbf{x}]$ is sum of squares (SOS) iff $f=\sum_{i} p_{i}^{2}$ for some $p_{i} \in \mathbb{R}[\mathbf{x}]$.
Def. Let $S O S_{n, 2 d}$ be the set (cone) of polynomials in n vars with degree $\leq 2 d$, which are SOS.
Thm. $P S D_{n, 2 d}=S O S_{n, 2 d}$ iff

- $2 d=2$;
- $n=1$;
- $n=2,2 d=4$.

Positivity of polynomials

Def. Let $P S D_{n, d}$ be the set (cone) of all non-negative polynomials in n variables of degree $\leq d$.
Def. $f \in \mathbb{R}[\mathbf{x}]$ is sum of squares (SOS) iff $f=\sum_{i} p_{i}^{2}$ for some $p_{i} \in \mathbb{R}[\mathbf{x}]$.
Def. Let $S O S_{n, 2 d}$ be the set (cone) of polynomials in n vars with degree $\leq 2 d$, which are SOS.
Thm. $P S D_{n, 2 d}=S O S_{n, 2 d}$ iff

$$
\text { - } 2 d=2 \text {; }
$$

- $n=1$;
- $n=2,2 d=4$.

Ex. Motzkin polinomial:

$$
M\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}^{4}+x_{1}^{4} x_{2}^{2}+1-3 x_{1}^{2} x_{2}^{2} \in P S D_{2,6} \backslash S O S_{2,6} .
$$

SOS polynomials

Lem. If $f \in S O S_{n, 2 d}$, then $f(\mathbf{x}) \in P S D$.

SOS polynomials

Lem. If $f \in \operatorname{SOS}_{n, 2 d}$, then $f(\mathbf{x}) \in P S D$.
Lem. Let $f=\sum_{i} p_{i} q_{i}^{2}$ with $p_{i} \in P S D$. Then $f(\mathbf{x}) \in P S D$.

SOS polynomials

Lem. If $f \in S O S_{n, 2 d}$, then $f(\mathbf{x}) \in P S D$.
Lem. Let $f=\sum_{i} p_{i} q_{i}^{2}$ with $p_{i} \in P S D$. Then $f(\mathbf{x}) \in P S D$.
Lem. Let $(1+p) f=\sum_{i} p_{i} q_{i}^{2}$ with $p, p_{i} \in P S D$. Then $f(\mathbf{x}) \in P S D$.

SOS polynomials

Lem. If $f \in S O S_{n, 2 d}$, then $f(\mathbf{x}) \in P S D$.
Lem. Let $f=\sum_{i} p_{i} q_{i}^{2}$ with $p_{i} \in P S D$. Then $f(\mathbf{x}) \in P S D$.
Lem. Let $(1+p) f=\sum_{i} p_{i} q_{i}^{2}$ with $p, p_{i} \in P S D$. Then $f(\mathbf{x}) \in P S D$.
Rem. SOS is a cone in $\mathbb{R}[\mathbf{x}]$. It is convex, pointed, closed, full dimensional cone.

SOS polynomials

Lem. If $f \in \operatorname{SOS}_{n, 2 d}$, then $f(\mathbf{x}) \in P S D$.
Lem. Let $f=\sum_{i} p_{i} q_{i}^{2}$ with $p_{i} \in P S D$. Then $f(\mathbf{x}) \in P S D$.
Lem. Let $(1+p) f=\sum_{i} p_{i} q_{i}^{2}$ with $p, p_{i} \in P S D$. Then $f(\mathbf{x}) \in P S D$.
Rem. SOS is a cone in $\mathbb{R}[\mathbf{x}]$. It is convex, pointed, closed, full dimensional cone.
Quest.: How to figure out whether $f \in \operatorname{SOS}_{n, 2 d}$?

SOS polynomials

Lem. If $f \in S O S_{n, 2 d}$, then $f(\mathbf{x}) \in P S D$.
Lem. Let $f=\sum_{i} p_{i} q_{i}^{2}$ with $p_{i} \in P S D$. Then $f(\mathbf{x}) \in P S D$.
Lem. Let $(1+p) f=\sum_{i} p_{i} q_{i}^{2}$ with $p, p_{i} \in P S D$. Then $f(\mathbf{x}) \in P S D$.
Rem. SOS is a cone in $\mathbb{R}[\mathbf{x}]$. It is convex, pointed, closed, full dimensional cone.
Quest.: How to figure out whether $f \in S O S_{n, 2 d}$? Answ.: with SDP.

