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Some notation

I I - unit matrix,

I X ∈ Rm×n ⇒ x = vec(X ) ∈ Rmn

I 〈x , y〉 = xT y =
∑

i xiyi
I 〈A, B〉 = tr(ATB) =

∑
i ,j aijbij

I e - vector of all ones.
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Max Cut
Graph partitioning problem

The Max Cut problem

I Given weighted graph G = (V ,E ) with edge weights W :

The max cut problem (MCP)
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Max Cut
Graph partitioning problem

The Max Cut problem

I Given weighted graph G = (V ,E ) with edge weights W .

I Find S ⊂ V with maximum cut edges.

The max cut problem (MCP)
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Max Cut
Graph partitioning problem

MCP - formally

I Motivation: network design, cluster analysis.

Def. MCP
Given weighted graph G = (V ,E ) with edge weights W ,
find S ⊂ V such that

cut(S) :=
∑

i∈S ,j∈V \S

wij

is maximum.
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Max Cut
Graph partitioning problem

MCP - int. prog. formulation

Def. MCP
Given weighted graph G = (V ,E ) with edge weights W ,
solve

max 1
4

∑
i ,j wij(1− xixj)

x ∈ {−1, 1}n

Solution for MCP: S = {i : xi = 1}.
Thm.: (Karp, 1972) MCP is an NP-complete problem.

Thm.: MCP is polynomial if graph is planar (Orlova, Dorfman),
weakly bipartite (Grötchel, Pulleyblank), graphs without
long odd cycles (Grötchel and Nemhauser), line graphs
(Arbib), graphs with bounded tree width (Bodlaender,
Jansen) and some others.
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Max Cut
Graph partitioning problem

MCP - relaxation

Def. MCP
Given weighted graph G = (V ,E ) with edge weights W ,
solve

max 1
4

∑
i ,j wij(1− xixj)

x ∈ {−1, 1}n

Def. MCP-SDP
Given weighted graph G = (V ,E ) with edge weights W ,
solve

max 1
4

∑
i ,j wij(1− 〈vi , vj〉)

vi ∈ Sn−1

Idea: Introduce Y = [yij ], yij = 〈vi , vj〉.
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Back: Compute vi ∈ Rn such that 〈vi , vj〉 = yij .
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Max Cut
Graph partitioning problem

How to obtain a good cut?

1. Input: {vi} obtained from SDP relaxation MCP-SDP.

2. Generate random r ∈ Sn−1.

3. Define S = {i : 〈r , vi 〉 ≥ 0}.

Thm.: (Goemans, Williamson, 1995) Let r ∈ Sn−1 be obtained by
uniform distribution yielding S . Then

E(cut(S)) > 0.87856 · cut(Sopt).
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Max Cut
Graph partitioning problem

Solving to optimality

I Common approach: Branch and Bound.

I Good lower bound and upper bounds are needed.

I Good upper bounds obtained by SDP relaxations (improved
by further constraints - see Rendl, Rinaldi, Wiegele 2010).

I Biq Mac (Wiegele) - web based solver for MCP (up to 300
vertices).

I Solving MCP and and MkCP in practise: heuristics.
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Max Cut
Graph partitioning problem

The graph partitioning problem - a picture

I Partition the nodes of a graph into sets with prescribed sizes
such that the number of edges between different sets is
minimal.

Slika: cut(S1,S2,S3) = 4
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Max Cut
Graph partitioning problem

Motivations and complexity

I GP problem appears in floor planning, analysis of networks etc.

I GP is connected with vertex separator problem and bandwidth
problem.

I If k = 2, m1 = dn2e, m2 = bn2c, we get an NP-complete graph
bisection problem as a special case.
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Max Cut
Graph partitioning problem

Application to the graph partitioning problem

I INPUT Graph G = (V ,E ), k ∈ N, m = (m1, . . . ,mk) ∈ Nk .

