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Part 1

Randomized Gradient Methods
for Strongly Convex Problems



The Problem

In order to quickly illustrate the topics and notions that we will study in
more depth later, we first consider the following problem:

minimize  f(x) (1)
subject to  x = (xV), ... x(W) e R"

We will assume that f is:
» “smooth” (will be made precise later)

» strongly convex (will be made precise later)
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NSync: Randomized Gradient Descent with Arbitrary
Sampling
Algorithm (NSync, R. and Taka¢ [11])
Input: initial point xp € R”
subset probabilities {ps} for each S C [n] oef {1,2,...,n}
stepsize parameters vy,...,v, >0

for k=0,1,2,... do
a) Select a random set of coordinates S C [n] following the law

P(S«=S) = ps, S Cn

b) Update (possibly in parallel) selected coordinates:

1
Xk+1 = Xk — Z —.(e,-TVf(xk))e,-

%
€Sy !
end for

Remark: This NSync algorithm was introduced in 2013. The first .0
algorithm unifying deterministic gradient methods and randomized

coordinate descent methods. ros



Two More Ways of Writing the Update Step

1. Coordinate-by-coordinate:
MO X, i'¢ Sk,
L - (V)D€ S

2. Via projection to a subset of blocks: If for h € R" and S C [n]

we write wer '
hs) = Y h0e;,
i€S
then

Xk+1 = Xk + hs, for h = —(Diag(v))"*Vf(x). (2)

We shall interchangeably write:

Vif(x) = e VF(x) = (VF(x))®
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Samplings
Definition 1 (Sampling)

By the name sampling we refer to a set valued random mapping with

values being subsets of [n] = {1,2,...,n}. For sampling § we define the
probability vector p = (p1,...,p,)" by
pi=P(i € 8) (3)

We say that S is proper, if pi > 0 for all /.

» A sampling Sis uniquely characterized by the probability mass
function

ps €P(E=5), Sl (4)
that is, by assigning probabilities to all subsets of [n].

> Later on it will be useful to also consider the probability matrix
P = (pyj) given by

P EP(ieSjed)= > bps. ® og

S:{ij}cSs



Samplings: A Basic Identity

Lemma 2 ([5])

For any sampling S we have

S b = E[S] (6)
i=1
Proof.

Zpi (3);(4)2 Z ps = Z Zpsz Z P5|5| :E[|§|]

i=1 i=1 SC[n]:ieS SC[n] i:ieS 5C[n]

O

s
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Sampling Zoo - Part |

Why consider different samplings?

1. Basic Considerations. It is important that each block i has a
positive probability of being chosen, otherwise NSync will not be
able to update some blocks and hence will not converge to
optimum. For technical/sanity reasons, we define:

» Proper sampling. p; = P(i € §) > 0 for all i € [n]
» Nil sampling: P(§ =0) =1
» Vacuous sampling: P(5 =0) > 0
2. Parallelism. Choice of sampling affects the level of parallelism:
> E[\§|] is the average number of updates performed in parallel in one
iteration; and is hence closely related to the number of iterations.
» serial sampling: picks one block:

P(S|=1)=1

We call this sampling serial although nothing prevents us from
computing the actual update to the block, and/or to apply he

update in parallel. 00
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Sampling Zoo - Part Il

> fully parallel sampling: always picks all blocks:
PS={1,2,...,n}) =1

3. Processor reliability. Sampling may be induced/informed by the
computing environment:

> Reliable/dedicated processors. If one has reliable processors, it is
sensible to choose sampling $ such that P(|$| = 7) = 1 for some 7
related to the number of processors.

» Unreliable processors. If processors given a computing task are busy
or unreliable, they return answer later or not at all - it is then
sensible to ignore such updates and move on. This then means that
|5| varies from iteration to iteration.

4. Distributed computing. In a distributed computing environment it
is sensible:

> to allow each compute node as much autonomy as possible so as to
minimize communication cost,

> to make sure all nodes are busy at all times

s
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Sampling Zoo - Part IlI

This suggests a strategy where the set of blocks is partitioned, with
each node owning a partition, and independently picking a “chunky”
subset of blocks at each iteration it will update, ideally from local
information.

5. Uniformity. It may or may not make sense to update some blocks
more often than others:

» uniform samplings:

P(ic8)=P(jecb) forall ijel[n

> doubly uniform (DU): These are samplings characterized by:
IS1=15"] = P(5=5)=P(§=5") forall S',S" CIn|
> 7-nice: DU sampling with the additional property that
P(S|=7)=1

> distributed 7-nice: will define later
> independent sampling: union of independent uniform serial samplings

» nonuniform samplings 0
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Sampling Zoo - Part IV

6. Complexity of generating a sampling. Some samplings are
computationally more efficient to generate than others: the potential
benefits of a sampling may be completely ruined by the difficulty to
generate sets according to the sampling's distribution.

> a 7-nice sampling can be well approximated by an independent
sampling, which is easy to generate. ..
> in general, many samplings will be hard to generate
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Assumption: Strong convexity

Assumption 1 (Strong convexity)

Lety>0ands=(s,...,5,) € R". We assume that function f is
differentiable and ~y-strongly convex (with v > 0) with respect to the
weighted Euclidean norm

n 1/2
Ihlls & (Zsi(h”)Z) :

i=1

That is, we assume that for all x, h € R",

F(x + h) = £(x) + (VF(x), h) + 3| A3 (7)

s
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Assumption: Expected Separable Overapproximation
Assumption 2 (ESO)
Assume S is proper and that for some vector of positive weights
v=(v1,...,v,) and all x,h € R",

E[f(x + hgp)l < f(x) + (VF(x), h)p + 311 All3 (8)

pev-*

Note that the ESO parameters v, p depend on both f and 5. For
simplicity, we will often instead of (8) use the compact notation

(f,8) ~ ESO(v).

Notation used above:

his) oef Z he e R (projection of h € R" onto coordinates i € S)
i€eS

(g.h, & Zp,-g(i)h(i) €R  (weighted inner product)
i=1
®,
pev def (pPWv® L pMy(y e R (Hadamard product) ©
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Complexity of NSync

Theorem 3 ([11])

Let x, be a minin:lizer of f. LetAAssumptions 1 and 2 be satisfied for a
proper sampling S (that is, (f,S) ~ ESO(v)). Choose

» starting point xp € R",

> error tolerance 0 < € < f(xp) — f(x.) and

> confidence level 0 < p < 1.

If {xc} are the random iterates generated by NSync where the random
sets Sy are iid following the distribution of S, then

K> %Iog (f(x(’)_f(x)) = P(f(x<) — F(x) <€) =1—p, (9)

€p
where s w
AL max L > =L (10)
i=1,...,n piSj E[|S]]



What does this mean?