SOS polynomial - example

- Let $p\left(x_{1}, x_{2}\right)=2 x_{1}^{4}+2 x_{1}^{3} x_{2}-x_{1}^{2} x_{2}^{2}+5 x_{2}^{4}$.
- p is SOS since

$$
p\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{2}+\left(x_{2}^{2}+3 x_{1} x_{2}\right)^{2}\right) .
$$

SOS polynomial - example

- Let $p\left(x_{1}, x_{2}\right)=2 x_{1}^{4}+2 x_{1}^{3} x_{2}-x_{1}^{2} x_{2}^{2}+5 x_{2}^{4}$.
- p is SOS since

$$
p\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{2}+\left(x_{2}^{2}+3 x_{1} x_{2}\right)^{2}\right) .
$$

- We can obtain sos decomp. by Gram matrix method:

Thm. Let $f \in \mathbb{R}[\mathbf{x}]$ with degree $2 d$. f is SOS IFF there exists $Q \succeq 0$ such that

$$
f(\mathbf{x})=V_{d}^{T} Q V_{d}
$$

where V_{d} is the vector of all monomials of degree $\leq d$.

SOS polynomial - cnt.

- Let $p\left(x_{1}, x_{2}\right)=2 x_{1}^{4}+2 x_{1}^{3} x_{2}-x_{1}^{2} x_{2}^{2}+5 x_{2}^{4}$.
- Corresponding SDP:
$\min 0$

$$
\begin{aligned}
& \text { p. p. } \quad Q=\left[\begin{array}{lll}
2 & a & 1 \\
a & 5 & 0 \\
1 & 0 & b
\end{array}\right] \succeq 0, \\
& 2 a+b=-1
\end{aligned}
$$

where $V_{2}=\left(x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right)^{T}$.

SOS polynomial - cnt.

If $b=5$ we get

$$
\begin{aligned}
Q & =\left[\begin{array}{ccc}
2 & -3 & 1 \\
-3 & 5 & 0 \\
1 & 0 & 5
\end{array}\right]= \\
& =\frac{1}{2}\left[\begin{array}{ccc}
2 & -3 & 1 \\
0 & 1 & 3
\end{array}\right]^{T} \cdot\left[\begin{array}{ccc}
2 & -3 & 1 \\
0 & 1 & 3
\end{array}\right] \succeq 0 .
\end{aligned}
$$

Therefore:

$$
p\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{2}+\left(x_{2}^{2}+3 x_{1} x_{2}\right)^{2}\right) .
$$

Complexity of SOS SDP

- There are $\binom{n+d-1}{d}$ monomials of degree d. This is the order of Q.

Complexity of SOS SDP

- There are $\binom{n+d-1}{d}$ monomials of degree d. This is the order of Q.
Thm. It is enough to consider only the monomials from one half of the Newton polytope:

Newton polytope for $f=1+2 y^{2}-4 x^{5}$

Pólya Positivstellensatz

Thm. (Pólya, 1929, Hardy, Littlewood, Pólya, 1988, Powers, Reznick, 2001) Let $f \in \mathbb{R}[\mathbf{x}]$ be a homogeneous polynomial on \mathbb{R}^{n} such that $f(\mathbf{x})>0$ for all $\mathbf{x} \in \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$. Then for some $r \in \mathbb{N}$, we have that all the coefficients of $\left(\mathbf{e}^{T} \mathbf{x}\right)^{r} f(\mathbf{x})$ are non-negative (positive).
Application: In copositive programming - LP ali SDP certificates for copositivity: if $\left(\sum_{i} x_{i}^{2}\right)^{r} \sum_{i, j} A_{i, j} x_{i}^{2} x_{j}^{2}$ has non-negative coefficients then A is copositive (LP problem).

Putinar Positivstellensatz

Thm. (Putinar, 1993) Let $m \in \mathbb{N}$ and $f, g_{1}=1, g_{2}, \ldots, g_{m} \in \mathbb{R}[\mathbf{x}]$. If $f(x)>0$ for all

$$
\mathbf{x} \in K:=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{i}(\mathbf{x}) \geq 0, \text { for } i=1, \ldots, m\right\} \backslash\{\mathbf{0}\}
$$

then there exists $s_{1}, \ldots, s_{m} \in S O S$ such that $f(\mathbf{x})=\sum_{i=1}^{m} s_{i} g_{i}(\mathbf{x})$, provided e.g. K compact.