I Problem: find a partition of graph nodes into sets S1, . . .Sk
with |Si | = mi , which gives minimum cut edges.

OPTGPP = min 1
2〈X , AXB〉

s. t. X ∈ Rn×k
+ ,

XTX = M := Diag(m)
diag(XXT ) = un

A...adjacency matrix of G , B = J − I .
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Max Cut
Graph partitioning problem

Adding redundant constraints

Every partition matrix X satisfies XM−1XT � I , eTn Xek = n.

OPTGPP = min 1
2〈X , AXB〉

s. t. X ∈ Rn×k
+ ,

XTX = M := Diag(m)
diag(XXT ) = un
XM−1XT � I

We use x = vec(X ) and 〈X ,AXB〉 = 〈B ⊗ A, xxT 〉.
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Max Cut
Graph partitioning problem

SDP bounds for GPP

I We introduce V = xxT ∈ S+kn.

OPTGPP ≥ OPTDH = min 〈B ⊗ A, V 〉
V ∈ S+kn, W ∈ S+n∑k

i=1
1
mi
V ii + W = I , 〈I , V ij〉 = miδij , ∀i , j

〈I ⊗ Eii , V 〉 = 1, 1 ≤ i ≤ n

Thm. (P. 2009) The semidefinite bound OPTDH is exactly the
Donath-Hoffman eigenvalue bound for OPTGPP

OPTDH = max
{1

2

k∑
i=1

mk−i+1λi (L+D) : D = Diag(d), eTd = 0
}
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Max Cut
Graph partitioning problem

Improved SDP bounds for GPP

I If we add eTn Xek = n (actually: 〈X , JnXJk〉 = n2), we obtain:

OPTGPP ≥ OPTnew1 = min 〈B ⊗ A, V 〉
V ∈ S+kn, W ∈ S+n∑k

i=1
1
mi
V ii + W = I , 〈I , V ij〉 = miδij , ∀i , j

〈I ⊗ Eii , V 〉 = 1, 1 ≤ i ≤ n
〈Jkn,V 〉 = n2.
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Max Cut
Graph partitioning problem

Improved SDP bounds for GPP

I If we further add xijxi` = 0 ∀i , j , `, j 6= `,, we obtain:

OPTGPP ≥ OPTnew2 = min 〈B ⊗ A, V 〉
V ∈ S+kn, W ∈ S+n∑k

i=1
1
mi
V ii + W = I , 〈I , V ij〉 = miδij , ∀i , j

〈I ⊗ Eii , V 〉 = 1, 1 ≤ i ≤ n
〈Jkn,V 〉 = n2

〈Ej` ⊗ Eii , V 〉 = 0 ∀i , j , `, j 6= `.
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Max Cut
Graph partitioning problem

Numerical results

name n |E | OPTDH OPTnew1 OPTnew2 PRGP [WoZh 99]
g50.01 50 111 17.922 22.762 23.570 23.549
g50.02 50 256 81.956 95.920 99.983 99.423
g50.03 50 342 124.718 148.701 152.231 151.225
g50.04 50 478 204.303 236.697 242.578 242.063
g50.05 50 611 287.204 332.791 338.494 338.529
g50.06 50 759 378.250 440.780 443.184 442.966
g50.07 50 897 470.157 544.238 550.335 549.934
g50.08 50 984 530.486 615.035 620.326 620.168
g50.09 50 1098 618.867 719.456 722.990 722.270

Tabela: Semidefinite lower bounds for Graph partitioning problem, where
m = (5, 10, 15, 20)
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Max Cut
Graph partitioning problem

Stronger relaxations

I Further strengthening: adding new constraints, redundant
from original constraints:

I Triangle constraints for 0-1 programs.
I Row sum/column sum constraints.
I Completely positive constraint:

Def. X is completely positive iff X =
∑r

i=1 xixTi for some r ∈ N
and xi ≥ 0.

