
Randomized Algorithms
for Big Data Optimization

Peter Richtárik

University of Edinburgh

Graduate School in Systems, Optimization, Control and Networks
Belgium 2015

1 / 108

Contents I

1. Randomized Gradient Methods for Strongly Convex Problems
Minimizing a Strongly Convex Function
Algorithm: NSync
Samplings
Assumptions
Complexity of NSync
Proof

2. Blocks
Decomposition
Projection
Norms

3. Accelerated Randomized Gradient Methods for Weakly Convex
Problems

Minimizing a Strongly Convex Function
Vectors: further notation
Algorithm: ALPHA
Complexity Result for Accelerated ALPHA
Complexity Result for Non-Accelerated ALPHA

2 / 108

Contents II
Complexity Analysis

4. Samplings
Definition
Sum Over a Random Index Set
Consequences of the Basic Identity
Identities for Uniform Samplings
Identities for Doubly Uniform Samplings

Elementary Samplings
Probability Matrices

Sampling Identity for a Quadratic
Distributed Sampling

5. Functions
Model 1
Model 2
Model 3

6. ESO
Model 1

General ESO
Bounds
Eigenvalues of Probability Matrices

3 / 108

Contents III
ESO 2
ESO2: Bounds
Product Sampling
τ -Nice Sampling
Distributed τ -Nice Sampling
Distributed NSync

Model 3
ESO
DSO

ESO and Lipschitz Continuity

4 / 108

Part 1
Randomized Gradient Methods
for Strongly Convex Problems

5 / 108

The Problem

In order to quickly illustrate the topics and notions that we will study in
more depth later, we first consider the following problem:

minimize f (x) (1)

subject to x = (x (1), . . . , x (n)) ∈ Rn

We will assume that f is:

I “smooth” (will be made precise later)

I strongly convex (will be made precise later)

6 / 108

NSync: Randomized Gradient Descent with Arbitrary
Sampling

Algorithm (NSync, R. and Takáč [11])

Input: initial point x0 ∈ Rn

subset probabilities {pS} for each S ⊆ [n]
def
= {1, 2, . . . , n}

stepsize parameters v1, . . . , vn > 0
for k = 0, 1, 2, . . . do

a) Select a random set of coordinates Sk ⊆ [n] following the law

P(Sk = S) = pS , S ⊆ [n]

b) Update (possibly in parallel) selected coordinates:

xk+1 = xk −
∑
i∈Sk

1

vi
(eTi ∇f (xk))ei

end for

Remark: This NSync algorithm was introduced in 2013. The first
algorithm unifying deterministic gradient methods and randomized
coordinate descent methods.

7 / 108

Two More Ways of Writing the Update Step

1. Coordinate-by-coordinate:

x
(i)
k+1 =

{
x

(i)
k , i /∈ Sk ,

x
(i)
k −

1
vi

(∇f (xk))(i), i ∈ Sk .

2. Via projection to a subset of blocks: If for h ∈ Rn and S ⊆ [n]
we write

h[S]
def
=
∑
i∈S

h(i)ei ,

then

xk+1 = xk + h[Sk] for h = −(Diag(v))−1∇f (xk). (2)

We shall interchangeably write:

∇i f (x) = eTi ∇f (x) = (∇f (x))(i)

8 / 108

Samplings

Definition 1 (Sampling)
By the name sampling we refer to a set valued random mapping with
values being subsets of [n] = {1, 2, . . . , n}. For sampling Ŝ we define the
probability vector p = (p1, . . . , pn)T by

pi = P(i ∈ Ŝ) (3)

We say that Ŝ is proper, if pi > 0 for all i .

I A sampling Ŝ is uniquely characterized by the probability mass
function

pS
def
= P(Ŝ = S), S ⊆ [n]; (4)

that is, by assigning probabilities to all subsets of [n].

I Later on it will be useful to also consider the probability matrix
P = (pij) given by

pij
def
= P(i ∈ Ŝ , j ∈ Ŝ) =

∑
S:{i,j}⊂S

pS . (5)

9 / 108

Samplings: A Basic Identity

Lemma 2 ([5])
For any sampling Ŝ we have

n∑
i=1

pi = E[|Ŝ |]. (6)

Proof.

n∑
i=1

pi
(3)+(4)

=
n∑

i=1

∑
S⊆[n]:i∈S

pS =
∑
S⊆[n]

∑
i :i∈S

pS =
∑
S⊆[n]

pS |S | = E[|Ŝ |].

10 / 108

Sampling Zoo - Part I

Why consider different samplings?

1. Basic Considerations. It is important that each block i has a
positive probability of being chosen, otherwise NSync will not be
able to update some blocks and hence will not converge to
optimum. For technical/sanity reasons, we define:

I Proper sampling. pi = P(i ∈ Ŝ) > 0 for all i ∈ [n]
I Nil sampling: P(Ŝ = ∅) = 1
I Vacuous sampling: P(Ŝ = ∅) > 0

2. Parallelism. Choice of sampling affects the level of parallelism:
I E[|Ŝ |] is the average number of updates performed in parallel in one

iteration; and is hence closely related to the number of iterations.
I serial sampling: picks one block:

P(|Ŝ | = 1) = 1

We call this sampling serial although nothing prevents us from
computing the actual update to the block, and/or to apply he
update in parallel.

11 / 108

Sampling Zoo - Part II

I fully parallel sampling: always picks all blocks:

P(Ŝ = {1, 2, . . . , n}) = 1

3. Processor reliability. Sampling may be induced/informed by the
computing environment:

I Reliable/dedicated processors. If one has reliable processors, it is
sensible to choose sampling Ŝ such that P(|Ŝ | = τ) = 1 for some τ
related to the number of processors.

I Unreliable processors. If processors given a computing task are busy
or unreliable, they return answer later or not at all - it is then
sensible to ignore such updates and move on. This then means that
|Ŝ | varies from iteration to iteration.

4. Distributed computing. In a distributed computing environment it
is sensible:

I to allow each compute node as much autonomy as possible so as to
minimize communication cost,

I to make sure all nodes are busy at all times

12 / 108

Sampling Zoo - Part III

This suggests a strategy where the set of blocks is partitioned, with
each node owning a partition, and independently picking a “chunky”
subset of blocks at each iteration it will update, ideally from local
information.

5. Uniformity. It may or may not make sense to update some blocks
more often than others:

I uniform samplings:

P(i ∈ Ŝ) = P(j ∈ Ŝ) for all i , j ∈ [n]

I doubly uniform (DU): These are samplings characterized by:

|S ′| = |S ′′| ⇒ P(Ŝ = S ′) = P(Ŝ = S ′′) for all S ′, S ′′ ⊆ [n]

I τ -nice: DU sampling with the additional property that

P(|Ŝ | = τ) = 1

I distributed τ -nice: will define later
I independent sampling: union of independent uniform serial samplings

I nonuniform samplings

13 / 108

Sampling Zoo - Part IV

6. Complexity of generating a sampling. Some samplings are
computationally more efficient to generate than others: the potential
benefits of a sampling may be completely ruined by the difficulty to
generate sets according to the sampling’s distribution.

I a τ -nice sampling can be well approximated by an independent
sampling, which is easy to generate. . .

I in general, many samplings will be hard to generate

14 / 108

Assumption: Strong convexity

Assumption 1 (Strong convexity)
Let γ > 0 and s = (s1, . . . , sn) ∈ Rn. We assume that function f is
differentiable and γ-strongly convex (with γ > 0) with respect to the
weighted Euclidean norm

‖h‖s
def
=

(
n∑

i=1

si (h
(i))2

)1/2

.

That is, we assume that for all x , h ∈ Rn,

f (x + h) ≥ f (x) + 〈∇f (x), h〉+ γ
2 ‖h‖

2
s . (7)

15 / 108

Assumption: Expected Separable Overapproximation
Assumption 2 (ESO)
Assume Ŝ is proper and that for some vector of positive weights
v = (v1, . . . , vn) and all x , h ∈ Rn,

E[f (x + h[Ŝ])] ≤ f (x) + 〈∇f (x), h〉p + 1
2‖h‖

2
p•v . (8)

Note that the ESO parameters v , p depend on both f and Ŝ . For
simplicity, we will often instead of (8) use the compact notation

(f , Ŝ) ∼ ESO(v).

Notation used above:

h[S]
def
=

∑
i∈S

h(i)ei ∈ Rn (projection of h ∈ Rn onto coordinates i ∈ S)

〈g , h〉p
def
=

n∑
i=1

pig
(i)h(i) ∈ R (weighted inner product)

p • v def
= (p(1)v (1), . . . , p(n)v (n)) ∈ Rn (Hadamard product)

16 / 108

Complexity of NSync

Theorem 3 ([11])
Let x∗ be a minimizer of f . Let Assumptions 1 and 2 be satisfied for a
proper sampling Ŝ (that is, (f , Ŝ) ∼ ESO(v)). Choose

I starting point x0 ∈ Rn,

I error tolerance 0 < ε < f (x0)− f (x∗) and

I confidence level 0 < ρ < 1.