Application in optimization

- $f_{\text {inf }}=\inf \{f(\mathbf{x}): \mathbf{x} \in K\}=\sup \{\varepsilon: f(\mathbf{x})-\varepsilon \geq 0$ for all $\mathbf{x} \in K\}$
- $f_{\text {inf }} \geq f_{\text {sos }}=\sup \left\{\varepsilon: f(\mathbf{x})-\varepsilon=\sum_{i} s_{i} g_{i}, s_{i} \in S O S\right\}$.

Application in optimization

- $f_{\text {inf }}=\inf \{f(\mathbf{x}): \mathbf{x} \in K\}=\sup \{\varepsilon: f(\mathbf{x})-\varepsilon \geq 0$ for all $\mathbf{x} \in K\}$
- $f_{\text {inf }} \geq f_{\text {sos }}=\sup \left\{\varepsilon: f(\mathbf{x})-\varepsilon=\sum_{i} s_{i} g_{i}, s_{i} \in S O S\right\}$.
- $f_{\text {sos }}^{(t)}=\sup \left\{\varepsilon: f(\mathbf{x})-\varepsilon=\sum_{i} s_{i} g_{i}, s_{i} \in S O S, \operatorname{deg}\left(s_{i} g_{i}\right) \leq 2 t\right\}$

Application in optimization

- $f_{\text {inf }}=\inf \{f(\mathbf{x}): \mathbf{x} \in K\}=\sup \{\varepsilon: f(\mathbf{x})-\varepsilon \geq 0$ for all $\mathbf{x} \in K\}$
- $f_{\text {inf }} \geq f_{\text {sos }}=\sup \left\{\varepsilon: f(\mathbf{x})-\varepsilon=\sum_{i} s_{i} g_{i}, s_{i} \in S O S\right\}$.
- $f_{\text {sos }}^{(t)}=\sup \left\{\varepsilon: f(\mathbf{x})-\varepsilon=\sum_{i} s_{i} g_{i}, s_{i} \in S O S, \operatorname{deg}\left(s_{i} g_{i}\right) \leq 2 t\right\}$

Thm. $\lim _{t \rightarrow \infty} f_{\text {sos }}^{(t)}=f_{\text {sos }}=f_{\text {inf }}$ provided e.g. K compact.

Read more in...

1. Monique Laurent. Sums of squares, moment matrices and optimization over polynomials. In Emerging applications of algebraic geometry, volume 149 of IMA Vol. Math. Appl., pages 157-270. Springer, New York, 2009.
2. Murray Marshall. Positive Polynomials and Sums of Squares. American Mathematical Society, 2008.
3. Tim Netzer. Positive Polynomials, Sums of Squares and the Moment Problem. PhD thesis, 2008.
4. Jean B. Lasserre. Global optimization with polynomials and the problem of moments. Siam J. Optim, Vol. 11(3), pp. 796-817, 2001.
5. P. J. C. Dickinson and J. Povh. On a generalization of Pólya's and Putinar-Vasilescu's positivstellensätze. Journal Glob. Optim., 2014.

How do we get NC polynomials?

Formal construction:

1. Start with NC letters $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right)$ and operation "multiplication".
2. Consider $\langle\mathbf{x}\rangle$ - monoid freely generated by \mathbf{x} (empty word is 1).
3. Free algebra $\mathbb{R}\langle\mathbf{x}\rangle$: noncommutative (nc) polynomials.
4. Add involution $*$ which:

- fixes $\mathbb{R} \cup\{\mathbf{x}\}$ pointwise
- and reverses words, e.g. $\left(x_{1} x_{2}^{2} x_{3}-2 x_{3}^{3}\right)^{*}=x_{3} x_{2}^{2} x_{1}-2 x_{3}^{3}$.

5. Sym $\mathbb{R}\langle\mathbf{x}\rangle$ - the set of all symmetric elements:

$$
\operatorname{Sym} \mathbb{R}\langle\mathbf{x}\rangle=\left\{f \in \mathbb{R}\langle\mathbf{x}\rangle \mid f=f^{*}\right\}
$$

Why NC polys are relevant?

