QA

EPSRC MATHEMATICS SN
FOR VAST DIGITAL Q& k
=7

LONDON

MATHEMATICAL N AIS gi"n;fr{gl Ao AMAZON.COM
)

E
SOCIETY and Intelligent Software
150 YEARS

RESOURCES

Pioneering research
and skills

Lecture 5:
Semi-Stochastic Methods

Peter Richtarik

Graduate School in Systems, Optimization, Control and Networks
Belgium 2015

Jakub Konecny and P.R.
Semi-Stochastic Gradient Descent Methods
Adobe arXiv:1312.1666, 2013

Further Papers

Rie Johnson and Tong Zhang

Accelerating Stochastic Gradient Descent using Predictive Variance
Adobe Reduction
Neural Information Processing Systems, 2013

Jakub Konecny, Zheng Qu and P.R.
Semi-Stochastic Coordinate Descent
Adobe arXiv:1412.6293, 2014

Jakub Konecny, Jie Liu, P.R. and Martin Takac
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Adobe 'EEE Journal of Selected Topics in Signal Processing, 2015

Minimizing Average Loss

* Problems are often structured n'is big

rceRA

min < F(x) = %Zfz(a:‘)

* Arising in machine learning, signal processing,
engineering, ...

Examples

* Linear regression (least squares)

fi(x) = (a; x — b;)?

a;, b; are data

* Logistic regression (classification)

fi (QZ’) — lOg (1—|—eXp(1y7;a;.r:c))

a; are data, y; labels

Assumptions

Lipschitz constant

e [-smoothness

fila+h) < fil@) + {fi(x). B) + S]]

Strong convexity

* Strong convexity constant

F(x+h) 2 F(x) + (F(x),h) + 5|1

Page Rank
GO\ ’Sle big optimization

Web Videos Images News Shopping More ~ Search tools

About 101,000,000 results (0.27 seconds)

100% Uptime for Hadoop - wandisco.com
%) www.wandisco.com/hadoop ~

No Downtime No Data Loss No Latency 100% reliable realtime availability

Optimization and Big Data

www.maths_ed ac.uk/~prichtar/Optimization_and_Big_Data/ ~

The age of Big Data is here: data of huge sizes is becoming ubiquitous. With this comes
the need to solve optimization problems of unprecedented sizes.

Optimization and Big Data - School of Mathematics ...
www.maths_ed.ac_uk/~prichtar/Optimization_and_Big.. /schedule html ~
Big data optimization at SAS. 14:30-15:10, Olivier Fercoq (Edinburgh, UK).

IBM - Business Analytics and Optimization - Big Data ...

www.ibm_com/services/us/gbs/business-analytics/ ~ |IBM ~
Business analytics and big data consulting services from IBM help discover predictive
insights and turn them into operational reality to close the gap between ..

Recommender Systems

\(i1] Tube coldplay Q Upload m

Mix - Playlist Coldplay - Top 21
Coldplay Songs

A
sﬂ v COLDPLAY - BEST OF THE BEST

’ | ~\" ' (2hours,10minutes)

Best Of Bob Marley

/“

z .
CCLDP LAY

Best Of Lana Del Rey (+ Remixes)-
7 Audio + Video Megamix (2012)

Lana Del Rey - Born To Die The
Paradise Edition (BONUS "BURNING

Playlist Coldplay - Top 21 Coldplay Songs m U2 - The Best of 1980-1990 (Full

Cornell University
Library

L~
p

arXiv.org > cs > arXiv:1404.7152

Computer Science > Social and Information Networks

IGeotagging One Hundred Million Twitter] Accounts with
Total Variation Minimization

Ryan Compton, David Jurgens, David Allen y
(Submitted on 28 Apr 2014)

Geographically annotated social media is extremely valuable for modern information retrieval.
However, when researchers can only access publicly-visible data, one quickly finds that social
media users rarely publish location information. In this work, we provide a method which can
geolocate the overwhelming majority of active Twitter users, independent of their location
sharing preferences, using only publicly-visible Twitter data.

