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Why Curvature Is Cute

min
rERS3

fa) = 5a

™Mz +b'z+c

1.0000 0.9900 0.9999

M = | 0.9900 1.0000 0.9900

H iterations

0.9999 0.9900 1.0000

condition number ~ 3 x 10%

* Phenomenon described in [Qu et al
15]

 Method 1: Two points of view:
“Exact line search in higher
dimensional subspaces” or

“inversion of random submatrices of
the Hessian”

# coordinates updated
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Objectives

Learn about one way of combining curvature
information & randomization to get a faster
optimization algorithm

The basic idea is to extend the randomized
Newton method (studied in Lecture 1) to non-
quadratic functions

Close links with the NSync method (studied in
Lecture 2)

Can also apply it to the ERM dual, obtaining the
SDNA method (link to Lecture 3)



Three Methods




The Problem & Assumptions

min f(z)

Large dimension

Strong convexity

F@) + (V@) Th + %hTGh < f(z +h)

Positive definite matrices

Smoothness

flx+h) < flx)+ (Vf(x) h+ %hTMh



Randomized Update
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P.R. and Martin Takac
On optimal probabilities in stochastic coordinate descent methods

In NIPS Workshop on Optimization for Machine Learning, 2013
Optimization Letters 2015 (arXiv:1310.3438)




Key Inequality
flo+ ) < F(@)+ (VF)Th+ 5h ™M
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SYNC Method 3

f(@® 4+ 15, h) < f(z®) + (Iska(:Ek))T h+ %hTMskh
1. take expectations on both sides i, /. Pi = F(i € 5t)
Ef (% + L5, )] < f(a*) + (Diag(p) V(") "h+ ShTEIM, i
2. diagonalize ‘v E[Mg, ] < Diag(pov)
ELf (" + Ts, )] < f(2*) + (Diag(p)Vf(z*)) Th + 5 1" Diag(po v)h

3. minimize the RHS in h ‘

z* T 2t — Ig, (Diag(v)) "'V f(z")




SYNC Method 3

i.i.d. (with arbitrary
distribution) and
proper

Choose a random set S;. of coordinates

For + € S, do
A %(Vf(xk))Tei
For ¢+ ¢ Si do
k+1 k

X; — X;



SYNC Convergence

Theorem (RT‘13)
E[f(z") = f(2*)] < (1 —03)*(f(2°) — f(z*))

03 = Amin (Gl/ZDiag(p : v_l)G1/2)

Alternative formulation:

Fa®) ~ f()

€

b2 o ) = EfGH-fE)<e

03




Uniform vs Optimal Sampling

Special case: 1 V;
G=)M = — =max—
03 i AD;

P(Skl=1)=1 = v; =M

pi= = -y -
> i M







Method 2

@ 4+ Ts, h) < fa®) + (Is, V(") o+ %hTMSkh

1. take expectations on both sides ‘

ELf (% + L5, )] < f(2*) + (Diag(p)Vf(z*) Th+ o hTE[M, i

o | p; = IP(i € Sk)
2. minimize the RHS in h

pF e a¥ — I, (E[Mg,]) "' Diag(p)V f(z")




Convergence of Method 2

Theorem (QRTF‘15)
E[f(z") = f(z*)] < (1 = 02)*(f(2°) — f(z"))

02 = Amin (G1/2Diag(p) (E [Ms,]) ™" Diag(p)(;l/2>

Alternative formulation:

fa®) — f(@)

€

1
kZ—log(

o)

) S E[f(e) - fla")] < e



Leading term in the complexity of

N

a
~
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Method 2 as a function of 7 = E]|

Skl]

£(M) = 1 X Amax (M—1/2Diag(M)M—1/2)
]

Linear speedup
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Method 1

Randomized Newton
Method




Method 1: Randomized Newton

1
" hr ZhT M,

f(a® +1g,h) < f(a*) + (Is,V f(z"))

minimize the RHS in h
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Convergence of Method 1
(Randomized Newton Method)