1. Lots of applications in control theory, systems engineering and optimization (see Helton, McCullough, Oliveira, Putinar, 2008),
2. Applications to quantum physics (Pironio, Navascués, Acín, 2010)
3. Applications in quantum information science (Pál and T. Vértesi, 2009),
4. Quantum chemistry (e.g. to compute the ground-state electronic energy of atoms or molecules) - see cf. Mazziotti, 2004.
5. Certificates of positivity via sums of squares are used to get general bounds on quantum correlations (cf. Glauber, 1963).
6. The Bessis-Moussa-Villani conjecture (BMV) from quantum statistical mechanics is tackled by NC polynomials (Klep, Schweighofer, 2009; Cafuta, Klep, Povh, 2011)

The BMV conjecture

1. Bessis - Moussa - Villani (BMV) conjecture (1975):

- For symmetric matrices A, B with B positive semidefinite, the function

$$
\Phi^{A, B}: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto \operatorname{tr}\left(e^{A-t B}\right)
$$

is the Laplace transform of a positive measure $\mu^{A, B}$ on $[0, \infty)$:

$$
\operatorname{tr}\left(e^{A-t B}\right)=\int_{0}^{\infty} e^{-t x} d \mu^{A, B}(x)
$$

The BMV conjecture

1. Bessis - Moussa - Villani (BMV) conjecture (1975):

- For symmetric matrices A, B with B positive semidefinite, the function

$$
\Phi^{A, B}: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto \operatorname{tr}\left(e^{A-t B}\right)
$$

is the Laplace transform of a positive measure $\mu^{A, B}$ on $[0, \infty)$:

$$
\operatorname{tr}\left(e^{A-t B}\right)=\int_{0}^{\infty} e^{-t x} d \mu^{A, B}(x)
$$

- BMV equivalently (Lieb-Seiringer, 2004): The polynomial

$$
\operatorname{tr}\left((A+t B)^{m}\right) \in \mathbb{R}[t]=\sum_{k=0}^{m} t^{k} \operatorname{tr}\left(S_{m, k}(A, B)\right)
$$

has only nonnegative coefficients whenever A, B are PSD of order s, for all m.

The BMV conjecture

1. Bessis - Moussa - Villani (BMV) conjecture (1975):

- For symmetric matrices A, B with B positive semidefinite, the function

$$
\Phi^{A, B}: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto \operatorname{tr}\left(e^{A-t B}\right)
$$

is the Laplace transform of a positive measure $\mu^{A, B}$ on $[0, \infty)$:

$$
\operatorname{tr}\left(e^{A-t B}\right)=\int_{0}^{\infty} e^{-t x} d \mu^{A, B}(x)
$$

- BMV equivalently (Lieb-Seiringer, 2004): The polynomial

$$
\operatorname{tr}\left((A+t B)^{m}\right) \in \mathbb{R}[t]=\sum_{k=0}^{m} t^{k} \operatorname{tr}\left(S_{m, k}(A, B)\right)
$$

has only nonnegative coefficients whenever A, B are PSD of order s, for all m.
2. The conjecture was recently proved by H.R. Stahl: Proof of the BMV conjecture, 2011.

Positivity of NC polynomials

$$
\text { 1. } \quad f(x) \geq 0 \text { ? }
$$

Positivity of NC polynomials

1. $\quad f(\mathbf{x}) \geq 0$?
2. Is $f(\mathbf{x}) \geq 0$ component-wise?

Positivity of NC polynomials

1. $f(\mathbf{x}) \geq 0$?
2. Is $f(\mathbf{x}) \geq 0$ component-wise?
3. Is $f(\mathbf{x}) \succeq 0$?

Positivity of NC polynomials

2. Is $f(\mathbf{x}) \geq 0$ component-wise?
3. Is $f(\mathbf{x}) \succeq 0$?
4. Is $\operatorname{tr} f(\mathbf{x}) \geq 0$?

Positivity of NC polynomials

1.

$$
f(x) \geq 0 ?
$$

2. Is $f(\mathbf{x}) \geq 0$ component-wise?
3. Is $f(\mathbf{x}) \succeq 0$?
4. Is $\operatorname{tr} f(\mathbf{x}) \geq 0$?
5. We stick to: "Is $f(\mathbf{x}) \succeq 0$?"

Main questions

Given: real polynomial f in non-commuting variables

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)
$$

Q 1: Is

$$
f(\underline{A}) \succeq 0
$$

for all n-tuples of symmetric matrices $\underline{A}=\left(A_{1}, \ldots, A_{n}\right)$ of the same size?