Def. The cone of completely positive matrices CP.
Def. The cone of copositive matrices

COP = {A ∈ S : xTAx ≥ 0 ∀x ≥ 0}.
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Max Cut
Graph partitioning problem

Second main result

Theorem 2 (P., 2009) Adding completely positive constraint
V ∈ CPkn to OPTnew1 we obtain the exact value for GPP.

OPTGPP = min 〈B ⊗ A, V 〉
V ∈ CPkn, W ∈ S+n∑

i
1
mi
V ii + W = I , 〈I , V ij〉 = miδij , ∀i , j

〈I ⊗ Eii , V 〉 = 1, 1 ≤ i ≤ n
〈Jkn, V 〉 = n2.

I Proof technique:
I If V is feasible solution of completely positive program, then

V =
∑
i

λixix
T
i ,

where xi = vec(Xi ) and Xi feasible for GPP.
I We explore the structure of the equations.
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Max Cut
Graph partitioning problem

The contribution of copositive formulation

I The GPP problem remains NP-hard.

I GPP can be rewritten as completely positive program using
other techniques (Burer 2008, P. 2007, P. 2009).

I We can approximate OPTGPP using semidefinite
approximations of cone CPkn (De Klerk, Pasechnik, 2002) or
direct heuristics (Bomze, Jarre, Rendl, 2009; Duer, Bundfuss,
2008, 2009).
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Commutative RAG
Non-commutative RAG

Real algebraic geometry

Problem: Let f ∈ R[x]. Is f (x) ≥ 0 for all x ∈ Rn?

Ex. Motzkin polinomial:

M(x , y) = x2y4 + x4y2 + 1− 3x2y2

Vir: http://www.mit.edu/ parrilo
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Commutative RAG
Non-commutative RAG

Application of SDP in real algebraic geometry

Problem: Let f ∈ R[x]. Is f (x) ≥ 0 for all x ∈ Rn?

Ex. fA(x) =
∑

i ,j aijx
2
i x

2
j ≥ 0 for all x ∈ Rn IFF A is copositive.

Rem. The strong membership problems for CP and COP are
NP-hard (Dickinson and Gijben, 2014).

I The Hilbert 17th problem (1900): Is every non-negative
polynomial with real coefficients a sum of squares of rational
functions?

I Positive answer by Emil Artin in 1927.

I Additional question: Is every non-negative polynomial with
real coefficients a sum of squares of real polynomials?

I The answer: NO (known already by Hilbert).
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Commutative RAG
Non-commutative RAG

Positivity of polynomials

Def. Let PSDn,d be the set (cone) of all non-negative polynomials
in n variables of degree ≤ d .

Def. f ∈ R[x] is sum of squares (SOS) iff f =
∑

i p
2
i for some

pi ∈ R[x].

Def. Let SOSn,2d be the set (cone) of polynomials in n vars with
degree ≤ 2d , which are SOS.

Thm. PSDn,2d = SOSn,2d iff
I 2d = 2;
I n = 1;
I n = 2, 2d = 4.

Ex. Motzkin polinomial:
M(x1, x2) = x21x

4
2 + x41x

2
2 + 1− 3x21x

2
2 ∈ PSD2,6 \ SOS2,6.
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Commutative RAG
Non-commutative RAG

SOS polynomials

Lem. If f ∈ SOSn,2d , then f (x) ∈ PSD.

Lem. Let f =
∑

i piq
2
i with pi ∈ PSD. Then f (x) ∈ PSD.

Lem. Let (1 + p)f =
∑

i piq
2
i with p, pi ∈ PSD. Then f (x) ∈ PSD.

Rem. SOS is a cone in R[x]. It is convex, pointed, closed, full
dimensional cone.

Quest.: How to figure out whether f ∈ SOSn,2d? Answ.: with SDP.
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SOS polynomial - example

I Let p(x1, x2) = 2x41 + 2x31x2 − x21x
2
2 + 5x42 .