» Linear convergence. NSync converges linearly (i.e., logarithmic
dependence on €)

» High confidence is not a problem. p appears inside the logarithm,
so it easy to achieve high confidence (by running the method longer;
there is no need to restart)

» Focus on the leading term. The leading term is /\; and we have a
closed-form expression for it in terms of

> parameters vy, ..., Vv, (which depend on f and .§)
> parameters p1, ..., pn (which depend on S)
» Parallelization speedup. The lower bound suggests that if it was

the case that the parameters v; did not grow with increasing

7 & E[|S]], then we could potentially be getting linear speedup in 7

(average number of updates per iteration).

> So we shall study the dependence of v; on 7 (this will depend on f
and 5)

> As we shall see, speedup is often guaranteed for sparse or
well-conditioned problems.

s
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Proof of Theorem 3 - Part |

> If we let 41 % y/A, then

—
~
2

F(x) + (VF(x), h) + 3 1hlIZ
F(x) +(VE(x), h) + S All7e - (11)

f(x+h)

AVARLY,

Indeed, w is defined to be the largest number for which
yI[Al? > u||h]|3,,-: holds for all h. Hence, f is u-strongly convex

vep
with respect to the norm || - || ¢p-1.

> Let x, be a minimizer of f, i.e., an optimal solution of (22).
Minimizing both sides of (11) in h, we get

ay
o) =f() = min{VF(x), h) + 5llAlla,-

= =5 IV G- (12)
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Proof of Theorem 3 - Part Il

> Let b & vl Vf(xk). Then in view of (2), we have

Xki1 = Xk + (hk)[gl, and utilizing Assumption 2, we get

E[f(kn) [ X = E |[F(xe+ (i) | ]
2 )+ (V). bl + 22,
= ) = 31V A0 2
(12)
< ) — n(F(x) — Fx)).

» Taking expectations in the last inequality (i.e., via the tower
property), we get E[f(xis1) — F(x.)] < (1 — w)E[F(xc) — F(x.)].
Unrolling the recurrence, we get

E[f(xe) — F(x)] < (1 = 1) *(F(30) — f(x.)). (13)



Proof of Theorem 3 - Part Il

» Using Markov inequality, (13) and the definition of K, we finally get

P(flxx) —f(x) =€) < E[f(xk) - f(x)]/e

D W e) — Fe) e 2

» Finally, let us now establish the lower bound on A. Letting

A d:ef {p/ c Rn : p/ 2 072’_ pll = E[|§|]}, we have

10 vi © vj 1 v
A max — > min max = !

1
i pisi pea i plsi E[S]] i=1 i

where the last equality follows since optimal p/ is proportional to
V,'/S,'.



Exercises

Exercise 1
Prove that a doubly uniform sampling is uniform.

Exercise 2 A
Let f(x) = %||Ax — b||3 and let S be a serial sampling. Show that then

(f,8) ~ ESO(v) with v; = | A;|j3 for i € [n].
Exercise 3
Assume that f is a convex function for which there exist constants

Ly,...,L, > 0 such that for all x ¢ R", t € R and i € [n], the following
inequality holds:

le" VF(x + te;) — & VF(x)| < Lilt].
Show that then for any serial sampling S, we have (f,S) ~ ESO(v) with
vV = (L17~-~7Ln)-

Exercise 4
Argue in detail why (12) follows.

Exercise 5 00
Argue in detail why (1 — p)K(f(x0) — f(x.))/e < p:



Part 2

Blocks



The idea

We now assume the decision vector x has // coordinates
x e RN

which we partition into n “blocks”.

Idea: We let the algorithm operate on “block level” instead = block
coordinate descent. That is, at iteration k,

» a random subset Sy of blocks [n] = {1,2,...,n} is chosen
» and updated.

s
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What do we gain by introducing blocks?

» Flexibility: We can partition the coordinates any way we like for
any reason we might have.

> Sometimes block structure is implied by the problem at hand. In L1
optimization, one often chooses N; =1 for all i. In group LASSO
problems, groups correspond to blocks.

» Generality: By allowing for general block structure, we
simultaneously analyze several classes of algorithms:
> coordinate descent (if we choose N; =1 for all /)
» block coordinate descent (if we choose N; > 1 and n > 1)
» gradient descent (if we choose n = 1)
fast (O(1/k?)) versions of the above. ..
» Efficiency: It is sometimes more efficient to have blocks because:
> this leads to a more “chunky” workload for each processor if we
think that each processor handles one block
> one can design block-norms based on data, which leads to better
approximation and hence faster convergence
» one can try to optimize the partitioning of coordinates to blocks
(say, by trying to optimize complexity bounds, which depend on

block structure) .0

v
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Block Decomposition of RV

>

Partition. Let Hy,..., H, be a partition of the set of
coordinates/variables {1,2,..., N} into n nonempty subsets. Let
N; = |H;l.
Projection/lifting matrices. Let U; € RV*Ni be the column
submatrix of the N x N identity matrix corresponding to coordinates
in H,'.
Projection of R" to R" For x € RN, define

XD YT e RNV j=1,2

) ) AR

n.

Notice that x(7) is the block of coordinates of x belonging to H;.

Lifting RV to R". Given x() € RN notice that the vector
s = Uix() € RN has all blocks equal to 0 except for block i, which is
equal to x) . That is,

0 x0 =i
s =
0 otherwise. .0
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Examples - Part |

Example 4

1. Single block.
n=1, Hy ={1,2,...,N}; U =1

2. Blocks of size 1. This is the setting already introduced in NSync:

N = n, H,' = {i}; U,' = €&
3. Two blocks of different sizes. Let N =5 (5 coordinates), n =2 (2

blocks) and let the partitioning be given by

H, ={1,3}, H,={2,4,5}.
Then

U = Up =

O O OO
=Nl N eNe]
O O O = O
[« N eNeNe)
= O O 0o

s
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Examples - Part |l

For x € RN = R% we have

o
o

01 00
xXA=uUlx=1| 0 1

0 0 0 O

On the other hand, for any x € R5:

€
Uix® = Uy (U] x) = (

O O OO -

[eNel Yo Na]

X1
X2
X3
X4
Xs5

X1
X2
X3
Xa
X5

X1
X3

X2
X4
Xs

)e]Rle]R2
) e RV = R3
ERS



Examples - Part Ill

and
0 0 O 0
1 0 O X2 X2
Upx® = Up(Ufx)=| 0 0 0 xx |=] 0 |eRr®
0 1 0 X5 Xa
0 0 1 X5

So, we have the unique decomposition:

x = Upx® 4 Upx?