If {xk} are the random iterates generated by NSync where the random
sets Sk are iid following the distribution of Ŝ, then

K ≥ Λ

γ
log

(
f (x0)− f (x∗)

ερ

)
⇒ P(f (xK)− f (x∗) ≤ ε) ≥ 1− ρ, (9)

where

Λ
def
= max

i=1,...,n

vi
pi si

≥
∑n

i=1
vi
si

E[|Ŝ |]
. (10)

17 / 108

What does this mean?
I Linear convergence. NSync converges linearly (i.e., logarithmic

dependence on ε)

I High confidence is not a problem. ρ appears inside the logarithm,
so it easy to achieve high confidence (by running the method longer;
there is no need to restart)

I Focus on the leading term. The leading term is Λ; and we have a
closed-form expression for it in terms of

I parameters v1, . . . , vn (which depend on f and Ŝ)
I parameters p1, . . . , pn (which depend on Ŝ)

I Parallelization speedup. The lower bound suggests that if it was
the case that the parameters vi did not grow with increasing

τ
def
= E[|Ŝ |], then we could potentially be getting linear speedup in τ

(average number of updates per iteration).
I So we shall study the dependence of vi on τ (this will depend on f

and Ŝ)
I As we shall see, speedup is often guaranteed for sparse or

well-conditioned problems.

Question: How to design sampling Ŝ so that Λ is minimized?
18 / 108

Proof of Theorem 3 - Part I

I If we let µ
def
= γ/Λ, then

f (x + h)
(7)

≥ f (x) + 〈∇f (x), h〉+ γ
2 ‖h‖

2
s

≥ f (x) + 〈∇f (x), h〉+ µ
2 ‖h‖

2
v•p−1 . (11)

Indeed, µ is defined to be the largest number for which
γ‖h‖2

s ≥ µ‖h‖2
v•p−1 holds for all h. Hence, f is µ-strongly convex

with respect to the norm ‖ · ‖v•p−1 .

I Let x∗ be a minimizer of f , i.e., an optimal solution of (22).
Minimizing both sides of (11) in h, we get

f (x∗)− f (x)
(11)

≥ min
h∈Rn
〈∇f (x), h〉+ µ

2 ‖h‖
2
v•p−1

= − 1
2µ‖∇f (x)‖2

p•v−1 . (12)

19 / 108

Proof of Theorem 3 - Part II

I Let hk
def
= −v−1 • ∇f (xk). Then in view of (2), we have

xk+1 = xk + (hk)[Ŝ], and utilizing Assumption 2, we get

E[f (xk+1) | xk] = E
[
f (xk + (hk)[Ŝ]) | xk

]
(8)

≤ f (xk) + 〈∇f (xk), hk〉p + 1
2‖hk‖

2
p•v

= f (xk)− 1
2‖∇f (xk)‖2

p•v−1

(12)

≤ f (xk)− µ(f (xk)− f (x∗)).

I Taking expectations in the last inequality (i.e., via the tower
property), we get E[f (xk+1)− f (x∗)] ≤ (1− µ)E[f (xk)− f (x∗)].
Unrolling the recurrence, we get

E[f (xk)− f (x∗)] ≤ (1− µ)k(f (x0)− f (x∗)). (13)

20 / 108

Proof of Theorem 3 - Part III

I Using Markov inequality, (13) and the definition of K , we finally get

P(f (xK)− f (x∗) ≥ ε) ≤ E[f (xK)− f (x∗)]/ε

(13)

≤ (1− µ)K (f (x0)− f (x∗))/ε
(9)

≤ ρ.

I Finally, let us now establish the lower bound on Λ. Letting

∆
def
= {p′ ∈ Rn : p′ ≥ 0,

∑
i p
′
i = E[|Ŝ |]}, we have

Λ
(10)
= max

i

vi
pi si

(6)

≥ min
p′∈∆

max
i

vi
p′i si

=
1

E[|Ŝ |]

n∑
i=1

vi
si
,

where the last equality follows since optimal p′i is proportional to
vi/si .

21 / 108

Exercises
Exercise 1
Prove that a doubly uniform sampling is uniform.

Exercise 2
Let f (x) = 1

2‖Ax − b‖2
2 and let Ŝ be a serial sampling. Show that then

(f , Ŝ) ∼ ESO(v) with vi = ‖A:i‖2
2 for i ∈ [n].

Exercise 3
Assume that f is a convex function for which there exist constants
L1, . . . , Ln > 0 such that for all x ∈ Rn, t ∈ R and i ∈ [n], the following
inequality holds:

|eTi ∇f (x + tei)− eTi ∇f (x)| ≤ Li |t|.

Show that then for any serial sampling Ŝ, we have (f , Ŝ) ∼ ESO(v) with
v = (L1, . . . , Ln).

Exercise 4
Argue in detail why (12) follows.

Exercise 5
Argue in detail why (1− µ)K (f (x0)− f (x∗))/ε ≤ ρ.

Exercise 6
Finish the proof of Theorem 3 by showing in detail why “optimal p′i is
proportional to vi/si .”

22 / 108

Part 2
Blocks

23 / 108

The idea

We now assume the decision vector x has N coordinates

x ∈ RN

which we partition into n “blocks”.

Idea: We let the algorithm operate on “block level” instead ⇒ block
coordinate descent. That is, at iteration k ,

I a random subset Sk of blocks [n] = {1, 2, . . . , n} is chosen

I and updated.

24 / 108

What do we gain by introducing blocks?

I Flexibility: We can partition the coordinates any way we like for
any reason we might have.

I Sometimes block structure is implied by the problem at hand. In L1
optimization, one often chooses Ni = 1 for all i . In group LASSO
problems, groups correspond to blocks.

I Generality: By allowing for general block structure, we
simultaneously analyze several classes of algorithms:

I coordinate descent (if we choose Ni = 1 for all i)
I block coordinate descent (if we choose Ni > 1 and n > 1)
I gradient descent (if we choose n = 1)
I fast (O(1/k2)) versions of the above. . .

I Efficiency: It is sometimes more efficient to have blocks because:
I this leads to a more “chunky” workload for each processor if we

think that each processor handles one block
I one can design block-norms based on data, which leads to better

approximation and hence faster convergence
I one can try to optimize the partitioning of coordinates to blocks

(say, by trying to optimize complexity bounds, which depend on
block structure)

25 / 108

Block Decomposition of RN

I Partition. Let H1, . . . ,Hn be a partition of the set of
coordinates/variables {1, 2, . . . ,N} into n nonempty subsets. Let
Ni = |Hi |.

I Projection/lifting matrices. Let Ui ∈ RN×Ni be the column
submatrix of the N ×N identity matrix corresponding to coordinates
in Hi .

I Projection of RN to RNi For x ∈ RN , define

x (i) def
= UT

i x ∈ RNi , i = 1, 2, . . . , n.

Notice that x (i) is the block of coordinates of x belonging to Hi .

I Lifting RNi to RN . Given x (i) ∈ RNi , notice that the vector
s = Uix

(i) ∈ RN has all blocks equal to 0 except for block i , which is
equal to x (i). That is,

s(j) =

{
x (j) j = i

0 otherwise.

26 / 108

Examples - Part I

Example 4
1. Single block.

n = 1; H1 = {1, 2, . . . ,N}; U1 = I

2. Blocks of size 1. This is the setting already introduced in NSync:

N = n; Hi = {i}; Ui = ei

3. Two blocks of different sizes. Let N = 5 (5 coordinates), n = 2 (2
blocks) and let the partitioning be given by

H1 = {1, 3}, H2 = {2, 4, 5}.

Then

U1 =


1 0
0 0
0 1
0 0
0 0

 U2 =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 1


27 / 108

Examples - Part II

For x ∈ RN = R5 we have

x(1) = UT
1 x =

(
1 0 0 0 0
0 0 1 0 0

)
x1

x2

x3

x4

x5

 =

(
x1

x3

)
∈ RN1 = R2

x(2) = UT
2 x =

 0 1 0 0 0
0 0 0 1 0
0 0 0 0 1




x1

x2

x3

x4

x5

 =

 x2

x4

x5

 ∈ RN2 = R3

On the other hand, for any x ∈ R5:

U1x
(1) = U1(UT

1 x) =


1 0
0 0
0 1
0 0
0 0


(

x1

x3

)
=


x1

0
x3

0
0

 ∈ R5

28 / 108

Examples - Part III

and

U2x
(2) = U2(UT

2 x) =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 1


 x2

x4

x5

 =


0
x2

0
x4

x5

 ∈ R5

So, we have the unique decomposition:

x = U1x
(1) + U2x

(2)

The next simple result will formalize this.

29 / 108

Block Decomposition: Formal Statement
Proposition 1 (Block Decomposition)
Any vector x ∈ RN can be written uniquely as

x =
n∑

i=1

Uix
(i), (14)

where x (i) ∈ RNi . Moreover,

x (i) = UT
i x . (15)

Proof.
Fix any x ∈ RN . Noting that

∑
i UiU

T
i is the N × N identity matrix, we

have x =
∑

i UiU
T
i x , where UT

i x ∈ RNi . Let us now show uniqueness.

Assume that x =
∑

i Uix
(i)
1 =

∑
i Uix

(i)
2 , where x

(i)
1 , x

(i)
2 ∈ RNi . Since

UT
j Ui =

{
Nj × Nj identity matrix, if i = j ,

Nj × Ni zero matrix, otherwise,
(16)

we get 0 = UT
j (x − x) = UT

j

∑
i Ui (x

(i)
1 − x

(i)
2) = x

(j)
1 − x

(j)
2 , for all j .

30 / 108

Projection onto (a subspace spanned by) a set of blocks

For h ∈ RN and ∅ 6= S ⊆ [n]
def
= {1, 2, . . . , n}, we write

h[S] =
∑
i∈S

Uih
(i). (17)

In words, h[S] is a vector in RN obtained from h ∈ RN by zeroing out the
blocks that do not belong to S . Hence:

(h[S])
(i) =

{
h(i), i ∈ S ,

0, i /∈ S .