I p is SOS since

p(x1, x2) =
1

2
((2x21 − 3x22 + x1x2)2 + (x22 + 3x1x2)2).

I We can obtain sos decomp. by Gram matrix method:

Thm. Let f ∈ R[x] with degree 2d . f is SOS IFF there exists Q � 0
such that

f (x) = V T
d QVd ,

where Vd is the vector of all monomials of degree ≤ d .
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SOS polynomial - cnt.

I Let p(x1, x2) = 2x41 + 2x31x2 − x21x
2
2 + 5x42 .

I Corresponding SDP:

min 0

p. p. Q =

2 a 1
a 5 0
1 0 b

 � 0,

2a + b = −1.

where V2 = (x21 , x
2
2 , x1x2)T .
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SOS polynomial - cnt.

If b = 5 we get

Q =

 2 −3 1
−3 5 0
1 0 5

 =

=
1

2

[
2 −3 1
0 1 3

]T
·
[

2 −3 1
0 1 3

]
� 0.

Therefore:

p(x1, x2) =
1

2
((2x21 − 3x22 + x1x2)2 + (x22 + 3x1x2)2).
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Complexity of SOS SDP

I There are
(n+d−1

d

)
monomials of degree d . This is the order

of Q.

Thm. It is enough to consider only the monomials from one half of
the Newton polytope:

Newton polytope for f = 1 + 2y2 − 4x5
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Pólya Positivstellensatz

Thm. (Pólya, 1929, Hardy, Littlewood, Pólya, 1988, Powers,
Reznick, 2001) Let f ∈ R[x] be a homogeneous polynomial on
Rn such that f (x) > 0 for all x ∈ Rn

+ \ {0}. Then for some
r ∈ N, we have that all the coefficients of (eTx)r f (x) are
non-negative (positive).

Application: In copositive programming - LP ali SDP
certificates for copositivity: if (

∑
i x

2
i )r
∑

i ,j Ai ,jx
2
i x

2
j has

non-negative coefficients then A is copositive (LP problem).
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Putinar Positivstellensatz

Thm. (Putinar, 1993) Let m ∈ N and f , g1 = 1, g2, . . . , gm ∈ R[x].
If f (x) > 0 for all

x ∈ K := {x ∈ Rn : gi (x) ≥ 0, for i = 1, . . . ,m} \ {0},

then there exists s1, . . . , sm ∈ SOS such that
f (x) =

∑m
i=1 sigi (x), provided e.g. K compact.
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Application in optimization

I finf = inf{f (x) : x ∈ K} = sup{ε : f (x)− ε ≥ 0 for all x ∈ K}
I finf ≥ fsos = sup{ε : f (x)− ε =

∑
i sigi , si ∈ SOS}.

I f
(t)
sos = sup{ε : f (x)− ε =

∑
i sigi , si ∈ SOS , deg(sigi ) ≤ 2t}

Thm. limt→∞ f
(t)
sos = fsos = finf provided e.g. K compact.
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Read more in...

1. Monique Laurent. Sums of squares, moment matrices and optimization
over polynomials. In Emerging applications of algebraic geometry, volume
149 of IMA Vol. Math. Appl., pages 157–270. Springer, New York, 2009.

2. Murray Marshall. Positive Polynomials and Sums of Squares. American
Mathematical Society, 2008.

3. Tim Netzer. Positive Polynomials, Sums of Squares and the Moment
Problem. PhD thesis, 2008.

4. Jean B. Lasserre. Global optimization with polynomials and the problem
of moments. Siam J. Optim, Vol. 11(3), pp. 796–817, 2001.

5. P. J. C. Dickinson and J. Povh. On a generalization of Pólya’s and
Putinar-Vasilescu’s positivstellensätze. Journal Glob. Optim., 2014.
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How do we get NC polynomials?