Theorem (QRTF‘15)
E[f(z*) — f(z*)] < (1 — 01)*(f(=”) = f(z¥))

1 = M (GWE [(Mgk)_l} G1/2)

Alternative formulation:

(f(wo) — f(z")

€

1
k> — log
o1

) S E[) - f@)] <e




Three Convergence

Rates




Theorem [QRTF'15]

0<o3<02<0;<1

0'1(1) — 0'2(1) — 0'3(1)

o1(n) = o2(n) = —

55 = Amax (GT/2MG12)

The 3 methods coincide if we
update 1 coordinate at a time

Methods 1 and 2 coincide
if we update all coordinates

Randomized Newton:
superlinear speedup

Randomized Coordinate Descent:
sublinear speedup






Theorem 1 [ is G-strongly convex & G -0 g, Ll &

f is M-smooth & M > 0 S ig proper

Method m (for m =1, 2, 3) converges linearly:
E[f(z") = f(2")] < (1 = om)E[f(2") — f(2")]

Definition of p
pl 7777 pn) e R"

o1 = Amin (GV2E | (Mg) | G1/2) / p; =P(i € S)

02 = Amin (G1/2D(p) (]E [ G1/2 Definition of v

75 = Amin (G1/2D<p>D<v—1>G1/2) E [Mg] < D(p)D(v)



San |ty Ch eCk Let us verify that the rates

asserted by the theorem make
sense (well defined & positive)

S is proper

M >0



Lemma 1

Lemma 1

M>=0 & S isanysampling = E[M§}>O

M =0 & S isa proper sampling = E [MS} ~ 0




Proof of Lemma 1

° The first claim follows from:
e Mg > 0 for all subsets S of [n] ={1,2,...,n}

e average of PSD matrices is a PSD matrix

Denote supp{x} = {i € [n] : x; # 0}. Since M > 0, any principal submatrix
of M is also positive definite. Hence, for any z € R"\{0}, ' Mgz = 0 implies
that supp{z} NS =0 for all S C [n]. If x € R™ is such that

' 'E[Mg|z = Z P(S = S)z Mgz = 0,
SCIn]

then P(supp{x} N S = ()) = 1. Since S is proper, this only happens when z = 0.
Therefore, E[M¢] > 0.



Lemma 2

Lemma 2

M = 0, S is proper, and ]P(SY =0)=0

4

O
p) = E

0 < D(p) (E[M.]) D

(M) |




Proof of Lemma 2 @

Follows from
e Lemma 1, and

e the fact that for proper S we have p >0
and hence D(p) = 0.



Proof of Lemma 2 @

Fix h € R™. For arbitrary () £ S C [n] and y € R™ we have:

1 B 1 _
5hT (Mg) 'h = ihg (Mg) ™' hg
1
1



Proof of Lemma 2 @

Substituting S = S and taking expectations, we obtain

%IE [hT (M) h} 1

E {<y, he) QyTng}

1
= y D(p)h— §yTE M.

[V



Proof of Lemma 2 @

Finally, maximizing in y gives:

1
T T
m D(p)h — ~y 'E [M.
max y (p)h =5y M|y

%hTD(p) (E [Mg])™ D(p)h.

IV

%hTE (Mg) | n



Proof of Theorem 1: First Steps

e From G-strong convexity of f (by minimizing both sides in h) we get:
1 mn
f(z) = f(@") < 5(V[(2),G'V[(x)), VeeR (%)
e From M-smoothness of f we get:

Flab 1 Ls,h) < Fe) + (V). s ) + 5 (Ms,hih), VhERT (+5)



Proof of Theorem 1: Method 1

e Use (**) with h < h¥ := —(Mg, )1V f(2*):
Fh) < Fah) — D (VF@"), (Ms,) 'V ()

e Taking conditional expectations on both sides:

Ef ) |4 f*) < (V@) El(Mg) IV AH)
def of o1 o1
< 5 (Vf@@"), GV f(z")

e Rearrange the inequality and take expectation to get:

E[f(z"") = f(2")] < (1 = o)E[f (") — f(2")]