Remark: This generalizes the decomposition on the slide defining ESO.

31 / 108

Norms in RNi and RN - Part I

Let 〈·, ·〉 denote the standard inner product between two vectors of
equal size (i.e., 〈x , y〉 = x>y).

With each block i ∈ [n] we associate a positive definite matrix
Bi ∈ RNi×Ni and a scalar vi > 0, and equip RNi and RN with the norms

‖x (i)‖(i)
def
= 〈Bix

(i), x (i)〉1/2, ‖x‖v
def
=
(∑n

i=1 vi‖x (i)‖2
(i)

)1/2

. (18)

The corresponding conjugate norms, defined by

‖s‖∗ = max{〈s, x〉 : ‖x‖ ≤ 1}

are given by

‖x (i)‖∗(i)
def
= 〈B−1

i x (i), x (i)〉1/2, ‖x‖∗v =

(∑n
i=1

1
vi

(
‖x (i)‖∗(i)

)2
)1/2

.

(19)

32 / 108

Norms in RNi and RN - Part II

For w ∈ Rn
++ and x , y ∈ RN we further define the weighted inner

product

〈x , y〉w
def
=

n∑
i=1

wi 〈x (i), y (i)〉. (20)

For x ∈ RN , by Bx we mean the vector

Bx =
n∑

i=1

UiBix
(i).

That is, Bx is the vector in RN whose ith block is equal to Bix
(i).

Lemma 5
For vectors x , y ∈ RN we have

‖x + y‖2
w = ‖x‖2

w + 2〈Bx , y〉w + ‖y‖2
w . (21)

33 / 108

Norms: Examples

Example 6
Consider the following extreme special cases:

1. Single block. Let n = 1, v = 1 and B be a positive definite matrix.
Then

‖x‖(1) = ‖x‖v = 〈Bx , x〉1/2, x ∈ RN .

For instance, if f (x) = 1
2‖Ax − b‖2 we may choose:

I B = ATA (assuming ATA is positive definite)
I B = Diag(ATA) (assuming no column in A is zero, ATA is positive

definite)

2. Blocks of size one. Let Ni = 1 for all i and set Bi = 1. Then

‖t‖(i) = ‖t‖∗(i) = |t|, t ∈ R

and

‖x‖v =

(
n∑

i=1

vi (x
(i))2

)1/2

, x ∈ RN .

34 / 108

Exercises

Exercise 7
Show that ‖ · ‖∗(i) (resp. ‖ · ‖∗v), as defined in (19), is indeed the conjugate

norm of ‖ · ‖(i) (resp. ‖ · ‖v).

Exercise 8
Prove Lemma 5.

Exercise 9
Generalize NSync to the block setting and provide a complexity analysis.

35 / 108

Part 3
Accelerated Randomized Gradient Methods

for Weakly Convex Problems

36 / 108

The Problem

We will now consider the following problem:

minimize f (x) (22)

subject to x ∈ RN

We assume that f is:

I “smooth” (ESO Assumption 2)

I (weakly) convex (that is, Assumption 1 holds with γ = 0)

Remark: Notice that we now work in RN as opposed to Rn, as before. In
this part we will partition the N variables into n blocks, and the
algorithm we will describe and analyze—ALPHA—shall operate on
blocks instead of individual coordinates.

37 / 108

Further simplifying notation

I By abuse of notation, we denote by u2 the elementwise square of the
vector u, by u−1 the elementwise inverse of vector u and by u−2 the
elementwise square of u−1.

I For vectors v ∈ Rn and x ∈ RN we will write

v · x def
=

n∑
i=1

vi (Uix
(i)). (23)

That is, v · x is the vector in RN obtained from x by multiplying its
block i by vi for each i ∈ [n].

Example 7
If all blocks are of size one (Ni = 1 for all i), then

v · x = Diag(v)x ,

where Diag(v) is the diagonal matrix with diagonal vector v .

38 / 108

The ALPHA Algorithm

We now present an accelerated variant of NSync, called ALPHA [14]
(for an earlier version, developed for uniform samplings, see [12]).

Algorithm (ALPHA)

Parameters: proper sampling Ŝ with probability vector
p = (p1, . . . , pn), vector v ∈ Rn

++, sequence {θk}k≥0

Initialization: choose x0 ∈ RN , set z0 = x0

for k ≥ 0 do
yk = (1− θk)xk + θkzk
Generate a random set of blocks Sk ∼ Ŝ
zk+1 ← zk
for i ∈ Sk do
z

(i)
k+1 = z

(i)
k −

pi
viθk

B−1
i ∇i f (yk)

end for
xk+1 = yk + θkp

−1 · (zk+1 − zk)
end for

39 / 108

Efficient Implementation

Remark: The update step for yk is expensive as it involves the addition
of two potentially dense vectors in RN : xk and zk . However, this can be
completely avoided by writing the method in an equivalent form (via a
change of variables). See [12, 14] for details.

40 / 108

Iteration Complexity of ALPHA: Accelerated Case
Theorem 8
Let Ŝ be an arbitrary proper sampling and v ∈ Rn

++ be such that

(f , Ŝ) ∼ ESO(v). Choose θ0 ∈ (0, 1] and define the sequence {θk}k≥0 by

θk+1 =

√
θ4
k + 4θ2

k − θ2
k

2
. (24)

Then for any y ∈ RN such that C ≥ 0, the iterates {xk}k≥1 of ALPHA
satisfy:

E[f (xk)]− f (y) ≤ 4C

((k − 1)θ0 + 2)2
, (25)

where

C = (1− θ0) (f (x0)− f (y)) +
θ2

0

2
‖x0 − y‖2

v•p−2 .

In particular, if we choose θ0 = 1, then for all k ≥ 1,

E[f (xk)]− f (y) ≤
2‖x0 − y‖2

v•p−2

(k + 1)2
=

2
∑n

i=1
vi
p2
i
‖x (i)

0 − y (i)‖2
i

(k + 1)2
. (26)

41 / 108

Iteration Complexity of ALPHA: Non-Accelerated Case

Theorem 9
Let Ŝ be an arbitrary proper sampling and v ∈ Rn

++ be such that

(f , Ŝ) ∼ ESO(v). Choose θk = θ0 ∈ (0, 1] for all k ≥ 0.
Then for any y ∈ RN , the iterates {xk}k≥1 of ALPHA satisfy:

max

{
E[f (x̂k)], min

l=1,...,k
E[f (xl)]

}
− f (y) ≤ C

(k − 1)θ0 + 1
,∀k ≥ 1 (27)

where

x̂k =
xk + θ0

∑k−1
l=1 xl

1 + (k − 1)θ0

and

C = (1− θ0) (f (x0)− f (y)) +
θ2

0

2
‖x0 − y‖2

v•p−2 .

42 / 108

Analysis of ALPHA I

Let us extract the relations between the three sequences. Define

z̃k+1
def
= arg min

z∈RN
{〈∇f (yk), z〉+

θk
2
‖z − zk‖2

p−1•v}. (28)

Then

z
(i)
k+1 =

{
z̃

(i)
k+1 i ∈ Sk

z
(i)
k i /∈ Sk

, (29)

and hence zk+1 − zk = (z̃k+1 − zk)[Sk] and

xk+1 = yk + θkp
−1 · (z̃k+1 − zk)[Sk]. (30)

Note also that from the definition of yk in ALPHA, we have:

θk(yk − zk) = (1− θk)(xk − yk). (31)

43 / 108

Analysis of ALPHA: First Lemma

Lemma 10 ([14])
For any sampling Ŝ and any x , a ∈ RN and w ∈ Rn

++, the following
identity holds:

‖x‖2
w − E

[
‖x + a[Ŝ]‖

2
w

]
= ‖x‖2

w•p − ‖x + a‖2
w•p.

Proof.
It is sufficient to notice that

E
[
‖x + a[Ŝ]‖

2
w

]
(18)
= E

∑
i /∈Ŝ

wi‖x (i)‖2
(i) +

∑
i∈Ŝ

wi‖x (i) + a(i)‖2
(i)


=

n∑
i=1

[
(1− pi)wi‖x (i)‖2

(i) + piwi‖x (i) + a(i)‖2
(i)

]
.

44 / 108

Analysis of ALPHA: Second Lemma

Lemma 11 ([14])
Let Ŝ be an arbitrary proper sampling and v ∈ Rn

++ be such that

(f , Ŝ) ∼ ESO(v).

Let {θk}k≥0 be an arbitrary sequence of positive numbers in (0, 1] and fix
y ∈ RN . Then for the sequence of iterates produced by ALPHA and all
k ≥ 0, the following recursion holds:

Ek

[
f (xk+1) +

θ2
k

2
‖zk+1 − y‖2

v•p−2

]
≤ (32)[

f (xk) +
θ2
k

2
‖zk − y‖2

v•p−2

]
− θk(f (xk)− f (y)) .

45 / 108

Proof of Theorem 8
If θ0 ∈ (0, 1], the sequence {θk}k≥0 has the following properties (see [1]):

0 < θk+1 ≤ θk ≤
2

k + 2/θ0
≤ 1, (33)

1− θk+1

θ2
k+1

=
1

θ2
k

. (34)

After dividing both sides of (32) by θ2
k , using (34) and taking

expectations, we obtain:

1− θk+1

θ2
k+1

φk+1 + rk+1 ≤
1− θk
θ2
k

φk + rk ≤
1− θ0

θ2
0

φ0 + r0, (35)

where φk
def
= E[f (xk)]− f (y) and rk

def
= 1

2 E[‖zk − y‖2
v•p−2]. Finally,

φk
(34)
=

(1−θk)θ2
k−1

θ2
k

φk ≤
(1−θk)θ2

k−1

θ2
k

φk + θ2
k−1rk

(35)

≤ (1−θ0)θ2
k−1

θ2
0

φ0 + θ2
k−1r0

=
θ2
k−1

θ2
0

(
(1− θ0)φ0 + θ2

0r0
)

=
θ2
k−1

θ2
0
C

(33)

≤ 4C
((k−1)θ0+2)2 .