Main questions

Given: real polynomial f in non-commuting variables

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)
$$

Q 1: Is

$$
f(\underline{A}) \succeq 0
$$

for all n-tuples of symmetric matrices $\underline{A}=\left(A_{1}, \ldots, A_{n}\right)$ of the same size?
Q 2: Find the smallest eigenvalue of f, i.e. compute

$$
\lambda_{\min }(f)=\inf \langle f(\underline{A}) v, v\rangle
$$

\underline{A} an n-tuple of symmetric matrices, v a unit vector.

Sums of hermitian squares (SOHS)

- SOHS $=\left\{\sum_{i} g_{i}^{*} g_{i}: g_{i} \in \mathbb{R}\langle\mathbf{x}\rangle\right\} \subsetneq \operatorname{Sym} \mathbb{R}\langle\mathbf{x}\rangle$.
- SOHS $_{d}=\left\{\sum_{i} g_{i}^{*} g_{i}: g_{i} \in \mathbb{R}\langle\mathbf{x}\rangle, \operatorname{deg}\left(g_{i}^{*} g_{i}\right) \leq d\right\} \subsetneq \operatorname{Sym} \mathbb{R}\langle\mathbf{x}\rangle$

Sums of hermitian squares (SOHS)

- SOHS $=\left\{\sum_{i} g_{i}^{*} g_{i}: g_{i} \in \mathbb{R}\langle\mathbf{x}\rangle\right\} \subsetneq \operatorname{Sym} \mathbb{R}\langle\mathbf{x}\rangle$.
- SOHS $_{d}=\left\{\sum_{i} g_{i}^{*} g_{i}: g_{i} \in \mathbb{R}\langle\mathbf{x}\rangle, \operatorname{deg}\left(g_{i}^{*} g_{i}\right) \leq d\right\} \subsetneq \operatorname{Sym} \mathbb{R}\langle\mathbf{x}\rangle$

Examples

1. Let $f=x_{1} x_{2}+x_{2} x_{1}+4-x_{1}^{2}-x_{2}^{2}$. It is not non-negative (take $x_{1}=0, x_{2}=3 I$).

Examples

1. Let $f=x_{1} x_{2}+x_{2} x_{1}+4-x_{1}^{2}-x_{2}^{2}$. It is not non-negative (take $x_{1}=0, x_{2}=3 /$).
2. Let $f=\left(x_{1} * x_{2}+x_{2}\right)^{*}\left(x_{1} * x_{2}+x_{2}\right)+2$. It is non-negative.

Examples

1. Let $f=x_{1} x_{2}+x_{2} x_{1}+4-x_{1}^{2}-x_{2}^{2}$. It is not non-negative (take $x_{1}=0, x_{2}=3 /$).
2. Let $f=\left(x_{1} * x_{2}+x_{2}\right)^{*}\left(x_{1} * x_{2}+x_{2}\right)+2$. It is non-negative.

Question 1

Recall: Question 1.
Is

$$
f(\underline{A}) \succeq 0
$$

for all n-tuples of symmetric matrices $\underline{A}=\left(A_{1}, \ldots, A_{n}\right)$ of the same size?

Question 1

Recall: Question 1.
Is

$$
f(\underline{A}) \succeq 0
$$

for all n-tuples of symmetric matrices $\underline{A}=\left(A_{1}, \ldots, A_{n}\right)$ of the same size?
Thm.: (Helton, Annals of math., 2002)
$f \in \mathbb{R}\langle\mathbf{x}\rangle$ is $S O H S \Leftrightarrow f(\mathbf{x}) \succeq 0$ whenever we replace x_{i} by symmetric matrices A_{i} of dimension $k \times k, \forall k \geq 1$.

SDP certificates for SOHS

Problem 1: Given: $f \in \mathbb{R}\langle\mathbf{x}\rangle$, is $f \in S O H S$? If YES: Provide (SDP) certificate!
If NO: Provide (SDP) certificate!