The next simple result will formalize this.
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Block Decomposition: Formal Statement

Proposition 1 (Block Decomposition)
Any vector x € RN can be written uniquely as

X = Z UixD, (14)
i=1

where x() € RN, Moreover,

x = ulx. (15)

Proof.
Fix any x € RN. Noting that >°; U;U;" is the N x N identity matrix, we

have x = Z,- U; U,-Tx, where U,-TX € RN Let us now show uniqueness.
Assume that x =, U,-xl(') => U,-X2('), where xl('),x2(') € RN, Since
N; x N; identit tri ifi=j
UJ.TUI-: JX /j |en|yr’r‘!a rix, IT 1 _]7 (16)
N; x N; zero matrix, otherwise,

s
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we get 0 = U/ (x—x) = U] 3, Ui =5y = 50— forall j. O



Projection onto (a subspace spanned by) a set of blocks

For he RN and 00 # S C [n] £ {1,2,..., n}, we write

sy =>_ Uiht. (17)

ieS

In words, hyg] is a vector in RV obtained from h € RV by zeroing out the
blocks that do not belong to S. Hence:

. KD jes
h (,) _ 9 9
(his1) {o, i¢s.

Remark: This generalizes the decomposition on the slide defining ESO.

s
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Norms in RV and RV - Part |

Let (-, -) denote the standard inner product between two vectors of
equal size (i.e., (x,y) = x"y).

With each block i € [n] we associate a positive definite matrix
B; € RVi*Ni and a scalar v; > 0, and equip R" and RM with the norms

; def (n i 1/2
XDy = (Bix®, 2, i, E (S0, vl x@[2)) . (18)
()

The corresponding conjugate norms, defined by
[[s][* = max{(s, x) - [[x]| <1}

are given by

1/2
i) * def i * i 2
01y = (B0, X072, Il = (S22 (101 )
(19) Bg
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Norms in RV and RV - Part II

ForweR7, and x,y € RN we further define the weighted inner
product

n

<X7y>w d:efZWi<X(i)’y(i)>' (20)

i=1

For x € RN, by Bx we mean the vector
Bx =Y UiBix".
i—1

That is, Bx is the vector in RN whose ith block is equal to B,'X(i).

Lemma 5
For vectors x,y € RN we have

x4 y12, = X1, + 2% y)w + Iy 12 (21)
®g
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Norms: Examples

Example 6

Consider the following extreme special cases:

1.

Single block. Let n=1, v =1 and B be a positive definite matrix.
Then

Ixlly = lIxlly = (Bx, x)*2,  x € RV.

For instance, if f(x) = 1||Ax — b||?> we may choose:
» B = ATA (assuming AT A is positive definite)
» B = Diag(AT A) (assuming no column in A is zero, AT A is positive
definite)

Blocks of size one. Let N; =1 for all i and set B; = 1. Then
ItllGy = NellGy =1t teR

and

" 1/2
||x|v—<zv, (<) ) . xeRmM
i=1 00
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Exercises

Exercise 7

Show that || - ”Eki) (resp. || - |5 ), as defined in (19), is indeed the conjugate
norm of || - H(,-) (resp. || - ||v)-

Exercise 8

Prove Lemma 5.

Exercise 9
Generalize NSync to the block setting and provide a complexity analysis.
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Part 3

Accelerated Randomized Gradient Methods
for Weakly Convex Problems



The Problem

We will now consider the following problem:

minimize f(x) (22)
subject to x € RV

We assume that f is:
» “smooth” (ESO Assumption 2)
» (weakly) convex (that is, Assumption 1 holds with v = 0)

Remark: Notice that we now work in RN as opposed to R”, as before. In
this part we will partition the N variables into n blocks, and the
algorithm we will describe and analyze—ALPHA—shall operate on
blocks instead of individual coordinates.

s
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Further simplifying notation

» By abuse of notation, we denote by u? the elementwise square of the
vector u, by u™! the elementwise inverse of vector u and by u~2 the
elementwise square of u™!.

» For vectors v € R" and x € RV we will write

n

v-x(j:Eva;(U;x(i)). (23)

i=1

That is, v - x is the vector in RV obtained from x by multiplying its
block i by v; for each i € [n].

Example 7

If all blocks are of size one (N; =1 for all i), then
v - x = Diag(v)x,

where Diag(v) is the diagonal matrix with diagonal vector v.



The ALPHA Algorithm

We now present an accelerated variant of NSync, called ALPHA [14]
(for an earlier version, developed for uniform samplings, see [12]).

Algorithm (ALPHA)

Parameters: proper sampling S with probability vector

p=(p1,.--,Pn) vector v € R, sequence {0 }r>0
Initialization: choose xg € RV, set z5 = xg
for Kk > 0 do

v = (1 = 0k)xic + Orz A
Generate a random set of blocks S, ~ S
Zj41 & Zk
for (j) € Sk (d)o
Zk,+1 = Zkl - ﬁBi_lvif(yk)
end for
Xkr1 = Yk + 0kp™ -+ (Zks1 — k)
end for
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Efficient Implementation

Remark: The update step for y is expensive as it involves the addition
of two potentially dense vectors in RV: x, and z,. However, this can be
completely avoided by writing the method in an equivalent form (via a
change of variables). See [12, 14] for details.



Iteration Complexity of ALPHA: Accelerated Case

Theorem 8
Let S be an arbitrary proper sampling and v € R’} | be such that

(f,8) ~ ESO(v). Choose b € (0,1] and define the sequence {0y }x>0 by

7 7 2
NG +;19k 0 (24

Oky1 =

Then for any y € RN such that C > 0, the iterates {Xk}k>1 of ALPHA
satisfy:
4C

E[f(x0)] — f(y) < m»

(25)
where p
C=(1-1060)(f(x)—f(y)) + 5°||Xo Y2 ep--

In particular, if we choose 6y = 1, then for all k > 1,

2|1xo0 —}/Hv.p 230 p? ||X0 (f)||,2

(]~ F) < g = G () @,
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Iteration Complexity of ALPHA: Non-Accelerated Case

Theorem 9
Let S be an arbitrary proper sampling and v € R’} | be such that

(f,8) ~ ESO(v). Choose 0 = 6y € (0,1] for all k > 0.
Then for any y € RN, the iterates {xi}x>1 of ALPHA satisfy:

C

max {E[f(xk)]’/_rﬂ!h.,k E[f(XI)]} —fly) < m Yk =1 (27)
where 1
g, _ X + 00—y Xi
T 1+ (k= 1)6,
and

€ = (1= 00) (F0) = F) + 20— y o
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Analysis of ALPHA |

Let us extract the relations between the three sequences. Define

- e . 6
Zen < arg min (VF(n). 2) + Fllz - zdfan) (28)
Then
(i) 1 fESk
zp = , 29
{ 5 iy (29)

and hence Zp+1 — Zk = (Zk+1 — Zk)[Sk] and

X1 = Vi + 0P+ (Zig1 — 2i)[s,)- (30)

Note also that from the definition of y, in ALPHA, we have:

Ok(yk — z&) = (1 — 0k) (xx — yi)- (31)
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Analysis of ALPHA: First Lemma

Lemma 10 ([14])
For any sampling S and any x,a€ RV and w € R ., the following
identity holds:

I3, = E [lIx + agg I | = Ix13ep = lix + all2,.