Note that in the last inequality we used the assumption that C ≥ 0.
46 / 108

Proof of Theorem 9
Using the fact that θk = θ0, for all k and taking expectation on both
sides of (32), we obtain the recursion

φk+1 + θ2
0rk+1 ≤ (1− θ0)φk + θ2

0rk , k ≥ 0.

Combining these inequalities, we get

(1 + θ0(k − 1)) min
l=1,...,k

φl ≤ φk + θ0

k−1∑
l=1

φl ≤ (1− θ0)φ0 + θ2
0r0. (36)

Let αk = 1 + (k − 1)θ0. By convexity,

f (x̂k) = f

(
xk +

∑k−1
l=1 θ0xl
αk

)
≤

f (xk) +
∑k−1

l=1 θ0f (xl)

αk
.

Finally, subtracting f (y) from both sides and taking expectations, we
obtain

E[f (x̂k)]− f (y) ≤
φk +

∑k−1
l=1 θ0φl
αk

(36)

≤ (1− θ0)φ0 + θ2
0r0

αk
.

47 / 108

Proof of Lemma 11 I
Based on how zk is updated in ALPHA, we can write

a
def
= z̃k+1 − zk = −θ−1

k (v−1 • p) · B−1∇f (yk), (37)

or equivalently, −∇f (yk) = θk(v • p−1) • Ba. Using this notation, the
update of vector x in ALPHA can be written as

xk+1 = yk + θkp
−1 · a[Sk] = yk + (θkp

−1 • a)[Sk]. (38)

Letting b = z̃k+1 − y and t = θ2
k(v • p−1), we apply the ESO assumption

and rearrange the result:

Ek [f (xk+1)]
(8)+(38)

≤ f (yk) +
〈
∇f (yk), θkp

−1 · a
〉
p

+
1

2
‖θkp−1 · a‖2

v•p

(20)+(18)+(37)
= f (yk)− 1

2
‖a‖2

t

(21)
= f (yk)− 1

2
‖b‖2

t +
1

2
‖b − a‖2

t + 〈Ba, b − a〉t .(39)

48 / 108

Proof of Lemma 11 II

Note that ‖b‖2
t = θ2

k‖z̃k+1 − y‖2
v•p−1 , ‖b − a‖2

t = θ2
k‖zk − y‖2

v•p−1 and

〈Ba, b − a〉t = 〈−Ba, a− b〉t = 〈θ−1
k (v−1 • p) · ∇f (yk), y − zk〉t

= θk〈∇f (yk), y − zk〉
(31)
= θk〈∇f (yk), y − yk〉+ (1− θk)〈∇f (yk), xk − yk〉
≤ θk(f (y)− f (yk)) + (1− θk)(f (xk)− f (yk)).

Substituting these expressions to (39), we obtain the recursion:

Ek [f (xk+1)] ≤ θk f (y)+(1−θk)f (xk)+
θ2
k

2
‖zk−y‖2

v•p−1−
θ2
k

2
‖z̃k+1−y‖2

v•p−1 .

(40)
It now only remains to apply Lemma 10 to the last two terms in (40),
with x ← zk − y , w ← v • p−2 and Ŝ ← Sk , and rearrange the resulting
inequality.

49 / 108

Exercises

Exercise 10
Prove (33).

Exercise 11
Prove (34).

Exercise 12 (*)
Prove a version of Theorem 9 where the left hand side is E[f (xk)]− f (y).

50 / 108

Part 4
Samplings

51 / 108

Samplings: Definition

Recall:

Definition 12 (Sampling)
Sampling is a random set-valued mapping Ŝ with values in 2[n], the
collection of subsets of [n] = {1, 2, . . . , n}.

52 / 108

Sum Over a Random Index Set

Theorem 13 (Sum over a random index set)
Let ∅ 6= J, J1, J2 ⊂ [n] and Ŝ be any sampling. If θi , i ∈ [n], and θij , for
(i , j) ∈ [n]× [n] are real constants, then1

E

 ∑
i∈J∩Ŝ

θi

 =
∑
i∈J

piθi ,

E

 ∑
i∈J∩Ŝ

θi | |J ∩ Ŝ | = k

 =
∑
i∈J

P(i ∈ Ŝ | |J ∩ Ŝ | = k)θi , (41)

E

 ∑
i∈J1∩Ŝ

∑
j∈J2∩Ŝ

θij

 =
∑
i∈J1

∑
j∈J2

pijθij . (42)

1Sum over an empty index set will, for convenience, be defined to be zero.
53 / 108

Proof of Theorem 13

We prove the first statement, proof of the remaining statements is
essentially identical:

E

 ∑
i∈J∩Ŝ

θi

 (4)
=
∑
S⊂[n]

(∑
i∈J∩S

θi

)
P(Ŝ = S)

=
∑
i∈J

∑
S:i∈S

θiP(Ŝ = S)

=
∑
i∈J

θi
∑
S:i∈S

P(Ŝ = S)

=
∑
i∈J

piθi .

54 / 108

Consequences of Theorem 13

Corollary 14 ([5])
Let ∅ 6= J ⊂ [n] and Ŝ be an arbitrary sampling. Further, let a, h ∈ RN ,
w ∈ Rn

+ and let g be a block separable function, i.e., g(x) =
∑

i gi (x
(i)).

Then

E
[
|J ∩ Ŝ |

]
=

∑
i∈J

pi , (43)

E
[
|J ∩ Ŝ |2

]
=

∑
i∈J

∑
j∈J

pij , (44)

E
[
〈a, h[Ŝ]〉w

]
= 〈a, h〉p•w , (45)

E
[
‖h[Ŝ]‖

2
w

]
= ‖h‖2

p•w , (46)

E
[
g(x + h[Ŝ])

]
=

n∑
i=1

[
pigi (x

(i) + h(i)) + (1− pi)gi (x
(i))
]
. (47)

Moreover, the matrix P
def
= (pij) is positive semidefinite.

55 / 108

Proof of Corollary 14
All 5 identities follow by applying Lemma 13 and observing that:

I |J ∩ Ŝ | =
∑

i∈J∩Ŝ 1

I |J ∩ Ŝ |2 = (
∑

i∈J∩Ŝ 1)2 =
∑

i∈J∩Ŝ
∑

j∈J∩Ŝ 1

I 〈a, h[Ŝ]〉w =
∑

i∈Ŝ wi 〈a(i), h(i)〉
I ‖h[Ŝ]‖2

w =
∑

i∈Ŝ wi‖h(i)‖2
(i) and

I

g(x + h[Ŝ]) =
∑
i∈Ŝ

gi (x
(i) + h(i)) +

∑
i /∈Ŝ

gi (x
(i))

=
∑
i∈Ŝ

gi (x
(i) + h(i)) +

n∑
i=1

gi (x
(i))−

∑
i∈Ŝ

gi (x
(i)),

Finally, for any θ = (θ1, . . . , θn)T ∈ Rn,

θTPθ =
∑n

i=1

∑n
j=1 pijθiθj

(42)
= E

[(∑
i∈Ŝ θi

)2
]
≥ 0.

Remark: The above results hold for arbitrary samplings. Let us specialize
them, in order of decreasing generality, to uniform, doubly uniform and
nice samplings.

56 / 108

Identities: uniform samplings

If Ŝ is uniform, then from (43) using J = [n] we get

pi =
E[|Ŝ |]
n

, i ∈ [n]. (48)

Plugging (48) into (43), (45), (46) and (47) yields

E
[
|J ∩ Ŝ |

]
=
|J|
n

E[|Ŝ |], (49)

E
[
〈a, h[Ŝ]〉w

]
=

E
[
|Ŝ |
]

n
〈a, h〉w , (50)

E
[
‖h[Ŝ]‖

2
w

]
=

E
[
|Ŝ |
]

n
‖h‖2

w , (51)

E
[
g(x + h[Ŝ])

]
=

E[|Ŝ |]
n

g(x + h) +

(
1− E[|Ŝ |]

n

)
g(x). (52)

57 / 108

Identities: doubly uniform samplings

Consider the case n > 1; the case n = 1 is trivial. For doubly uniform Ŝ ,
pij is constant for i 6= j :

pij =
E[|Ŝ |2 − |Ŝ |]
n(n − 1)

. (53)

Indeed, this follows from

pij =
n∑

k=1

P({i , j} ⊆ Ŝ | |Ŝ | = k)P(|Ŝ | = k) =
n∑

k=1

k(k − 1)

n(n − 1)
P(|Ŝ | = k).