SDP certificate for SOHS

Prop.: Suppose $f \in \mathbb{R}\langle\mathbf{x}\rangle$ is of degree $\leq 2 d$. Then $f \in S O H S$ if and only if there exists a positive semidefinite (PSD) matrix G satisfying

$$
f=W_{d}^{*} G W_{d}
$$

where

$$
W_{d}=\{p \in\langle\mathbf{x}\rangle: \operatorname{deg}(p) \leq d\}
$$

SDP certificate for SOHS

Prop.: Suppose $f \in \mathbb{R}\langle\mathbf{x}\rangle$ is of degree $\leq 2 d$. Then $f \in S O H S$ if and only if there exists a positive semidefinite (PSD) matrix G satisfying

$$
f=W_{d}^{*} G W_{d}
$$

where

$$
W_{d}=\{p \in\langle\mathbf{x}\rangle: \operatorname{deg}(p) \leq d\}
$$

Rem.: Given such a PSD matrix G with rank r, the SOHS decomposition is

$$
\begin{equation*}
f=\sum_{i=1}^{r} g_{i}^{*} g_{i} \tag{1}
\end{equation*}
$$

where $g_{i}=H(i,:) W_{d}, G=H^{\top} H$.

SDP certificate for SOHS

Prop.: Given $f=\sum_{w \in\langle\mathbf{x}\rangle} a_{w} w$ of degree $2 d$, then $f \in S O H S$ iff exists $G \succeq 0$ such that:

$$
\sum_{\substack{p, q \in W_{d} \\ p^{*} q=w}} G_{p, q}=a_{w}, \forall w \in W_{2 d}
$$

SDP certificate for SOHS

Prop.: Given $f=\sum_{w \in\langle\mathbf{x}\rangle} a_{w} w$ of degree $2 d$, then $f \in S O H S$ iff exists $G \succeq 0$ such that:

$$
\sum_{\substack{p, q \in W_{d} \\ p^{*} q=w}} G_{p, q}=a_{w}, \forall w \in W_{2 d}
$$

Note: "Is f in SOHS?" is SDP feasibility problem.

SDP certificate for SOHS

Prop.: Given $f=\sum_{w \in\langle x\rangle} a_{w} w$ of degree $2 d$, then $f \in S O H S$ iff exists $G \succeq 0$ such that:

$$
\sum_{\substack{p, q \in W_{d} \\ p^{*} q=w}} G_{p, q}=a_{w}, \forall w \in W_{2 d}
$$

Note: "Is f in SOHS?" is SDP feasibility problem.
SDP:

$$
\begin{array}{rlrl}
& \inf & \langle I, G\rangle \\
\left(\mathrm{SDP}_{\mathrm{SOHS}}\right) & \text { s.t. } & \left\langle A_{w}, G\right\rangle & =a_{w}+a_{w^{*}}
\end{array} \quad \forall w \in W_{2 d}
$$

where

$$
\left(A_{w}\right)_{u, v}= \begin{cases}2 ; & \text { if } u^{*} v \in\left\{w, w^{*}\right\}, w^{*}=w \\ 1 ; & \text { if } u^{*} v \in\left\{w, w^{*}\right\}, w^{*} \neq w \\ 0 ; & \text { otherwise }\end{cases}
$$

Optimization of NC polys.

Problem: Given $f \in \operatorname{Sym} \mathbb{R}\langle\mathbf{x}\rangle$
find smallest eigenvalue of f :

$$
\begin{aligned}
\lambda_{\min }(f)= & \inf \langle f(A) v, v\rangle \\
& A \text { an } n \text {-tuple of symmetric matrices, } \\
& v \text { a unit vector. }
\end{aligned}
$$

Optimization of NC polys.

Problem: Given $f \in \operatorname{Sym} \mathbb{R}\langle\mathbf{x}\rangle$
find smallest eigenvalue of f :

$$
\lambda_{\min }(f)=\inf \langle f(A) v, v\rangle
$$

A an n-tuple of symmetric matrices, v a unit vector.

By Helton-McCullough SOHS theorem:

$$
\begin{aligned}
\lambda_{\min }(f)= & \sup \lambda \\
\text { s.t. } & f-\lambda \in S O H S_{d} .
\end{aligned}
$$

Optimization of NC polys.-dual

Prop: The dual to $\left(\mathrm{SDP}_{\text {eig }- \text { min }}\right)$ is

$$
\begin{array}{cl}
L_{\text {sohs }}= & \inf \left\langle G_{f}, H\right\rangle \\
\text { s.t. } & H \in \mathcal{S}^{+} \\
& H_{1,1}=1 \\
& H_{p, q}=H_{r, s} \quad \text { for all } p, q, r, s, \quad p^{*} q=r^{*} s . \\
& \\
\left(\text { DSDP }_{\text {eig }-\min }\right)_{d}
\end{array}
$$