Proof.

It is sufficient to notice that

(18) i i i
Ellx+aglh] = B willx D)+ > willx® + a0
i¢s ic$

= > | = )il + powillx? + 2V |

0 ¥g
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Analysis of ALPHA: Second Lemma

Lemma 11 ([14])
Let S be an arbitrary proper sampling and v € R, , be such that

(f,5) ~ ESO(v).
Let {6x}i>0 be an arbitrary sequence of positive numbers in (0,1] and fix

y € RN Then for the sequence of iterates produced by ALPHA and all
k > 0, the following recursion holds:

B |FOsen) + Ellen — vl
< (32)
2
7000+l ¥R | = B0(505) = F(0)

s
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Proof of Theorem 8

If 6o € (0,1], the sequence {0 }x>o has the following properties (see [1]):

2
0<bki1<0 <1, 33
b1 = O = k+2/6y (33)
1 - 9k+1 ].
= —. (34)
B %
After dividing both sides of (32) by 62, using (34) and taking
expectations, we obtain:
1-6 1-6 1-6
Tkﬂqﬁkﬂ + 1 < chﬁk T —p %o + ro, (35)
k+1 k 0

where ¢y = E[f(x)] - f(y) and e = LE[|zc — y|%, -] Finally,

(35)
b 34 - 9k)9k 07001 < (1- 9k 9k 1¢k+0k e < %QSOﬂLG )
92 02 (33)
= & ((1—90)¢0+93'0) = ;¢ < ((kff)goﬁ)?'

s

Note that in the last inequality we used the assumption_that C > 0.
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Proof of Theorem 9

Using the fact that 6, = 6, for all k and taking expectation on both
sides of (32), we obtain the recursion

bra1 + 02n1 < (1—00)px + 03rk, k> 0.

Combining these inequalities, we get

k—1

(1+0o(k—1)) min & < i+ eo;@ < (1= 6o)go + O3ro.  (36)

Let ax =1+ (k — 1)0p. By convexity,

k— k—
) = f <Xk + Y eox/> o ) + S5 0f ()

Ok Qe

Finally, subtracting f(y) from both sides and taking expectations, we
obtain

EIF(5)] — Fly) < 2t 2ica fodr () (1= b0)d0 + o o

(e 7% €7
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Proof of Lemma 11 |
Based on how z is updated in ALPHA, we can write

2 %f Zpp1— 2k = _91:1(‘/_1 *p)- BTV (w), (37)

or equivalently, —Vf(yx) = 0x(v ® p~1) @ Ba. Using this notation, the
update of vector x in ALPHA can be written as

Xir1 = Yk + 0P - as,y = v + (0kp ' @ a)[s,)- (38)

Letting b= Zx11 — y and t = 62(v @ p~1), we apply the ESO assumption
and rearrange the result:

(8)+(38) 3 1
Ek[f(xk+1)] < f(yk)+<Vf(yk)70kp 3>p+§”0kp 'a”vcp
(20)+(18)+(37) 1
WDy~ a2
(21)

1 1
() = llbl + 5 16— all2 + (Ba, b~ ), (39)
®g
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Proof of Lemma 11 Il

Note that [|b||7 = 0F[|Zki1 — yl[3,, 1, 16— all7 = 6]z« — v, ,-+ and
(Ba,b—a)y = (-Baa—b) = (6, (v ep) VI(y),y —zu)e
O(VF(yk),y — zk)
(

<Vf )/k) Yy = Yk> (1_9k)<Vf(Yk)7Xk_}/k>
< Ok(f(y) = F(yi)) + (1 = 0i)(F (%) = Fyi))-

Substituting these expressions to (39), we obtain the recursion:

(31)

2
Ev[f (xic1)] < Ok (y)+(1=0i)f Ca)+ O lzk=yl2ep-s %kaﬂ—)/”e.p—l

(40)
It now only remains to apply Lemma 10 to the last two terms in (40),
with x <~ zx —y, w < vep~2 and $+ S and rearrange the resulting
inequality.

s
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Exercises

Exercise 10
Prove (33).

Exercise 11
Prove (34).

Exercise 12 (*)
Prove a version of Theorem 9 where the left hand side is E[f(xk)] — f(y).

s
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Part 4

Samplings



Samplings: Definition

Recall:

Definition 12 (Sampling)
Sampling is a random set-valued mapping S with values in 217, the
collection of subsets of [n] = {1,2,...,n}.

s
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Sum Over a Random Index Set

Theorem 13 (Sum over a random index set)

Let 0 # J, Jy, > C [n] and S be any sampling. If 0;, i € [n], and 6j;, for
(i,j) € [n] x [n] are real constants, then

E Z 0; :ZP,’%

icin$ i€l

icins iel

ichnSjehns ichjeh

s
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1Sum over an empty index set will, for convenience, be defined:to bezero.



Proof of Theorem 13

We prove the first statement, proof of the remaining statements is
essentially identical:

E[Z 9,} =Y <Z 9,->P(§—5)

ieJns SC[n] \ieJns

=> > 6P(5=Y5)

i€ed S:ieS

=> 0, > P(5=5)

ieJ  S:eS

= Zpi9;~

ied
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Consequences of Theorem 13

Corollary 14 ([5])

Let ) # J C [n] and S be an arbitrary sampling. Further, let a,h € RV,
w € R and let g be a block separable function, i.e., g(x) =, gi(x(").

Then
elund] = Ym (43)
B icJ
E[|Jm§\2 = > pi (44)
B ied jed
E |:<av h[§]>W_ = <37 h>pow7 (45)
Ellbgl2] = 11, (46)
Elebcthg)] = 2 [pig(x? +h0) + (1 p)aix™)] . (47)

i=1
. def . " o
Moreover, the matrix P < (pij) is positive semidefinite. Q@
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Proof of Corollary 14
All 5 identities follow by applying Lemma 13 and observing that:

> INS =T jnsl

> [JN 5\2 = (Zfem§ 1)2 = Eiem§ ZjEJﬁ§ 1
> <av h[§]>W = Z,eﬁ Wi<a(i)7 h(’)>

> Hh[ngi =2 cg willhl ||%;) and

>
ics /gs
7Zg ()+h +Zg1 Z I(X(l))7
ic$ ic$
Finally, for any 8 = (0y,...,0,)" € R,
0TPO = 0y X0 pifits = E [(Zies0)7] 2 0.

Remark: The above results hold for arbitrary samplings. Let us specialize
them, in order of decreasing generality, to uniform, doubly uniform and O@
nice samplings.
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|dentities: uniform samplings
If § is uniform, then from (43) using J = [n] we get

E[$]]

n

Plugging (48) into (43), (45), (46) and (47) yields

pi = i€[n].