Substituting (53) and (48) into (44) then gives

E[|J ∩ Ŝ |2] = (|J|2 − |J|) E[|Ŝ |2 − |Ŝ |]
nmax{1, n − 1}

+ |J| |Ŝ |
n
. (54)

58 / 108

Identities: τ -nice sampling

Finally, if Ŝ is τ -nice (and τ 6= 0), then E[|Ŝ |] = τ and E[|Ŝ |2] = τ 2,
which used in (54) gives

E[|J ∩ Ŝ |2] =
|J|τ
n

(
1 +

(|J| − 1)(τ − 1)

max{1, n − 1}

)
. (55)

Moreover, assume that P(|J ∩ Ŝ | = k) 6= 0 (this happens precisely when
0 ≤ k ≤ |J| and k ≤ τ ≤ n − |J|+ k). Then for all i ∈ J,

P(i ∈ Ŝ | |J ∩ Ŝ | = k) =

(|J|−1
k−1

)(
n−|J|
τ−k

)(|J|
k

)(
n−|J|
τ−k

) =
k

|J|
.

Substituting this into (41) yields

E

 ∑
i∈J∩Ŝ

θi | |J ∩ Ŝ | = k

 =
k

|J|
∑
i∈J

θi . (56)

59 / 108

Elementary Samplings, Intersection and Restriction

Definition 15 (Elementary samplings)
Elementary sampling associated with J ⊆ [n] is sampling ÊJ for which

P(ÊJ = J) = 1.

Definition 16 (Intersection of samplings)
For two samplings Ŝ1 and Ŝ2 we define the intersection Ŝ

def
= Ŝ1 ∩ Ŝ2 as

the sampling for which:

P(Ŝ = S) = P(Ŝ1 ∩ Ŝ2 = S), S ⊆ [n].

Definition 17 (Restriction of a sampling to a subset)
Let Ŝ be a sampling and J ⊆ [n]. By restriction of Ŝ to J we mean the
sampling

ÊJ ∩ Ŝ .

60 / 108

Probability matrices associated with samplings - Part I

Definition 18 (Probability matrix; [5])
With arbitrary sampling Ŝ we associate an n-by-n matrix P = P(Ŝ) with
entries

[P(Ŝ)]ij = P(i ∈ Ŝ , j ∈ Ŝ).

Lemma 19 (Intersection of independent samplings; [15])
Let Ŝ1, Ŝ2 be independent samplings. Then

P(Ŝ1 ∩ Ŝ2) = P(Ŝ1) • P(Ŝ2).

That is, the probability matrix of an intersection of independent
samplings is the Hadamard product of their probability matrices.

Proof.
[P(Ŝ1 ∩ Ŝ2)]ij = P({i , j} ∈ Ŝ1 ∩ Ŝ2) = P({i , j} ∈ Ŝ1)P({i , j} ∈ Ŝ2) =

[P(Ŝ1)]ij [P(Ŝ2)]ij .

61 / 108

Probability matrices associated with samplings - Part II
Example 20 (Probability Matrix of an Elementary Sampling)
Note that the probability matrix of the elementary sampling ÊJ is the
matrix

P(ÊJ)
def
= eJe

T
J , (57)

where eJ we denote the binary vector in Rn with ones in places
corresponding to set J. That is,

[P(ÊJ)]ij =

{
1 i , j ∈ J,

0 otherwise.

Hence, for arbitrary sampling Ŝ , the probability matrix of J ∩ Ŝ is the
submatrix of P(Ŝ) corresponding to the rows and columns indexed by J:

[P(J ∩ Ŝ)]ij = [P(ÊJ) • P(Ŝ)]ij =

{
[P(Ŝ)]ij , i , j ∈ J,

0, otherwise.
(58)

62 / 108

Probability matrices associated with samplings - Part III
Lemma 21 (Decomposition of a Probability Matrix; [15])
Let Ŝ be any sampling. Then

P(Ŝ) =
∑
S⊆[n]

P(Ŝ = S)P(ÊS). (59)

That is, the probability matrix of arbitrary sampling is a convex
combination of elementary probability matrices.

Proof.
Fix any i , j ∈ [n]. Since (P(ÊS))ij = 1 iff {i , j} ⊆ S , from definition we
have

(P(Ŝ))ij =
∑

S:{i,j}⊆S P(Ŝ = S)

=
∑

S:{i,j}⊆S P(Ŝ = S)(P(ÊS))ij

=
(∑

S:{i,j}⊆S P(Ŝ = S)P(ÊS)
)
ij
.

63 / 108

Sampling Identity for a Quadratic

Lemma 22 ([15])
Let G be any real n × n matrix and Ŝ an arbitrary sampling. Then for
any h ∈ Rn we have

E
[
hT

[Ŝ]
Gh[Ŝ]

]
= hT

(
P(Ŝ) • G

)
h, (60)

where • denotes the Hadamard (elementwise) product of matrices.

Proof.

E
[
hT

[Ŝ]
Gh[Ŝ]

]
(17)
= E

∑
i∈Ŝ

∑
j∈Ŝ

Gijh
(i)h(j)


(42)
=

n∑
i=1

n∑
j=1

pijGijh
(i)h(j) = hT

(
P(Ŝ) • G

)
h.

64 / 108

Distributed sampling

The following sampling is useful in the design of a distributed
coordinate descent method.

Definition 23 (Distributed τ -nice sampling; [10, 13])
Let P1, . . . ,Pc be a partition of {1, 2, . . . , n} such that |Pl | = s for all l .
That is, sc = n. Now let Ŝ1, . . . , Ŝc be independent τ -nice samplings
from P1, . . . ,Pc , respectively. Then the sampling

Ŝ
def
= ∪cl=1Ŝl , (61)

is called distributed τ -nice sampling.

Idea: Blocks in Pl , and all associated data, will be handled/stored by
computer/node l only. Node l picks blocks in Ŝl , computes the updates
fro local information, and applies the updates to locally stored x (i) for
i ∈ Pl .

65 / 108

Probability Matrix of Distributed τ -nice Sampling

Consider the distributed τ -nice sampling and define:

I E = P(Ê[n]): the n × n matrix of all ones

I I be the n × n identity matrix

I B =
∑c

l=1 P(ÊPl
) : the 0-1 matrix with Bij = 1 iff i , j belong to the

same partition

Lemma 24 ([10, 15])
Consider the distributed τ -nice sampling Ŝ. Its probability matrix can be
written as

P(Ŝ) =
τ

s
[α1I + α2E + α3(E − B)] , (62)

where

α1 = 1− τ − 1

ss1
, α2 =

τ − 1

s1
, α3 =

τ

s
− τ − 1

s1
,

and s1 = max{1, s − 1}.

66 / 108

Proof of Lemma 24

Let P = P(Ŝ). It is easy to see that

I Pij = τ
s

def
= β3 if i = j ,

I Pij = τ(τ−1)
ss1

def
= β2 if i 6= j and i , j belong to the same partition,

I Pij = τ 2

s2

def
= β3 if i 6= j belong to different partitions.

So, we can write

P = β1I + β2(B − I) + β3(E − B)

= (β1 − β2)I + β2E + (β3 − β2)(E − B).

67 / 108

Exercises

Exercise 13
Find an expression for the probability matrix of

I the τ -nice sampling,

I arbitrary doubly uniform sampling.

Exercise 14
Let Ŝ be any sampling. Show that

I λmax(P) ≤ E[|Ŝ |] and that the bound is tight,

I P � ppT .

68 / 108

Part 5
Functions

69 / 108

Introduction

I In this part we describe three models for f .

I These models can be thought of as function classes described by a
list of properties.

I However, a single function may belong to more function classes.

In big data setting, some information is computationally difficult to
extract from data.

Consider f (x) = 1
2‖Ax − b‖2.

I It is difficult to compute the largest eigenvalue of ATA if A is large
(this is the Lipschitz constant of ∇f with respect to the standard
Euclidean norm)

I It is easier to compute the squared norm of each column (these
correspond to coordinate-wise Lipschitz constants).

Important point: The models differ in the amount of information they
reveal about f .

70 / 108

Model: Quadratic Bound

Model 1 ([10, 13, 15])
We assume that

1. Structure and Smoothness: f : RN → R is differentiable and for
all x , h ∈ RN satisfies

f (x + h) ≤ f (x) + (∇f (x))Th + 1
2h

TATAh, (63)

where A ∈ Rm×N .

2. Sparsity: Row j of A depends on blocks i ∈ Cj only. Formally,

Cj
def
= {i : Aji 6= 0},

where Aji
def
= eTj AUi ∈ R1×Ni . Let ωj

def
= |Cj |.

3. Convexity: f is convex.

Remark: Information about f is contained in the matrix A.

71 / 108

Examples

Example 25
In machine learning (ML), functions f of the following form are common:

f (x) =
∑m

j=1 fj(x) =
∑m

j=1 `(x ; aj , y
j),

where N is the number of features, m number of examples, aj ∈ RN

corresponds to jth example and y j is a label associated with jth example.

Here are some convex loss functions ` often used in ML for which the
total loss f satisfies (63):

Loss function ` fj (x) (63) satisfied for A given by

square loss (SL) 1
2

(y j − aTj x)2 Aj : = aTj

logistic loss (LL) log(1 + exp(−y jaTj x)) Aj : = 1
2
aTj

square hinge loss (HL) 1
2

max{0, 1− y jaTj x}
2 Aj : = aTj

Interpretation of ωj (point 2 in Model 1) : # features in example j

72 / 108

Block gradients

Definition 26 (Block Gradients)
The ith block gradient of f : RN → R at x is defined to be the ith
block of the gradient of f at x :

∇i f (x)
def
= (∇f (x))(i) = UT

i ∇f (x) ∈ RNi . (64)

In other words, ∇i f (x) is the vector of partial derivatives with respect to
coordinates belonging to block i .

73 / 108

Model: Classical

Model 2 ([2, 5, 9])
We assume that

1. Structure: Function f : RN → R is of the form

f (x) =
m∑
j=1

fj(x).