Proof of Theorem 1: Method 2

e Let D = D(p) and take expectations on both sides of (**):

ELf(e* + Ts,h) | 2] < f(o*) + (DV (%), h) + 5 (B[M,Jh. )

e Note that the choice h* := —(E[Mg]) " 'DV f(2*) minimizes the RHS of
the inequality in h. Since h* = Ig, h*,

Ef () [a4] ~ fh) < 3 (Vf@*),D (EMg]) " DVF(H)
def of o2 09
<7 V), G )

/N
N—

< —02 (f(ivk) — f(fﬂ'*))
e Rearrange the inequality and take expectation to get:

E[f(z") = f(a")] < (1 = 02)E[f(z") — f(2")]



Proof of Theorem 1: Method 3

Same as for Method 2, except in the first inequality
replace [E{Mg, | by the upper bound:

Mg, | = D(p)D(v)




Ordering Theorem

Theorem?2 03 < 09 < 01

Proof: D(p)D(v™') =  D(@@D(@p )D(v )D(p)
= D) (E [M¢]) ™ D(p)



| Application to
_Empirical Risk Minimization



¢} (a) — ¢;(b)| < %|a— b| Va,beR

1

positive
1/’y - smooth & convex regularization
P = Regularized Empirical Risk functions (“risk”) parameter

min | P(w ——Z@ (A w) + Ag(w)

wERA

w = linear predictor n data vectors
(“examples”)

d = # features
(parameters) 1 - strongly convex function (“regularizer”)

1
g(w) > g(w') + (Vg(w'),w —w') + §Hw —w'|]?, w,w €RY



Dual Problem

n dual variables: as many as
# examples in the primal

max
aER™

1 — 1
i=1 '

c R4

I

1 — smooth & convex

g*(w') = max {(w’)

weRI

-

w— g(w)}

\

Y - strongly convex

¢F(a') = max {(a’)Ta — ¢i(a)}

acR™



SDNA

Initialization: o9 € R™ a0 = %AQO
Iterate: A =[A1,A,,...,A,] € Rixn
Primal update: w* = Vg*(a")
_ 1 AT
Generate a random set S} 2 = g A
Compute:
k T, k 15T Y
h—arghrg%{h((Aw) ) h+35h Xsg h—l—Zgb —af — hy)
1€SL
Dual update: ot < a* + 3. o hle;
Maintain average: a**t! = af + A—ln ZieSk hk A,



Convergence of SDNA

Better rate than SDCA

Theorem (QRTF‘15)

Assume that S, is uniform

E[P(wk) . D(Ozk)] < (1 . ngaroa;)k D(Ck*) B D(ao)

0(Sk)

Expected duality gap
after k iterations prox __ T _ .3
oy = -min{l, sy}

1

7= [E[|Sk|] 1= Amin [(W—AE[(ATA)&] +I)_ ]






Real Dataset:
mushrooms

=112 n-81248




Duality Gap
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Sampling “Smallish” Submatrices of

the Hessian Helps

mushrooms mushrooms
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Real Dataset:
COV

g =54 n= 581;0_




Duality Gap
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Summary

Can combine curvature & randomization and get complexity rates

Curvature is utilized by doing exact computations in small but
multidimensional subspaces

Randomized “Newton” (Method 1):
— Superlinear speedup (always)

— Expensive iterations: Needs to solve a “small” but potentially dense linear
system in each step

Randomized Coordinate Descent (Method 3):

— Sublinear speedup (gets better with sparsity or good spectral properties)

— Cheap iterations: Needs to solve a small diagonal linear system in each step
Can apply to the dual of ERM: SDNZA

— Coincides with SDCA if minibatch size =1

— Improves on SDCA when minibatch size is larger, but not too large

— New effect: # passes over data decreases as minibatch size increases

Further reading: Stochastic quasi-Newton [Schraudolph, Yu, Gunter '07]
[Bordes, Bottou, Gallinari ’09] [Byrd, Hansen, Nocedal, Singer “14] Newton
sketch [Pilanci & Wainwright '15]