Yl

E (14N 31 = SLErSH,

E [<a» h[s”]>w} = : [|5|} (@ h)w,

n

il

E (g2 = 1411,

E [ (x + h[s])} “S” g(x+h)+ (1 — E”ns]) g(x).

(48)
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|dentities: doubly uniform samplings

Consider the case n > 1; the case n = 1 is trivial. For doubly uniform §
pjj is constant for i # j:

_ E[ISP —19]]
Y7 n(n-1) (53)
Indeed, this follows from
. A A " k(k—1)_, &
Py =D P11} € 31181 = KP(3] = k) = 3= <= TP(S = k)
k=1 k=1
Substituting (53) and (48) into (44) then gives
3 E[S]” — 15] 151
21 _ (12 _
B0 SF) = (U~ WDy + I (59
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|dentities: 7-nice sampling

Finally, if 5 is 7-nice (and 7 # 0), then E[|S|] = 7 and E[|S[?] = 72,
which used in (54) gives

E[lJN S]] = Mz <1+ (L{L;{i)l(f__l?) . (55)

Moreover, assume that P(|J N §| = k) # 0 (this happens precisely when
0<k<|Jand k<7 <n—|J|+ k). Then forall j € J,

R NN (p [ GO R
P(/GS\|J05|_k)_W_m.

Substituting this into (41) yields

i€eJnS =)

[ZG|J05|_k] IJIZQ (56)
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Elementary Samplings, Intersection and Restriction

Definition 15 (Elementary samplings)
Elementary sampling associated with J C [n] is sampling £, for which

P(E,;=J)=1.

Definition 16 (Intersection of samplings)

For two samplings §1 and §2 we define the intersection S def §1 N §2 as
the sampling for which:

PN

P5=5=P5n&=S5), SCIn.

Definition 17 (Restriction of a sampling to a subset)

Let S be a sampling and J C [n]. By restriction of S to J we mean the
sampling ) .
E;NS.

s

60 /108



Probability matrices associated with samplings - Part |

Definition 18 (Probability matrix; [5])
With arbitrary sampling S we associate an n-by-n matrix P = P(S) with
entries

[P(S); =P(ie€S,je ).
Lemma 19 (Intersection of independent samplings; [15])
Let §1, S, be independent samplings. Then
P(§1 n .§2) = P(§1) L4 P(§2)

That is, the probability matrix of an intersection of independent
samplings is the Hadamard product of their probability matrices.

Propf. A o ) X
[P(S11S2)]; =P({ij} € 51N %) =P({i,j} € S)P({i,j} € &) =
[P(51)]5[P(52)]- O

s
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Probability matrices associated with samplings - Part Il
Example 20 (Probability Matrix of an Elementary Sampling)

Note that the probability matrix of the elementary sampling E; is the

matrix . )
P(E) £ ese], (57)

where e; we denote the binary vector in R” with ones in places
corresponding to set J. That is,

1 i,jed,

0 otherwise.

[P(E)y = {

Hence, for arbitrary sampling S, the probability matrix of J N S is the
submatrix of P(S) corresponding to the rows and columns indexed by J:

[P(S)y. i.j€J,

) (58)
0, otherwise.

PUNS; = [P(E) e PS)]; = {

s
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Probability matrices associated with samplings - Part Il|
Lemma 21 (Decomposition of a Probability Matrix; [15])
Let S be any sampling. Then

P(S)= > P(5 = S)P(Es). (59)

That is, the probability matrix of arbitrary sampling is a convex
combination of elementary probability matrices.

Proof. A
Fix any i,j € [n]. Since (P(Es)); = 1iff {i,j} C S, from definition we
have

(P(g))u = ZS:{i,j}CS ( S)
= ZS:{i,j}CS ( S)(P ( ))u
= (zswmw S)P(Es))..
- %
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Sampling Identity for a Quadratic

Lemma 22 ([15])

Let G be any real n x n matrix and S an arbitrary sampling. Then for
any h € R" we have

E [h[g] Gh[éﬂ = hT (P(§) . G) h, (60)

where e denotes the Hadamard (elementwise) product of matrices.

Proof.

E [ ohg) = E[ZZGU”(i)”U)]

ic§ je§

(#2) Z z":p,-jc,-jh(")hm = 17 (P(3)sG)h

i=1 j=1
0 s
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Distributed sampling

The following sampling is useful in the design of a distributed
coordinate descent method.

Definition 23 (Distributed 7-nice sampling; [10, 13])

Let P1,...,Pc be a partition of {1,2,...,n} such that [P)| = s for all /.
That is, sc = n. Now let 5y, ..., 5. be independent 7-nice samplings
from Py, ..., Pc, respectively. Then the sampling

S¥ eS8, (61)

is called distributed 7-nice sampling.

Idea: Blocks in Pj, and all associated data, will be handled/stored by
computer/node / only. Node / picks blocks in S;, computes the updates
fro local information, and applies the updates to locally stored x(!) for
i€Py.

s
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Probability Matrix of Distributed 7-nice Sampling

Consider the distributed 7-nice sampling and define:
» E= P(E[n]): the n x n matrix of all ones
> | be the n x n identity matrix
» B=Y, P(Ep,) : the 0-1 matrix with Bjj = 1 iff i, belong to the
same partition
Lemma 24 ([10, 15])

Consider the distributed T-nice sampling S. Its probability matrix can be
written as R -
P(S): g[a1/+a2E+a3(E—B)], (62)

where

ap=1- , ap = ; a3 =
551 S1

)

T—1 T—1 T T—1
S S1

and s; = max{1l,s — 1}.
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Proof of Lemma 24

Let P = P(S). It is easy to see that
> P=1Eifi=]

> Py =T & B, if i # j and i, belong to the same partition,

ss1

> P = %22 def B3 if i # j belong to different partitions.

So, we can write

P = Bl + BB~ 1)+ Bs(E — B)

= (81— B2) + BE + (B3 — B2)(E — B).
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Exercises

Exercise 13
Find an expression for the probability matrix of

> the T-nice sampling,

» arbitrary doubly uniform sampling.

Exercise 14
Let S be any sampling. Show that

> Amax(P) < E[|S]] and that the bound is tight,
> P=pp’.
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Part 5

Functions



Introduction

> In this part we describe three models for f.

» These models can be thought of as function classes described by a
list of properties.

» However, a single function may belong to more function classes.

In big data setting, some information is computationally difficult to
extract from data.

Consider f(x) = %[|Ax — b|%.

» It is difficult to compute the largest eigenvalue of AT A if A is large
(this is the Lipschitz constant of Vf with respect to the standard
Euclidean norm)

> It is easier to compute the squared norm of each column (these
correspond to coordinate-wise Lipschitz constants).