2. Sparsity: fj depends on x via blocks i ∈ Cj only.

3. Convexity: Functions {fj} are convex.

4. Smoothness: Function f has block-Lipschitz gradient with
constants L1, . . . , Ln > 0. That is, for all i = 1, 2, . . . , n,

‖∇i f (x + Ui t)−∇i f (x)‖∗(i) ≤ Li‖t‖(i), x ∈ RN , t ∈ RNi . (65)

Remark: Information about f is contained in the constants L1, . . . , Ln.

74 / 108

Examples

Example 27 (Least squares)
Consider the quadratic function f (x) = 1

2
‖Ax − b‖2.

(i) Consider the block setup with Ni = 1 (all blocks are of size 1) and Bi = 1 for all
i ∈ [n] (standard Eucl. norms for each block: ‖t‖(i) = |t|). Then Ui = ei and

‖∇i f (x + Ui t)−∇i f (x)‖∗(i) = |eTi AT (A(x + tei)− b)− eTi AT (Ax − b)|

= |eTi ATAei ||t| = ‖A:i‖2|t|,

whence Li = ‖A:i‖2.

(ii) Choose nontrivial block sizes (Ni > 1) and define data-driven block norms with
Bi = AT

i Ai , where Ai = AUi , assuming that Bi � 0. Then

‖∇i f (x + Ui t)−∇i f (x)‖∗(i) = ‖UT
i AT (A(x + Ui t)− b)− UT

i AT (Ax − b)‖∗(i)
= ‖UT

i ATAUi t‖∗(i)
(19)
= 〈(AiA

T
i)−1UT

i ATAUi t,U
T
i ATAUi t〉1/2

= 〈Bi t, t〉1/2 (18)
= ‖t‖(i),

whence Li = 1.

75 / 108

Model: Newest

Model 3 ([12])
We assume that

1. Structure: f : RN → R is of the form

f (x) =
m∑
j=1

fj(x). (66)

2. Sparsity: fj depends on x via blocks i ∈ Cj only. Let ωj = |Cj |.
(Note that i /∈ Cj ⇒ Lji = 0)

3. Convexity: Functions {fj} are convex.

4. Smoothness: Functions {fj} have block-Lipschitz gradient with
constants Lji ≥ 0. That is, for all j = 1, 2, . . . ,m and i = 1, 2, . . . , n,

‖∇i fj(x + Ui t)−∇i fj(x)‖∗(i) ≤ Lji‖t‖(i), x ∈ RN , t ∈ RNi . (67)

Remark: Information about f is contained in the constants {Lji}

76 / 108

Computation of Lji

We now give a formula for the constants Lji in the case when fj arises as
a composition of a scalar function φj whose derivative has a known
Lipschitz constant (this is often easy to compute), and a linear functional.

Proposition 2 ([12])
Let fj(x) = φj(e

T
j Ax), where φj : R→ R is a function with Lφj -Lipschitz

derivative:

|φj(s)− φj(s ′)| ≤ Lφj |s − s ′|, s, s ′ ∈ R. (68)

Then fj has a block Lipshitz gradient (i.e., satisfies (67)) with constants

Lji = Lφj

(
‖AT

ji ‖∗(i)
)2

, i = 1, 2, . . . , n, (69)

where
Aji = eTj AUi (70)

(i.e., Aji is the ith block of j-th row of A).

77 / 108

Proof of Proposition 2

For any x ∈ RN , t ∈ RNi and i we have

‖∇i fj(x + Ui t)−∇i fj(x)‖∗(i)
(64)
= ‖UT

i (eTj A)Tφ′j(e
T
j A(x + Ui t))− UT

i (eTj A)Tφ′j(e
T
j Ax)‖∗(i)

= ‖AT
ji φ
′
j(e

T
j A(x + Ui t))− AT

ji φ
′
j(e

T
j Ax)‖∗(i)

≤ ‖AT
ji ‖∗(i)|φ

′
j(e

T
j A(x + Ui t))− φ′j(eTj Ax)|

(68)

≤ ‖AT
ji ‖∗(i)Lφj |Aji t| ≤ ‖AT

ji ‖∗(i)Lφj‖AT
ji ‖∗(i)‖t‖(i),

where the last step follows by applying the Cauchy-Schwartz inequality.

78 / 108

Examples

Example 28 (Least squares)
Consider the quadratic function

f (x) = 1
2
‖Ax − b‖2 = 1

2

∑m
j=1(eTj Ax − bj)

2.

Then fj (x) = φj (e
T
j Ax), where φj (s) = 1

2
(s − bj)

2 and Lφj
= 1.

(i) Consider the block setup with Ni = 1 (all blocks are of size 1) and Bi = 1 for all
i ∈ [n] (standard Euclidean norms for each block). Then by Proposition 2,

Lji
(69)
= Lφj

(‖AT
ji ‖
∗
(i))2 = A2

ji .

(ii) Choose nontrivial block sizes (Ni > 1) and define data-driven block norms with
Bi = AT

i Ai , where Ai = AUi , assuming that the matrices AT
i Ai are positive

definite. Then by Proposition 2,

Lji
(69)
= Lφj

(‖AT
ji ‖
∗
(i))2 (19)

= 〈(AT
i Ai)

−1AT
ji ,A

T
ji 〉

(70)
= eTj Ai (A

T
i Ai)

−1AT
i ej .

79 / 108

Part 6
Expected Separable Overapproximation

80 / 108

Introduction

In this part we shall look at the three models of f (Part 3) and various
types of samplings Ŝ (Part 4) and compute parameters v = (v1, . . . , vn)
such

(f , Ŝ) ∼ ESO(v).

These parameters are important since:

I They are stepsize parameters needed in the algorithm (in NSync,
but also in other randomized block coordinate descent methods).

I Their size as a function of τ = E[|Ŝ |] describes achievable
parallelization speedup.

I By computing v we get one step closer to ultimate goal of designing
sampling Ŝ optimizing the complexity bound.

81 / 108

ESO(f ∼ Model 1, Ŝ ∼ arbitrary)

Theorem 29 ([15])
Let f satisfy assumptions in Model 1, assume all blocks are of size 1
(Ni = 1) and Ŝ be any sampling. Then for all x , h ∈ RN ,

E
[
f (x + h[Ŝ])

]
≤ f (x) + 〈∇f (x), h〉p +

1

2
‖h‖2

p•v , (71)

where v is any vector such that

P • ATA � Diag(p • v), (72)

where P = P(Ŝ) is the probability matrix associated with Ŝ.

Remark: The Hadamard product of two PSD matrices is PSD (P is PSD
by Corollary 14).

82 / 108

Proof of Theorem 29

We have

E
[
f (x + h[Ŝ])

] (63)

≤ E
[
f (x) + 〈∇f (x), h[Ŝ]〉+ 1

2 〈A
TAh[Ŝ], h[Ŝ]〉

]
(45)
= f (x) + 〈∇f (x), h〉p + 1

2 E
[
hT

[Ŝ]
ATAh[Ŝ]

]
(∗)
= f (x) + 〈∇f (x), h〉p + 1

2h
T
(
P • ATA

)
h

≤ f (x) + 〈∇f (x), h〉p + 1
2 h

T Diag(p • v)h︸ ︷︷ ︸
=‖h‖2

p•v

,

where (*) comes from Lemma 22.

83 / 108

Ways of satisfying (72)

Let us fix a sampling Ŝ (and hence P) and data A. We can find v for
which P • ATA � Diag(p • v) in several ways:

1. vi = λ1‖A:i‖2 and

λ1 = max
θ∈Rn
{θT (P • ATA)θ : θT Diag(P • ATA)θ ≤ 1}.

2. vi = λmax (P•ATA)
pi

.

3. vi = λmax(ATA)
(maxj pj)

pi
(using Lemma 30 with X = P)

4. vi = λmax (P)
pi

maxi ‖A:i‖2 (using Lemma 30 with X = ATA)

Lemma 30
For any two PSD matrices X ,Y with nonnegative elements,

λmax(X • Y) ≤ λmax(X) max
j

Yjj .

84 / 108

Eigenvalues of Probability Matrices

Definition 31 (Eigenvalues)
For arbitrary sampling Ŝ we define

λ(Ŝ)
def
= max

θ∈Rn
{θTP(Ŝ)θ : θT Diag(P(Ŝ))θ ≤ 1}. (73)

and
λ′(Ŝ)

def
= max

θ∈Rn
{θTP(Ŝ)θ : θT θ ≤ 1}. (74)

Example 32 (Elementary Sampling)
Fix S ⊆ [n] and consider the elementary sampling ÊS . Note that

λ(ÊS) = λmax(P(ÊS)) = λmax(eSe
T
S) = ‖eS‖2 = |S |. (75)

Since J ∩ ÊS = ÊJ∩S , we get

λ(J ∩ ÊS) = λ(ÊJ∩S)
(75)
= |J ∩ S |. (76)

85 / 108

Insightful and Easily Computable Bound

Issues with Theorem 29:

I It does not provide insightful nor easily computable expressions for
vi (which are needed to run the algorithm).

I It does not answer the following inverse problem: given data matrix
A and/or its sparsity pattern {Cj}, design a “good” sampling.

The following two results go a good way to overcoming these issues.