Optimization of NC polys.-dual

Prop: The dual to $\left(\mathrm{SDP}_{\text {eig-min }}\right)$ is

$$
\begin{array}{cl}
L_{\text {sohs }}= & \inf \left\langle G_{f}, H\right\rangle \\
\text { s.t. } & H \in \mathcal{S}^{+} \\
& H_{1,1}=1 \\
& H_{p, q}=H_{r, s} \quad \text { for all } p, q, r, s, \quad p^{*} q=r^{*} s . \\
& \\
\left(D S D P_{\text {eig }-\min }\right)_{d}
\end{array}
$$

Prop.:

$$
L_{\mathrm{sohs}}=\lambda_{\min }(f)
$$

Extracting the optimizers

Thm.: (Cafuta, Klep, P., 2010) Let $f \in \mathbb{R}\langle\mathbf{x}\rangle_{\leq 2 d}$.
(a) Then $\lambda_{\min }(f)$ is attained if and only if there is a feasible point L for $\left(\mathrm{DSDP}_{\text {eig }- \text { min }}\right)_{d+1}$ satisfying $L(f)=L_{\text {sohs }}=\lambda_{\text {min }}(f)$.
(b) If $L_{\text {sohs }}$ is attained, we can find symmetric $s \times s$ matrices A_{1}, \ldots, A_{n} and unit vector v such that

$$
\lambda_{\min }(f)=\langle f(A) v, v\rangle
$$

Proof:

- Gelfand-Naimark-Segal (GNS) construction
- use flat extensions

Example

```
>> f = (1 - 3*x*y + y*x)'*(1-3*x*y + y*x) +
    \(\left(-1+x^{\wedge} 2\right)^{\wedge} 2+\left(-y+y^{\wedge} 2\right)^{\wedge} 2\);
>> NCmin(f)
\(\lambda_{\text {min }}(f)=0\).
>> [X,fX,eig_val,eig_vec]=NCopt(f)
```


Example - cnt.

$$
\begin{aligned}
A & =\left[\begin{array}{rrrr}
0.9644 & -0.0379 & -0.1276 & 0.0879 \\
-0.0379 & -0.9828 & 0.1588 & 0.0235 \\
-0.1276 & 0.1588 & 0.4923 & 0.2253 \\
0.0879 & 0.0235 & 0.2253 & -0.9790
\end{array}\right] \\
B & =\left[\begin{array}{rrrr}
0.8367 & 0.1790 & 0.3326 & 0.0832 \\
0.1790 & 0.0215 & 0.1388 & 0.5320 \\
0.3326 & 0.1388 & -0.0227 & -0.6871 \\
0.0832 & 0.5320 & -0.6871 & -0.1778
\end{array}\right] \\
f(A, B) & =\left[\begin{array}{rrrr}
0.7978 & 1.2130 & 0.8094 & 0.6920 \\
1.2130 & 3.3989 & -2.6498 & -0.0064 \\
0.8094 & -2.6498 & 10.5185 & 3.0781 \\
0.6920 & -0.0064 & 3.0781 & 7.9733
\end{array}\right]
\end{aligned}
$$

$\lambda_{\min }(f)=\lambda_{\min }(f(A, B))=0.0000$,
$v=\left[\begin{array}{llll}-0.8741 & 0.4515 & 0.1789 & 0.0072\end{array}\right]^{t}$.
Note: Commutative min. of f is 0.0625 (for $x=1, y=1 / 2$).

SDP complexity

1. $f \in \mathrm{SOHS}_{d}$? has low complexity (size of matrix is $\mathcal{O}(k d / 2)$) (Newton chip method from P., Klep, 2010)

Read more in...

1. Burgdorf, S., Cafuta, K., Klep, I., and Povh, J. (2013). Algorithmic aspects of sums of hermitian squares. Comp. Optim. Appl. 55(1), 137-153.
2. Burgdorf, S., Cafuta, K., Klep, I., and Povh, J. (2013). The tracial moment problem and trace-optimization of polynomials. Math.
Program., Ser. A, 137(1-2), 557-578.
3. Cafuta, K., Klep, I., and Povh, J. (2011). NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials. Optim. Methods Softw., 26(3), 363-380.
4. Cafuta, K., Klep, I., and Povh, J. (2012). Constrained polynomial optimization problems with noncommuting variables. Siam J. Optim., 22(2), 363-383.
5. Klep, I., and Povh, J. (2010). Semidefinite programming and sums of hermitian squares of noncommutative polynomials. Journal of Pure and Applied Algebra, 214(6), 740-749.