Our method infers an unknown user's location by examining their friend's locations. We frame
the geotagging problem as an optimization over ial network with a total variation-based
objective and provide a scalable andidistributed algorithmlror its solution. Furthermore, we
show how a robust estimate of the geographic dispersion of each user's ego network can be
used as a per-user accuracy measure, allowing us to discard poor location inferences and

; eincalifornia.blogspot.co.ul#?012/1 W gragi escent-algorithm-
r.-'.-.‘-'-.- }

Gradient Descent (GD)

* Update rule:
1
Tr+1 = T — 7 VEF (25)

 Complexity:
O (% log(l/E)) # iterations

* Cost of asingle iteration: T

stochastic gradient evaluations

Stochastic Gradient Descent (SGD)

stepsize

* Update rule:
Tit1 = Tk — heV fi(xk)

EV fi(z)] = VF(z)
 Complexity:

i = chosen uniformly
at random

stochastic

« Cost of a single iteration: 1 . .
gradient evaluations

Dream...

GD SGD

Combine the good stuff in a single algorithm

S2GD:
Semi-Stochastic

. Gradient Descent

AR | & AaF" 5 '.'
. }

Intuition

Gradient does not change drastically...

Can recycle older information?

Gradient Approximation

T~ T
VF(z) =|VF(x) - VF(;;:»)]+
Gradient change Already computed
We can try to estimate gradient

VF(x) %[Vfi(@ - Vfi(@]"‘

The S2GD Algorithm

Simplification. Size of the
inner loop (m) is random

fort=0tom —1do in theory, following a

Pick 7 € {1,2,...,n}, uniformly at random geometric rule.
i e

end for
.’l~3j+1 — X

VF(z) =V fi(z) - V fi(3)|+

Theorem: Convergence Rate

R () 2L - p)h
1 —(1—ph)™)(1—2LK) 1—2Lh

(T — (1= ph)™)() ,

For any fixed h, can be made Can be made arbitrarily

arbitrarily small by increasing m small, by decreasing h

cJ

o | F(3)—F(z4)
| R RS <

How to set the parameters 7, h,m ?

Setting the Parameters

< F(g{;)—F(:C*) Target error
4, < <
|:F($O)—F($*)i| ~ € tolerance

This is achieved by setting the parameters as:

of outer iterations] = ﬂog(l/eﬂ
1

tepsi h =

stepsize (2 n 46)L

of inner iterations m = 43k

Total complexity (# stochastic gradient evaluations):

j(n+43k) = O|(n+ k) log(1/e)

full gradient m inner iterations

H# outer iters)
evaluations

Complexity of GD vs S2GD

* S2GD complexity
O[(n+ £)log(1/e)]

* GD complexity

O [(nk)log(1/e€)]

Objective minus Optimum

Objective minus Optimum

EXpe rnme nt (logistic regression on: ijcnn, rcv, real-sim, url)

1 1 I
10 15 20 25 30
Passes through Data

1 1 I
10 15 20 25 30
Passes through Data

Objective minus Optimum

Objective minus Optimum

I 1 1
10 15 20 25 30
Passes through Data

I 1
5 10 15
Passes through Data

Related Methods

* SAG: Stochastic Average Gradient

(Mark Schmidt, Nicolas Le Roux, Francis Bach, 2013)
— Refresh single stochastic gradient in each iteration

— Need to store n gradients
— Similar convergence rate
— Cumbersome analysis
¢ (Aaron Defazio, Francis Bach, Simon Lacoste-Julien, 2014)
— Refined analysis
* MISO: Minimization by Incremental Surrogate
Optimization (ulien Mairal, 2014)
— Similar to SAG, slightly worse performance
— Elegant analysis

Related Methods

 SVRG: Stochastic Variance Reduced Gradient

(Rie Johnson, Tong Zhang, 2013)
— Arises as a special case in S2GD

* Prox-SVRG

(Tong Zhang, Lin Xiao, 2014)
— Extended to proximal setting

* EMGD: Epoch Mixed Gradient Descent

(Lijun Zhang, Mehrdad Mahdavi, Rong Jin, 2013)
— Handles simple constraints

— Worse convergence rate: O [(n + x2)log(1/e¢)]

Extensions

— Constraints [Prox-SVRG]

— Proximal setup [Prox-SVRG]

— Mini-batching [mS2GD]

— Efficient handling of sparse data [S2GD]
— Pre-processing with SGD [S2GD]