Theorem 33 (Useful ESO; [15])
Let the assumptions of Theorem 29 be satisfied. Then (72) holds (i.e.,
(f , Ŝ) ∼ ESO(v)) with v given by:

vi =
m∑
j=1

λ(Cj ∩ Ŝ)A2
ji , i = 1, 2, . . . , n. (77)

86 / 108

Proof of Theorem 33
Note that it follows from (42) that for any vector θ ∈ Rn and any j the following
identity holds:

E

(∑
i∈Cj∩Ŝ

θi

)2

 =
n∑

i=1

[P(Cj ∩ Ŝ)]ijθiθj = θTP(Cj ∩ Ŝ)θ. (78)

Fix h ∈ Rn. Let zj = (z
(1)
j , . . . , z

(n)
j)T ∈ Rn be defined as follows: z

(i)
j = h(i)Aji . We

then have

E
[
hT

[Ŝ]
ATAh[Ŝ]

]
=

m∑
j=1

E
[
hT

[Ŝ]
AT
j : Aj :h[Ŝ]

]
=

m∑
j=1

E

(∑
i∈Cj∩Ŝ

h(i)Aji

)2


(78)
=

m∑
j=1

zTj P(Cj ∩ Ŝ)zj
(73)

≤
m∑
j=1

λ(Cj ∩ Ŝ)
(
zTj Diag(P(Cj ∩ Ŝ))zj

)
(58)
=

m∑
j=1

λ(Cj ∩ Ŝ)
∑
i∈Cj

pi (h
(i)Aji)

2 =
m∑
j=1

λ(Cj ∩ Ŝ)
n∑

i=1

pi (h
(i)Aji)

2

=
n∑

i=1

pi (h
(i))2

m∑
j=1

λ(Cj ∩ Ŝ)A2
ji =

n∑
i=1

pi (h
(i))2vi .

87 / 108

Useful bounds on λ(Ŝ)
Theorem 34 ([15])
Let Ŝ be an arbitrary sampling.

1. Lower bound. If Ŝ is not nill, then E[|Ŝ|2]

E[|Ŝ|] ≤ λ(Ŝ).

2. Upper bound. If |Ŝ | ≤ τ with probability 1, then λ(Ŝ) ≤ τ.
3. Identity. If |Ŝ | = τ with probability 1, then λ(Ŝ) = τ .

Let us apply the 2nd part of the above theorem to the sampling J ∩ Ŝ :

Corollary 35
Let Ŝ be an arbitrary sampling, J ⊆ [n] and c a constant such that
|J ∩ Ŝ | ≤ c with probability 1. Then

λ(J ∩ Ŝ) ≤ c .

In particular, if |Ŝ | ≤ τ with probability 1, then |J ∩ Ŝ | ≤ min{|J|, τ}
with probability 1, and hence λ(J ∩ Ŝ) ≤ min{|J|, τ}.

Remark: The above corollary is useful as we can apply it in connection
with Theorem 33 with J = Cj for j = 1, 2, . . . ,m.

88 / 108

Computing λ(J ∩ Ŝ): Product Sampling

Example 36 (Product Sampling)
Assume that the sets {Cj} in Model 1 form a partition of [n]. The

consider the sampling Ŝ defined as follows:

P(Ŝ = S) =

{
(
∏m

j=1 |Cj |)−1, S ∈ C1 × C2 × · · · × Cm,

0, otherwise.

Note that |Cj ∩ Ŝ | = 1 with probability 1, and hence by Corollary 35,

λ(Cj ∩ Ŝ) ≤ 1.

On the other hand, by the first part of Theorem 34, λ(Cj ∩ Ŝ) ≥ 1, and
hence this sampling achieves the smallest possible value of the “λ
parameters” in (77) (which is “good” as other things equal, ESO with
small {vi} is better). Let us remark that E[|Ŝ |] = m.

89 / 108

Computing λ(J ∩ Ŝ): τ -Nice Sampling

Exercise 15 (τ -Nice Sampling)
Show by direct computation that if Ŝ is a τ -nice sampling, then the lower
bound in part 1 of Theorem 34 is attained for Cj ∩ Ŝ for all j :

λ(Cj ∩ Ŝ) =
E[|Cj ∩ Ŝ |2]

E[|Cj ∩ Ŝ |]
(55)+(49)

= 1 +
(ωj − 1)(τ − 1)

max{n − 1, 1}
, (79)

where ωj = |Cj |.

90 / 108

Computing λ(J ∩ Ŝ): Distributed τ -Nice Sampling - Part I

Exercise 16 (Distributed τ -Nice Sampling; [15])
Show that if Ŝ is the distributed τ -nice sampling, then

λ(Cj ∩ Ŝ) ≤ 1 +
(τ − 1)(ωj − 1)

s1︸ ︷︷ ︸
λ1,j

+

(
τ

s
− τ − 1

s1

)
ω′j − 1

ω′j
ωj︸ ︷︷ ︸

λ2,j

, (80)

where s1 = max{1, s − 1}, ωj = |Cj |, and ω′j is the number of partitions
“active” at row j of A:

ω′j
def
= |{l : Aji 6= 0 for some i ∈ Pl}|.

Exercise 17
Show that if the number of partitions is 1 (c = 1), bound (80) for the
distributed τ -nice sampling specializes to the bound (79) for the τ -nice
sampling.

91 / 108

Computing λ(J ∩ Ŝ): Distributed τ -Nice Sampling - Part II

Lemma 37 ([15])
Consider the distributed τ -nice sampling. Suppose τ ≥ 2. For any
1 ≤ η ≤ s the following holds:(

τ

s
− τ − 1

s − 1

)
η ≤ 1

τ − 1

(
1 +

(τ − 1)(η − 1)

s − 1

)
.

Note that Lemma 37 implies that

λ1,j + λ2,j ≤
(

1 +
1

τ − 1

)
λ1,j . (81)

92 / 108

Distributed NSync: Cost of Distribution
Assume f is 1-strongly convex, and consider running NSync with the

distributed τ -nice sampling. Then pi = E[Ŝ]
n = τc

sc = τ
s and hence the

leading term in the complexity bound is

Λ = max
i

vi
pi

(77)
= max

i

s
∑m

j=1 λ(Cj ∩ Ŝ)

τ

(81)

≤ max
i

s
∑m

j=1(λ1,j + λ2,j)A
2
ji

τ

def
= Λ′.

I Notice that the effect of partitioning on complexity comes only
through λ2,j .

I Define a new quantity that does not depend on partitioning:

Λ′′ = max
i

s
∑m

j=1 λ1,jA
2
ji

τ

and notice that (81) implies that

Λ′′ ≤ Λ′ ≤ (1 + 1
τ−1)Λ′′

This means that:

Theorem 38 (Cost of Distribution: compare with [10, 13])
If τ ≥ 2, the worst-case partitioning is at most (1 + 1

τ) times worse than
the optimal partitioning, in terms of the number of iterations of NSync.

93 / 108

Proof of Theorem 34 - Part I

Point 1. For simplicity of notation, put P = P(Ŝ). If we choose θ ∈ Rn

with θi = (Tr(P))−1/2 for all i , we get θTDPθ =
∑

i Piiθ
2
i = 1 and hence

λ(Ŝ)
(73)

≥ θTPθ
(78)
= E

[(∑
i∈Ŝ

θi

)2]
=

E
[(∑

i∈Ŝ 1
)2]

Tr(P)

(43)
=

E[|Ŝ |2]

E[|Ŝ |]
.

Point 2. Let us represent Ŝ as a convex combination of elementary
samplings: Ŝ =

∑
S⊆[n] qS ÊS , where qS = P(Ŝ = S). Note that then we

also have

P(Ŝ) =
∑
S⊆[n]

qSP(ÊS)
(73)
=
∑
S⊆[n]

qSeSe
T
S . (82)

94 / 108

Proof of Theorem 34 - Part II
Since |Ŝ | ≤ τ with probability 1, we have |S | ≤ τ whenever qS > 0. For
any θ ∈ Rn we can now estimate:

θTP(Ŝ)θ
(82)
=

∑
S :qS>0

qS(eTS θ)2 ≤
∑

S:qS>0

qS‖eS‖2
∑
i∈S

θ2
i

(75)
=

∑
S:qS>0

qS |S |
∑
i∈S

θ2
i

≤ τ
∑

S:qS>0

qSθ
T Diag(eSe

T
S)θ

= τθT

 ∑
S:qS>0

qS Diag(eSe
T
S)

 θ

(82)
= τ

(
θT Diag(P(Ŝ))θ

)
.

We thus see that λ(Ŝ) ≤ τ .

95 / 108

Proof of Theorem 34 - Part III

Point 3. The result follows by combining the upper and lower bounds.
Alternatively, we can see this by inspecting the derivation in part 2.
Indeed, if |Ŝ | = τ with probability 1, then |S | = τ whenever qS > 0, and
hence the second inequality in point 2 above is an equality. By choosing
θi = α for any constant α, the first inequality turns into an equality (this
is because we then have equality in the Cauchy-Schwartz inequality
eTS θ ≤ ‖eS‖2

∑
i∈S θ

2
i for all S).

96 / 108

ESO(f ∼ Model 3, Ŝ ∼ τ -nice)

Theorem 39 ([12])
Let f satisfy assumptions in Model 3 and Ŝ be the τ -nice sampling.
Then for all x , h ∈ RN ,

E
[
f (x + h[Ŝ])

]
≤ f (x) +

τ

n

(
〈∇f (x), h〉+

1

2
‖h‖2

v

)
, (83)

where

vi
def
=

m∑
j=1

βjLji =
∑
j :i∈Cj

βjLji , i = 1, 2, . . . , n, (84)

βj
def
= 1 +

(ωj − 1)(τ − 1)

max{1, n − 1}
, j = 1, 2, . . . ,m.