Important point: The models differ in the amount of information they
reveal about f. O@
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Model: Quadratic Bound

Model 1 ([10, 13, 15])

We assume that

1. Structure and Smoothness: f : RN — R js differentiable and for
all x, h € RN satisfies

f(x + h) < f(x)+ (VF(x))"h+ Lh" AT Ah, (63)
where A € R™*N,
2. Sparsity: Row j of A depends on blocks i € C; only. Formally,
GE i+ Ay # 0},

def

def .
where A € el AU; € RV M. Let w; € |Gl

3. Convexity: f is convex.

Remark: Information about f is contained in the matrix A. .@
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Examples
Example 25

In machine learning (ML), functions f of the following form are common:
f(x) = L1 fi(x) = X £0x 35, ),

where N is the number of features, m number of examples, a; € RN
corresponds to jth example and y/ is a label associated with jth example.

Here are some convex loss functions ¢ often used in ML for which the
total loss f satisfies (63):

[ Loss function £ [ (%) | (63) satisfied for A given by |
square loss (SL) 1 - aij)2 Aj. = aJT
logistic loss (LL) log(1 + exp(—y/a] x)) Aj = %ajT
square hinge loss (HL) | 2 max{0,1 — ylalx}? A =a]

Interpretation of w; (point 2 in Model 1) : # features in example j
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Block gradients

Definition 26 (Block Gradients)
The ith block gradient of f : RV — R at x is defined to be the ith
block of the gradient of f at x:

Vif(x) = (VF(x)D = UTVF(x) € RM. (64)

In other words, V;f(x) is the vector of partial derivatives with respect to
coordinates belonging to block /.

s
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Model: Classical

Model 2 ([2, 5, 9])

We assume that

1. Structure: Function f : RN — R is of the form
F(x) =D fi(x).
j=1

2. Sparsity: f; depends on x via blocks i € C; only.
3. Convexity: Functions {f;} are convex.

4. Smoothness: Function f has block-Lipschitz gradient with
constants Ly,...,L, > 0. Thatis, foralli=1,2,...,n,

IVif(x + Uit) = Vif (<)) < Lilltl iy, x€RY, t e RM. (65)

Remark: Information about f is contained in the constants Ly,...,L,. .0
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Examples

Example 27 (Least squares)
Consider the quadratic function f(x) = %||Ax — b||%.

(i) Consider the block setup with N; =1 (all blocks are of size 1) and B; = 1 for all
i € [n] (standard Eucl. norms for each block: [|t||;;y = [t|). Then U; = ¢; and

IVif (x + Uit) = Vif (x)]I(;) le” AT (A(x + te;) — b) — ] AT(Ax — b)|
= el AT Aeillt] = [|A4]P]t],
whence L; = ||A;]]%.

(ii) Choose nontrivial block sizes (N; > 1) and define data-driven block norms with
B = AI.TA,-, where A; = AU;, assuming that B; > 0. Then

IVif (x + Uit) = Vif (x)]I(;) [UTAT(A(x + Ujt) = b) — UT AT (Ax = b)I[;)
= ||UiTATAUitHEk;)
= (AADNTIUT AT AU, UT AT AU 2
(18)
= <Bl't7 t>1/2 = HtH(l)7
whence L; = 1.

s
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Model: Newest
Model 3 ([12])

We assume that
1. Structure: f: RN — R js of the form

) = 3 6. (66)

2. Sparsity: f; depends on x via blocks i € C; only. Let w; = |Cjl.
(Note that i ¢ C; = Ljj =0)
3. Convexity: Functions {f;} are convex.

4. Smoothness: Functions {f;} have block-Lipschitz gradient with
constants L > 0. That is, forall j=1,2,...,mandi=1,2,...,n,

IVifi(x + Uit) = Vifi(<)ll¢yy < Lilltlly, xRN, t e RM. (67)

| o 8g
Remark: Information about f is contained in the constants {L;}
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Computation of L

We now give a formula for the constants Lj in the case when f; arises as
a composition of a scalar function ¢; whose derivative has a known
Lipschitz constant (this is often easy to compute), and a linear functional.

Proposition 2 ([12])

Let fi(x) = ¢j(e] Ax), where ¢; : R — R is a function with Ly -Lipschitz
derivative:

16j(s) = 6j(s) < Lyls =], 55" €R. (68)

Then f; has a block Lipshitz gradient (i.e., satisfies (67)) with constants

2
Li=Ly (IA715) i=12....m, (69)
where
Aj,' = ejTAU,- (70)
(i.e., Aji is the ith block of j-th row of A).



Proof of Proposition 2

For any x € RN, t € RN and i we have

IV + Uie) = Vi (9l

(64) *
= ||UiT(ejTA)T¢J/'(ejTA(X + Uit)) — UiT(ejTA)Tﬁb}(ejTAX)H(i)
= |Afdi(e] Alx + Uit)) — Al ¢(e] AX)I[(;)

< NALIG 0 (e Alx + Uit)) — (e Ax)|

(68)

< ||AJIH(;)L¢J~|Ajit| < HA;H(,')L@HA;H(,')HtH(iy

where the last step follows by applying the Cauchy-Schwartz inequality.



Examples

Example 28 (Least squares)

Consider the quadratic function

F(x) = L|Ax — b2 = 1 37
Then fij(x) =

jzl(ejTAx — b))2.
#j(e] Ax), where ¢;(s) = %(s —bj)?and Ly, =1

; .
(i) Consider the block setup with N; = 1 (all blocks are of size 1) and B; = 1 for all
i € [n] (standard Euclidean norms for each block). Then by Proposition 2

(69)

le = Ld)_,(” “2‘,))2:

(i) Choose nontrivial block sizes (N; > 1) and define data-driven block norms with
TA. R
i 1

B; = AT A;, where A; = AU;, assuming that the matrices AT A; are positive
definite. Then by Proposition 2

(69) (70) _
Li = Lg;(IAT G ) 2 (AT A" PALLAD) = el AAT AN TIAT ¢
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Part 6

Expected Separable Overapproximation



Introduction

In this part we shall look at the three models of f (Part 3) and various
types of samplings S (Part 4) and compute parameters v = (vy, ..., V,)
such )

(f,S) ~ ESO(v).
These parameters are important since:

» They are stepsize parameters needed in the algorithm (in NSync,
but also in other randomized block coordinate descent methods).

» Their size as a function of 7 = E[|5]] describes achievable
parallelization speedup.

» By computing v we get one step closer to ultimate goal of designing
sampling S optimizing the complexity bound.

s
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ESO(f ~ Model 1, § ~ arbitrary)

Theorem 29 ([15])

Let f satisfy afsumptions in Model 1, assume all blocks are of size 1
(N; =1) and S be any sampling. Then for all x,h € RV,

1
E [Flx+ hg)| < F(x) + (TF00 B + 503w (TD)
where v is any vector such that
PeATA < Diag(pev), (72)

where P = P(8) is the probability matrix associated with S.