— Optimal choice of parameters [S2GD]

— Weakly convex functions [S2GD]

— High-probability result [S2GD]

— Inexact computation of gradients

S2CD: Semi-Stochastic
Coordinate Descent

Algorithm 1 Semi-Stochastic Coordinate Descent (S2CD)

parameters: m (max # of stochastic steps per epoch); h > 0 (stepsize parameter); z, € R? (starting point)
fork=0,1,2,... do
Compute and store V f(zx) = = >, Vfi(zk)
Initialize the inner loop: yx o < =k
Choose random length of the inner loop: let ¢ = T' € {1,2,...,m} with probability (1 — k)™ " /3
fort =0toty, —1do
Pick coordinate j € {1,2,...,d},with probability p,
Pick function index 7 from the set {¢ : L;; > 0} with probability g;;
Update the j** coordinate: yx ¢+1 < Ykt — hpj_1 (ij(a:k) + ﬁ (V;fi(yr,t) — V; fi(zk)))ej
end for
Reset the starting point: Ty 1 < Yk ¢,
end for

Complexity: O (nCyraq + RCcq log(1/e€)
S2GD: O (nCyrad + KCgraq) log(1/€)

mS2GD: S2GD with Mini-batching

Algorithm 1 mS2GD

1: Input: m (max # of stochastic steps per epoch); h > 0 (stepsize); zo € R? (starting point);
minibatch size b € [n]
fork=0,1,2,... do
Compute and store gx < Vf(zx) = = >, Vfi(zk)
Initialize the inner loop: yx 0 < Tk
Lettx <t € {1,2,...,m} with probability ¢; given by (6)
fort =0toty — 1do
Choose mini-batch Ay, C [n] of size b, uniformly at random
Compute a stoch. estimate of V f(y 1): vkt < gk + 7 ZzeAkt (Vfi(yr,t) — Vfi(zr))
9: Yk, t+1 < proth(yk t — h’Uk t)
10: end for
11: Set Tr+1 < Yk ty
12: end for

Sparse Data

* For linear/logistic regression, gradient copies
sparsity pattern of the example:

fi(z) = @(a;rx)
Viiz)=a; Véi(u), u=a;x
* But the update direction is fully dense

Vfi(x) — V(@) + VF()

sparse dense

 Can we do something about it?

S2GD: Implementation for Sparse Data

parameters: m = max # of stochastic steps per epoch, h = stepsize,
v = lower bound on p
for j=0,1,2,... do
95 < 2imn fi(25)
Yj,0 < Iy
xi < 0fore=1,2,....n > Store when a coordinate was updated last
time
Let t; < t with probability (1 —vh)™ /g for t =1,2,...,m
fort=0tot¢; —1do
Pick i € {1,2,...,n}, uniformly at random
for s € nnz(a;) do
(yjt)s < (yj.e)s — (t — xs)h(g;)s > Update what will be needed
Xs =t
end for

Yit+1 < Yo — b (fi(yje) — fi(x))) > A sparse update
end for

for s=1to ddo > Finish all the “lazy” updates
(yj,tj)s <~ (yj,tj)s - (tj - Xs)h(gj)s
end for
Tj+1 < Yjt,
end for

S2GD+

Observing that SGD can make reasonable progress
while S2GD computes the first full gradient, we can
formulate the following algorithm:

S2GD+

Run one pass of SGD

Use the output as the starting point of S2GD
Run S2GD

Objective minus Optimum

Objective minus Optimum

S2GD+ Experiment

P 1 1 1 1 1

o
o -

1
0 5 10

1 I I
10 15 20 25 30
Passes through Data

I 1
15 20 25 30
Passes through Data

Objective minus Optimum

Objective minus Optimum

0
10(

I 1 I
0 5 10 15 20 25 30
Passes through Data

Passes through Data

High Probability Result

* The result holds only in expectation

 Can we say anything about the concentration
of the result in practice?

Paying just a logarithmic cost

* Forany

log(i)
>
k — log(%)

we have:

F(zg)—F(x4)
P (F(:L’];)—F(x*) < 6) > 1—=p

Code

Efficient implementation for logistic regression
available at MLOSS

http://mloss.org/software/view/556/