That is, (f , Ŝ) ∼ ESO(v).

97 / 108

Proof of Theorem 39 - Part I

I We first claim that for all j ,

E
[
fj(x + h[Ŝ])

]
≤ fj(x) +

τ

n

(
〈∇fj(x), h〉+

βj
2
‖h‖2

Lj :

)
, (85)

where Lj : = (Lj1, . . . , Ljn) ∈ Rn. That is, (fj , Ŝ) ∼ ESO(βjLj :).
Equation (83) then follows by adding up the inequalities (85) for all
j . In the rest we prove the claim.

I A well known consequence of (67) is that for all x ∈ RN , t ∈ RNi ,

fj(x + Ui t) ≤ fj(x) + 〈∇i fj(x), t〉+
Lji
2
‖t‖2

(i). (86)

98 / 108

Proof of Theorem 39 - Part II
I We fix x and define

f̂j(h)
def
= fj(x + h)− fj(x)− 〈∇fj(x), h〉. (87)

Since

E
[
f̂j(h[Ŝ])

]
(87)
= E

[
fj(x + h[Ŝ])− fj(x)− 〈∇fj(x), h[Ŝ]〉

]
(50)
= E

[
fj(x + h[Ŝ])

]
− fj(x)− τ

n 〈∇fj(x), h〉,

it now only remains to show that

E
[
f̂j(h[Ŝ])

]
≤ τβj

2n ‖h‖
2
Lj :
. (88)

I We now adopt the convention that expectation conditional on an
event which happens with probability 0 is equal to 0. Let

ηj
def
= |Cj ∩ Ŝ |, and using this convention, we can write

E
[
f̂j(h[Ŝ])

]
=

n∑
k=0

P(ηj = k)E
[
f̂j(h[Ŝ]) | ηj = k

]
. (89)

99 / 108

Proof of Theorem 39 - Part III

I For any k ≥ 1 for which P(ηj = k) > 0, we now use use convexity of

f̂j to write

E
[
f̂j(h[Ŝ]) | ηj = k

]
= E

 f̂j
 1

k

∑
i∈Cj∩Ŝ

kUih
(i)

 | ηj = k


≤ E

 1
k

∑
i∈Cj∩Ŝ

f̂j
(
kUih

(i)
)
| ηj = k


(56)
= 1

ωj

∑
i∈Cj

f̂j
(
kUih

(i)
)

(86)+(87)

≤ 1
ωj

∑
i∈Cj

Lji

2 ‖kh
(i)‖2

(i) = k2

2ωj
‖h‖2

Lj :
. (90)

100 / 108

Proof of Theorem 39 - Part IV

I Finally,

E
[
f̂j(h[Ŝ])

] (89)+(90)

≤
∑
k

P(ηj = k) k2

2ωj
‖h‖2

Lj :

= 1
2ωj
‖h‖2

Lj :
E[|Cj ∩ Ŝ |2]

(55)
=

τβj

2n ‖h‖
2
Lj :
,

and hence (88) is proved.

101 / 108

DSO(f ∼ Model 3)

Corollary 40
Let f satisfy assumptions in Model 3 and Ŝ be a τ -nice sampling. Then
for all x , h ∈ RN we have

f (x + h) ≤ f (x) + 〈∇f (x), h〉+
ω̄L̄

2
‖h‖2

w , (91)

where

ω̄
def
=
∑
j

ωj

∑
i Lji∑

k,i Lki
, L̄

def
=

∑
ji Lji

n
, wi

def
=

n∑
j,i ωjLji

∑
j

ωjLji . (92)

Note that ω̄ is a data-weighted average of the values {ωj} and that∑
wi = n.

Proof.
This follows from Theorem 39 used with τ = n (notice that
ω̄L̄w = v).

102 / 108

ESO and Lipschitz Continuity I

We will now study the collection of functions φ̂x : RN → R for x ∈ RN

defined by

φ̂x(h)
def
= E

[
φ(x + h[Ŝ])

]
. (93)

Let us first establish some basic connections between φ and φ̂x .

Lemma 41 ([9])
Let Ŝ be any sampling and φ : RN → R any function and x ∈ RN . Then

(i) if φ is convex, so is φ̂x ,

(ii) φ̂x(0) = φ(x),

(iii) If Ŝ is proper and uniform, and φ : RN → R is continuously
differentiable, then

∇φ̂x(0) =
E[|Ŝ |]
n
∇φ(x).

103 / 108

Proof of Lemma 41

Fix x ∈ RN . Notice that

φ̂x(h) = E[φ(x + h[Ŝ])] =
∑
S⊆[n]

P(Ŝ = S)φ(x + USh),

where
US

def
=
∑
i∈S

UiU
T
i .

As φ̂x is a convex combination of convex functions, it is convex,
establishing (i). Property (ii) is trivial. Finally,

∇φ̂x (0) = E
[
∇ φ(x + h[Ŝ])

∣∣∣
h=0

]
= E

[
UŜ∇φ(x)

]
= E

[
UŜ

]
∇φ(x) =

E[|Ŝ |]
n
∇φ(x).

The last equality follows from the observation that UŜ is an N × N binary diagonal

matrix with ones in positions (v , v) for coordinates v ∈ {1, 2, . . . ,N} belonging to

blocks i ∈ Ŝ only, coupled with the fact that for uniform samplings, pi = E[|Ŝ |]/n.

104 / 108

ESO and Lipschitz Continuity II

We now establish a connection between ESO and a uniform bound in x
on the Lipschitz constants of the gradient “at the origin” of the functions
{φ̂x , x ∈ RN}.

Theorem 42
Let Ŝ be proper and uniform, and φ : RN → R be continuously
differentiable. Then the following statements are equivalent:

(i) (φ, Ŝ) ∼ ESO(v),

(ii) φ̂x(h) ≤ φ̂x(0) + 〈∇φ̂x(0), h〉+ 1
2

E[|Ŝ|]
n ‖h‖

2
v , x , h ∈ RN .

Proof.
We only need to substitute (93) and Lemma 41(ii-iii) into inequality (ii)
and compare the result with the definition of ESO (8).

105 / 108

References I

[1] Paul Tseng. On accelerated proximal gradient methods for
convex-concave optimization. Technical Report, 2008.

[2] Yurii Nesterov. Efficiency of coordinate descent methods on
huge-scale optimization problems. SIAM Journal on Optimization,
22(2):341-362, 2012

[3] Peter Richtárik and Martin Takáč. Iteration complexity of
randomized block-coordinate descent methods for minimizing a
composite function. Mathematical Programming, 144(2):1–38, 2014

[4] Peter Richtárik and Martin Takáč. Efficient serial and parallel
coordinate descent methods for huge-scale truss topology design.
Operations Research Proceedings 2011, pp. 27-32, 2012

[5] Peter Richtárik and Martin Takáč. Parallel coordinate descent
methods for big data optimization. Mathematical Programming,
2015

[6] Martin Takáč, Avleen Bijral, Peter Richtárik and Nathan Srebro.
Mini-batch primal and dual methods for SVMs. ICML, 2013

106 / 108

References II

[7] Rachael Tappenden, Peter Richtárik and Jacek Gondzio. Inexact
coordinate descent: complexity and preconditioning.
arXiv:1304.5530, 2013

[8] Rachael Tappenden, Peter Richtárik, Burak Büke. Separable
approximations and decomposition methods for the augmented
Lagrangian. to appear in Optimization Methods and Software
30(3):643–668, 2015

[9] Olivier Fercoq and Peter Richtárik. Smooth minimization of
nonsmooth functions with parallel coordinate descent methods.
arXiv:1309.5885, 2013

[10] Peter Richtárik and Martin Takáč. Distributed coordinate descent
method for learning with big data. arXiv:1310.2059, 10/2013

[11] Peter Richtárik and Martin Takáč. On optimal probabilities in
stochastic coordinate descent methods. Optimization Letters, 2015

[12] Olivier Fercoq and Peter Richtárik. Accelerated, parallel and
proximal coordinate descent. SIAM Journal on Optimization, 2015

107 / 108

References III

[13] Olivier Fercoq, Zheng Qu, Peter Richtárik, Martin Takáč. Fast
distributed coordinate descent for minimizing non-strongly convex
losses. IEEE International Workshop on Machine Learning for Signal
Processing, 2014

[14] Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary
sampling I: algorithms and complexity, arXiv:1412.8060, 2014

[15] Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary
sampling II: expected separable overapproximation, arXiv:1412.8063,
2014

108 / 108

	1. Randomized Gradient Methods for Strongly Convex Problems
	Minimizing a Strongly Convex Function
	Algorithm: NSync
	Samplings
	Assumptions
	Complexity of NSync
	Proof

	2. Blocks
	Decomposition
	Projection
	Norms

	3. Accelerated Randomized Gradient Methods for Weakly Convex Problems
	Minimizing a Strongly Convex Function
	Vectors: further notation
	Algorithm: ALPHA
	Complexity Result for Accelerated ALPHA
	Complexity Result for Non-Accelerated ALPHA
	Complexity Analysis

	4. Samplings
	Definition
	Sum Over a Random Index Set
	Consequences of the Basic Identity
	Identities for Uniform Samplings
	Identities for Doubly Uniform Samplings
	Sampling Identity for a Quadratic
	Distributed Sampling

	5. Functions
	Model 1
	Model 2
	Model 3

	6. ESO
	Model 1
	Model 3
	ESO and Lipschitz Continuity