Formal construction:

1. Start with NC letters x := (x1, . . . , xn) and operation
”multiplication”.

2. Consider 〈x〉 - monoid freely generated by x (empty word is 1).

3. Free algebra R〈x〉: noncommutative (nc) polynomials.

4. Add involution ∗ which:
I fixes R ∪ {x} pointwise
I and reverses words, e.g. (x1x

2
2 x3 − 2x33 )∗ = x3x

2
2 x1 − 2x33 .

5. SymR〈x〉 - the set of all symmetric elements:

SymR〈x〉 = {f ∈ R〈x〉 | f = f ∗}.
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Why NC polys are relevant?

1. Lots of applications in control theory, systems engineering and
optimization (see Helton, McCullough, Oliveira, Putinar, 2008),

2. Applications to quantum physics (Pironio, Navascués, Aćın, 2010)

3. Applications in quantum information science (Pál and T. Vértesi, 2009),

4. Quantum chemistry (e.g. to compute the ground-state electronic energy
of atoms or molecules) - see cf. Mazziotti, 2004.

5. Certificates of positivity via sums of squares are used to get general
bounds on quantum correlations (cf. Glauber, 1963).

6. The Bessis-Moussa-Villani conjecture (BMV) from quantum statistical
mechanics is tackled by NC polynomials (Klep, Schweighofer, 2009;
Cafuta, Klep, Povh, 2011)
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The BMV conjecture

1. Bessis - Moussa - Villani (BMV) conjecture (1975):
I For symmetric matrices A,B with B positive semidefinite, the

function
ΦA,B : R→ R, t 7→ tr(eA−tB)

is the Laplace transform of a positive measure µA,B on [0,∞):

tr(eA−tB) =

∫ ∞
0

e−txdµA,B(x).

I BMV equivalently (Lieb–Seiringer, 2004): The polynomial

tr((A + tB)m) ∈ R[t] =
m∑

k=0

tk tr(Sm,k(A,B))

has only nonnegative coefficients whenever A,B are PSD of
order s, for all m.

2. The conjecture was recently proved by H.R. Stahl: Proof of the BMV
conjecture, 2011.
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Positivity of NC polynomials

1. f (x) ≥ 0?

2. Is f (x) ≥ 0 component-wise?

3. Is f (x) � 0?

4. Is tr f (x) ≥ 0?

5. We stick to: “Is f (x) � 0?”
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Main questions

Given: real polynomial f in non-commuting variables
x = (x1, . . . , xn).

Q 1: Is
f (A) � 0

for all n-tuples of symmetric matrices A = (A1, . . . ,An) of the
same size?

Q 2: Find the smallest eigenvalue of f , i.e. compute

λmin(f ) = inf〈f (A)v , v〉

A an n-tuple of symmetric matrices,
v a unit vector.
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Sums of hermitian squares (SOHS)

I SOHS = {
∑

i g
∗
i gi : gi ∈ R〈x〉} ( SymR〈x〉.

I SOHSd = {
∑

i g
∗
i gi : gi ∈ R〈x〉, deg(g∗i gi ) ≤ d} ( SymR〈x〉
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Examples

1. Let f = x1x2 + x2x1 + 4− x21 − x22 . It is not non-negative
(take x1 = 0, x2 = 3I ).

2. Let f = (x1 ∗ x2 + x2)∗(x1 ∗ x2 + x2) + 2. It is non-negative.
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Question 1

Recall: Question 1.
Is

f (A) � 0

for all n-tuples of symmetric matrices A = (A1, . . . ,An) of the
same size?

Thm.: (Helton, Annals of math., 2002)

f ∈ R〈x〉 is SOHS ⇔ f (x) � 0 whenever we replace xi by
symmetric matrices Ai of dimension k × k, ∀k ≥ 1.
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SDP certificates for SOHS

Problem 1: Given: f ∈ R〈x〉, is f ∈ SOHS?