Remark: The Hadamard product of two PSD matrices is PSD (P is PSD
by Corollary 14).

s
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Proof of Theorem 29

We have
(63) 1 T
E[f(x+h[§])] < E[f(X)+<Vf(X)ah[§]>+§<A Ah[srh[é]ﬂ
(45)
) () + (VF(x). Wy + L [ AT AR
&£+ (VA + 307 (Pe ATA) b
<

f(x) + (VF(x), ), + 3 h" Diag(p e v)h,

=lhlZe,

where (*) comes from Lemma 22.
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Ways of satisfying (72)

Let us fix a sampling § (and hence P) and data A. We can find v for
which P e AT A < Diag(p e v) in several ways:

1. Vi = )\1||A;,'||2 and

A\ = gn%x{HT(P e ATA)9 : 07 Diag(Pe ATA) < 1}.
e n

Amax (PoAT A
2. Vi = Amax(PeA” A) i )

3. Vi = Amax(ATA) 22D (using Lemma 30 with X = P)

4. v = )‘m%fp) max; |A;]|?2  (using Lemma 30 with X = ATA)

Lemma 30
For any two PSD matrices X, Y with nonnegative elements,

Amax(X 0 Y) < Apax(X) max Yj.
J
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Eigenvalues of Probability Matrices
Definition 31 (Eigenvalues)

For arbitrary sampling S we define

NOES max 0TP(5)0 : 07 Diag(P(5))0 < 1} (73)
and . .
N(5) d—ef%x{oTP(S)e 070 <1} (74)
€ n

Example 32 (Elementary Sampling)
Fix S C [n] and consider the elementary sampling Es. Note that

MEs) = Amax(P(Es)) = Amax(esed ) = |les||* = |S|. (75)

Since JN Es = EJms, we get
N ~ (75)
)\(Jﬂ ES) = )‘(EJOS) = |Jﬂ S| (76) .0
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Insightful and Easily Computable Bound

Issues with Theorem 29:

> It does not provide insightful nor easily computable expressions for
v; (which are needed to run the algorithm).

» It does not answer the following inverse problem: given data matrix
A and/or its sparsity pattern {C;}, design a “good” sampling.

The following two results go a good way to overcoming these issues.

Theorem 33 (Useful ESO; [15])

Let the assumptions of Theorem 29 be satisfied. Then (72) holds (i.e.,
(f,S) ~ ESO(v)) with v given by:

m

Vi:ZA(ijg)Aﬁ., i=1,2,...,n (77)

j=1

s
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Proof of Theorem 33

Note that it follows from (42) that for any vector § € R" and any j the following
identity holds:

E ( 3 9,)2 :zn:[P(cjmé)],-je,»ej:0TP(ij§)0. (78)

iegns$ =1

Fix h € R". Let z; = (zj(l), e zj(n))T € R" be defined as follows: zJ.(i) = h(i)Aj;. We

then have
m m - ,
ElhgaTang] = 3E[ngalang] = T \( 3 W04
= =1 iegns
@ ZZTPCmS)zJ @ Z/\(C n3) (< Diag(P(G; 1 9))z)
j=1
= ZA (GN3) > pi(h4;)° = Zx(cjmﬁ)ip,(humﬁ)z
i€q =t i—1

= S ROPINGNHE = 3 A
i=1 =1 ) 00
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Useful bounds on A(S)

Theorem 34 ([15])
Let § be an arbitrary sampling.

1. Lower bound. If § is not nill, then fs[[‘fsl\]] < A(S).

2. Upper bound. If |S| < 7 with probability 1, then A(S) <
3. Identity. If |S| = 7 with probability 1, then \(§) = 7.

Let us apply the 2nd part of the above theorem to the sampling J N S:

Corollary 35

Let §A be an arbitrary sampling, J C [n] and ¢ a constant such that
|J N S| < ¢ with probability 1. Then

AJNS)<c

In particular, if |S| < T with probability 1, then [J N S| < min{|J], 7}
with probability 1, and hence A(J N S) < min{|J|,7}.

Remark: The above corollary is useful as we can apply it in connection
with Theorem 33 with J = C; for j=1,2,...,m
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Computing A\(J N S): Product Sampling

Example 36 (Product Sampling)
Assume that the sets {C;} in Model 1 form a partition of [n]. The
consider the sampling $ defined as follows:

(]._Lm:1 |Cj|)_17 SeGxGx--x Cm7

0, otherwise.

P(§:S):{

Note that |G; N $| =1 with probability 1, and hence by Corollary 35,
AMGNnS) <1

On the other hand, by the first part of Theorem 34, A\(G; N §) > 1, and
hence this sampling achieves the smallest possible value of the “A
parameters” in (77) (which is “good” as other things equal, ESO with
small {v;} is better). Let us remark that E[|S]] = m.

s
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Computing A(J N S): 7-Nice Sampling

Exercise 15 (7-Nice Sampling)

Show by direct computation that if S is a T-nice sampling, then the lower
bound in part 1 of Theorem 34 is attained for C;N'S for all j:

E[G NS (5):¢9) G

AGNS) = A e S
(Gn) E[|C NSl max{n — 1,1}

(79)

where wj = |Gj|.

s
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Computing A\(J N §): Distributed 7-Nice Sampling - Part |

Exercise 16 (Distributed 7-Nice Sampling; [15])
Show that if § is the distributed T-nice sampling, then

)\(Cmﬁ)<1+(7_1)(wf_1)+<T—T_l) w’{_lwp (80)

s s s w J/

)\171' A2

where s; = max{1l,s — 1}, w; = |G|, and w; is the number of partitions
“active” at row j of A:

WJ" d:e’(|{/ . Aji # 0 for some i € Py}|.