If YES: Provide (SDP) certificate!
If NO: Provide (SDP) certificate!
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SDP certificate for SOHS

Prop.: Suppose f ∈ R〈x〉 is of degree ≤ 2d . Then f ∈ SOHS if and
only if there exists a positive semidefinite (PSD) matrix G
satisfying

f = W ∗
dGWd ,

where
Wd = {p ∈ 〈x〉 : deg(p) ≤ d}.

Rem.: Given such a PSD matrix G with rank r , the SOHS
decomposition is

f =
r∑

i=1

g∗i gi , (1)

where gi = H(i , :)Wd , G = HTH.
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SDP certificate for SOHS

Prop.: Given f =
∑

w∈〈x〉 aww of degree 2d , then f ∈ SOHS iff exists G � 0
such that: ∑

p,q∈Wd
p∗q=w

Gp,q = aw , ∀w ∈W2d

Note: ”Is f in SOHS?” is SDP feasibility problem.

SDP:

inf 〈I ,G〉
(SDPSOHS) s. t. 〈Aw ,G〉 = aw + aw∗ ∀w ∈W2d

G � 0.

where

(Aw )u,v =

{
2; if u∗v ∈ {w ,w∗}, w∗ = w ,
1; if u∗v ∈ {w ,w∗}, w∗ 6= w ,
0; otherwise.
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Optimization of NC polys.

Problem: Given f ∈ SymR〈x〉

find smallest eigenvalue of f :

λmin(f ) = inf〈f (A)v , v〉

A an n-tuple of symmetric matrices,
v a unit vector.

By Helton-McCullough SOHS theorem:

λmin(f ) = sup λ
s. t. f − λ ∈ SOHSd .

(SDPeig−min)
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Optimization of NC polys.-dual

Prop: The dual to (SDPeig−min) is

Lsohs = inf〈Gf ,H〉
s. t. H ∈ S+

H1,1 = 1
Hp,q = Hr ,s for all p, q, r , s, p∗q = r∗s.

(DSDPeig−min)d

Prop.:
Lsohs = λmin(f ).
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Extracting the optimizers

Thm.: (Cafuta, Klep, P., 2010) Let f ∈ R〈x〉≤2d .

(a) Then λmin(f ) is attained if and only if there is a feasible point
L for (DSDPeig−min)d+1 satisfying L(f ) = Lsohs = λmin(f ).

(b) If Lsohs is attained, we can find symmetric s × s matrices
A1, . . . ,An and unit vector v such that

λmin(f ) = 〈f (A)v , v〉.

Proof:

I Gelfand-Naimark-Segal (GNS) construction

I use flat extensions
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Example

>> f = (1 - 3*x*y + y*x)’*(1 - 3*x*y + y*x) +

(-1 + x^2)^2 + (-y+y^2)^2;

>> NCmin(f)

λmin(f ) = 0.

>> [X,fX,eig_val,eig_vec]=NCopt(f)
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Example - cnt.

A =


0.9644 −0.0379 −0.1276 0.0879
−0.0379 −0.9828 0.1588 0.0235
−0.1276 0.1588 0.4923 0.2253
0.0879 0.0235 0.2253 −0.9790



B =


0.8367 0.1790 0.3326 0.0832
0.1790 0.0215 0.1388 0.5320
0.3326 0.1388 −0.0227 −0.6871
0.0832 0.5320 −0.6871 −0.1778



f (A,B) =


0.7978 1.2130 0.8094 0.6920
1.2130 3.3989 −2.6498 −0.0064
0.8094 −2.6498 10.5185 3.0781
0.6920 −0.0064 3.0781 7.9733


λmin(f ) = λmin(f (A,B)) = 0.0000,

v =
[
−0.8741 0.4515 0.1789 0.0072

]t
.

Note: Commutative min. of f is 0.0625 (for x = 1, y = 1/2).
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SDP complexity

1. f ∈ SOHSd? has low complexity (size of matrix is O(kd/2))
(Newton chip method from P., Klep, 2010)
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