Exercise 17
Show that if the number of partitions is 1 (¢ = 1), bound (80) for the
distributed T-nice sampling specializes to the bound (79) for the T-nice

sampling. O@
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Computing A\(JN S): Distributed 7-Nice Sampling - Part I

Lemma 37 ([15])

Consider the distributed T-nice sampling. Suppose T > 2. For any
1 < n < s the following holds:

(- 2200 2y (o 2200,

Note that Lemma 37 implies that

/\LJ' + /\ij < <1 + > /\171'. (81)

T—1
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Distributed NSync: Cost of Distribution
Assume f is 1-strongly convex, and consider running NSync with the

distributed 7-nice sampling. Then p; = EPl = 7¢ — T and hence the
leading term in the complexity bound is

. sST MG NS) (8
/\:maxﬁ(z)maxM < ma
iopi i T i T

m 2
S j1 (AL + A2))Af ger A

> Notice that the effect of partitioning on complexity comes only
through Ao ;.
» Define a new quantity that does not depend on partitioning:

m A2
N — max S2.i=1 )‘1’JAji
i T

and notice that (81) implies that
/\II S/\l S (1_’_%)/\//
This means that:

Theorem 38 (Cost of Distribution: compare with [10, 13])

If T > 2, the worst-case partitioning is at most (1 + %) times worse than
the optimal partitioning, in terms of the number of iterations of NSync.
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Proof of Theorem 34 - Part |

N

Point 1. For simplicity of notation, put P = P(S). If we choose 6 € R"
with 0; = (Tr(P))~Y/2 for all i, we get 67 DF0 = 3", P;6? = 1 and hence

. (73 78 2 E Zi€A12 43 5|2
A3) S g7y @ E[(ZG;) ] = [(Tr(;) ) ] = EE[[||5§|]]'

ics

Point 2. Let us represent S as a convex combination of elementary
samplings: S = qun] gsEs, where gs = P(S = S). Note that then we
also have -

P& =3 asP(Es) D Y gsesel. (82)

SCn] SCn]

s

94 /108



Proof of Theorem 34 - Part Il
Since |S| < 7 with probability 1, we have |S| < 7 whenever gs > 0. For
any 6 € R" we can now estimate:

~ 82
07P(8)0 D S as(el < Y aslles|? > 62

S:gs>0 S:qs>0 i€S

75

TN gslsI o6
S:gs>0 ies

< 7 ) qsb” Diag(esed )
S:qs>0

= 797 Z qs Diag(esed ) | 0

S:gs>0
(82)

2 (67 Diag(P(5))0) .

We thus see that A(S) < 7.
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Proof of Theorem 34 - Part Il

Point 3. The result follows by combining the upper and lower bounds.
Alternatively, we can see this by inspecting the derivation in part 2.
Indeed, if || = 7 with probability 1, then |S| = 7 whenever gs > 0, and
hence the second inequality in point 2 above is an equality. By choosing
0; = « for any constant «, the first inequality turns into an equality (this
is because we then have equality in the Cauchy-Schwartz inequality

el 0 < |les||?> ;s 02 for all S).
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ESO(f ~ Model 3, § ~ 7-nice)

Theorem 39 ([12])

Let f satisfy assumptions in Model 3 and S be the T-nice sampling.
Then for all x, h € RV,

E [f(x+ hyg)] < F)+ - ((Vf(x), hy + ;|h§> . (83

where

"“Z@, Li= > By, i=12...n, (84)

JieqG
def . (wj—1)(7—1) ,
P I e et A S =1,2,...
Bi max{1l,n—1}"’ J 1Sre e s M

That is, (f, ) ~ ESO(v).
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Proof of Theorem 39 - Part |

» We first claim that for all j,

T

€ [1x-+ )] < 560+ = (V50000 + Z1nIE, ). (o9

where L. = (Lj1, ..., Lj») € R". Thatis, (f;,5) ~ ESO(B;L;.).
Equation (83) then follows by adding up the inequalities (85) for all
j. In the rest we prove the claim.

» A well known consequence of (67) is that for all x € RV, t € RM,

Lj
fi(x + Uit) < £(x) + (Vifi(x), £) + Z[[¢]G- (86)



Proof of Theorem 39 - Part Il

» We fix x and define

fi(h) € f(x + h) — (x) — (VE(x), ). (87)
Since
E [5(’7[5])} D e [6()( + hig) — fi(x) = (VAi(x), hig)
(50)

it now only remains to show that

E [fi(hs)] < 217 (88)

» We now adopt the convention that expectation conditional on an

event which happens with probability 0 is equal to 0. Let

d f
£ |C; N §], and using this convention, we can write

E [6 [s])} ZP nj = K)E |fi(hg) | nj = k] - )%
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Proof of Theorem 39 - Part Il

» For any k > 1 for which P(n; = k) > 0, we now use use convexity of

6- to write

E [@(h[s]) | nj = k] =

E|fi|3 Y kUKD | |nj=k
L ieGns
e 1 3 1) 1=
icGnS
322 (kuin®)
i€eC
LJ’ j—
L3 F kO3 = 25 1IAlZ, - (90)
ieG

<



Proof of Theorem 39 - Part IV

> Finally,

E[f(hs)] < >0y = K5 I,
%

IIE, ENG N S
= Sl

and hence (88) is proved.

s
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DSO(f ~ Model 3)

Corollary 40
Let f satisfy assumptions in Model 3 and S be a T-nice sampling. Then
for all x,h € RN we have

ol
o+ h) < F(x) + (VF(x), h) + AL, (91)
where
5 E Y S
J
Note that @ is a data-weighted average of the values {w;} and that

S w;=n.
Proof.

This follows from Theorem 39 used with 7 = n (notice that

olw = v). O 00

- def Z'i Lﬁ def n
poef i e M ND (92
"y Lk/ - w, ZL,-ijji zj:wj -j ( )



ESO and Lipschitz Continuity |

We will now study the collection of functions ¢ : RY — R for x € RV
defined by

def

De(h) € E [o(x + )] (93)
Let us first establish some basic connections between ¢ and (,zASX.

Lemma 41 ([9])
Let § be any sampling and ¢ : RN — R any function and x € RN. Then
(i) if ¢ is convex, so is ngSX,

(i) $x(0) = ¢(x),
(iii) If § is proper and uniform, and ¢ : RN — R is continuously
differentiable, then

V4.0 = Evi00,
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Proof of Lemma 41

Fix x € RN, Notice that

dx(h) = E[o(x + hig)l = > P(5 = S)¢(x + Ush),

SCln]

where e
Us =Y U7
ies
As ngSX is a convex combination of convex functions, it is convex,
establishing (i). Property (ii) is trivial. Finally,

Vx(0) = E [v o(x + h[g])‘ ] — E [UsVo(x)] = E [Us] V(x) = B3N G ).

h=0 n

The last equality follows from the observation that Ug is an N x N binary diagonal
matrix with ones in positions (v, v) for coordinates v € {1,2,..., N} belonging to

blocks i € $ only, coupled with the fact that for uniform samplings, p; = E[|S[]/n. ®
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ESO and Lipschitz Continuity Il

We now establish a connection between ESO and a uniform bound in x
on the Lipschitz constants of the gradient “at the origin” of the functions

{gZA)X, x € RV},

Theorem 42
Let S be proper and uniform, and ¢ : RN — R be continuously
differentiable. Then the following statements are equivalent:

(i) (¢,5) ~ ESO(v), )
(il) du(h) < Bx(0) + (Vu(0), hy + LELLU g2 x he RV

Proof.
We only need to substitute (93) and Lemma 41(ii-iii) into inequality (ii)
and compare the result with the definition of ESO (8). O

s
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