
Chapter 5

Path-Following Algorithms

In Chapters 1 and 2, we described the central path C, a path of points
(xv , )T , s.,-) that leads to the set Sl of primal-dual solutions. Points in S2 sat
isfy the KKT conditions (2.4), whereas points in C are defined by conditions
that differ from the KKT conditions only by the presence of a positive scalar
parameter T > 0, namely,

A T A + s = c, (5.1a)
Ax = b, (5.1b)
(x, s) > 0, (5.1c)
xis;, = T, i = 1, 2, ... ,n. (5.1d)

We showed in Chapter 2 that this system has a unique solution (x i , A ,-, s.,-) for
each T > 0 whenever the problem is feasible (although the KKT conditions,
for which Tr = 0 in (5.1d), may have multiple solutions).

Path-following methods follow C in the direction of decreasing T to the
solution set ft They do not necessarily stay exactly on C or even particularly
close to it. Rather, they stay within a loose but well-defined neighborhood
of C while steadily reducing the duality measure p to zero. Each search
direction is a Newton step toward a point on C, a point for which the duality
measure Tr is equal to or smaller than the current duality measure Y. The
target value r = o u is used, where a E [0, 1] is the centering parameter
introduced in Chapter 1.

The algorithms of this chapter generate strictly feasible iterates (xk, )k sk)

that satisfy the first three KKT conditions (5.1a), (5.1b), and (5.1c). They
deviate from the central path C only because the pairwise products xisi are
generally not identical, so the condition (5.1d) is not satisfied exactly. This
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84 Primal-Dual Interior-Point Methods

deviation is measured by comparing the pairwise products with their average
value µ = x T s/n = (E xisi)/n, using, for example, a scaled norm defined by

xlsl
^XSe — µe^^ = P — 

(XT S
 e . (5.2)

IL n
x^ s,^

In the literature, both the 2-norm and the 00-norm have been used in this
definition. For both norms, we can ensure that x and s are strictly positive
by requiring that (1/p)IIXSe — peil < 1. (If component i of x or s is zero,
we have IIXSe — µe > — µl = µ.)

By using the 2-norm in (5.2) and restricting the deviation to be less than
a constant 6 E [0, 1), we obtain the neighborhood N2(0) defined in (1.15):

NZ (0) = {(x, A , s) E .F° 1 (I XSe — µeí12 < Op}. (5.3)

By using the 00-norm in (5.2), we obtain the neighborhood Ná(6). We can
motivate another neighborhood A/T ('y) by noting that our chief concern is
to keep the products xisi from becoming too much smaller than their average
value p and therefore to prevent x and s from approaching the boundary of
the region (x, s) >_ 0 prematurely. We do not mind if some of these products
are somewhat larger than p, so the neighborhood N_ c ('y) uses a one-sided
bound on xzsi in place of the two-sided bound in (5.2), that is,

N_oo (y) _ {(x, ^, s) E ^° x2sz > yµ for all i = 1, 2, ... , n}, (5.4)

where ry E (0, 1).
Path-following methods follow Framework PD of Chapter 1. They select

one of the neighborhood types .N, Nom , or N and choose the centering
parameter Q and the step length parameter a to ensure that every iterate
(x k , ijk , sk ) stays within the chosen neighborhood.

Methods based on the neighborhood NZ have O(/log 1/E) complex-
ity, matching the complexity estimate for the potential-reduction method
of Chapter 4 (see Corollary 4.7). We describe two such methods in this
chapter: the short-step path-following algorithm (Algorithm SPF) and the
predictor-corrector algorithm (Algorithm PC). Algorithm SPF, the simplest
of all interior-point methods, chooses a constant value vk - Q for the center-
ing parameter and fixes the step length at Ûk - 1 for all iterations k. This
method was introduced by Kojima, Mizuno, and Yoshise [66] and Monteiro
and Adler [94]; our analysis follows the latter paper. Algorithm PC alter-
nates between two types of steps: predictor steps, which improve the valueD
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Path-Following Algorithms 85

of p but which also tend to worsen the centrality measure (5.2), and cor-
rector steps, which have no effect on the duality measure p but improve
centrality. Various aspects of this algorithm were foreshadowed by a num-
ber of authors, including Monteiro and Adler [94] and Sonnevend, Stoer,
and Zhao [122, 123], but it was first stated and analyzed in the simple form
used here by Mizuno, Todd, and Ye [92]. The algorithm is sometimes called
"Mizuno–Todd–Ye predictor-corrector" to distinguish it from the quite dif-
ferent Mehrotra predictor-corrector algorithm of Chapter 10.

A disadvantage of the N2(0) neighborhood is its restrictive nature. From
the definition (5.3), we have for (x, A, s) E .N(0) that

C x2sti 1 2  02 <1
-)

so that the sum of squares of all relative deviations of xisi from their average
value p cannot exceed 1. Even if 9 is close to its upper bound of 1, the neigh-
borhood N2(0) contains only a small fraction of the points in the strictly
feasible set .F°, so algorithms based on this neighborhood do not have much
room in which to maneuver and the amount of progress they can achieve at
each iteration is limited. The neighborhood N(ry), on the other hand, is
much more expansive: When ry is small, it takes up almost the entire strictly
feasible set .F°. We discuss a long-step path-following algorithm based on
this neighborhood—Algorithm LPF—that makes more aggressive (that is,
smaller) choices of centering parameter o, than does Algorithm SPF. Instead
of taking unit steps, however, Algorithm LPF performs a line search along
the direction obtained from (1.13), choosing ak to be as large as possible
subject to the restriction of remaining within N_ 00 (y). Algorithm LPF is
closely related to the very first polynomial primal-dual algorithm proposed
by Kojima, Mizuno, and Yoshise [67]. It is more closely related to practical
algorithms than are Algorithms SPF and PC, but its complexity bound is
worse: O(n log 1 /E) vs. O(/log 1/e).

Although the kth step taken by a path-following algorithm aims for the
point on the central path C whose duality measure is °kPk, it rarely hits
this target. The reason is that there is a discrepancy between the nonlinear
equations (5.1) and the linear approximation on which the Newton-like step
equations (1.13) are based. This discrepancy is quantified by the pairwise
products AxiAsz. Much of the analysis in this chapter is concerned with
finding bounds on these products and showing that the step (Oxk, OAk , A sk)

makes significant progress toward its target without actually scoring a direct
hit.D
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86 Primal-Dual Interior-Point Methods

In this chapter, we focus mainly on the convergence of the sequence
{µk} of duality measures to zero. We close the chapter by looking at a dif-
ferent, but related, issue: convergence of the primal-dual iteration sequences
{(x k , A k , sk )}. We prove that the x k and sk components are bounded and
that strictly complementary solutions to (2.1), (2.2) can be recovered from
the limit points of these sequences.

All three algorithms described in this chapter are remarkable for their
simplicity. Despite their strong theoretical properties, they are easy to state
and to analyze, once we are past the hurdle of a few tricky technical results.
They also provide the foundation for more powerful algorithms, including
algorithms that allow infeasible starting points and rapid local convergence.
Unfortunately, as we see in subsequent chapters, our claim of simple analysis
does not necessarily hold when these capabilities are added.

The Short-Step Path-Following Algorithm

We start with the short-step path-following algorithm, Algorithm SPF.
This method starts at a point (x ° , A° , s° ) E Ar2(0) and uses uniform values
ak = 1 and Uk = a, where 9 and v satisfy a certain relationship, described
below. All iterates (x k , A k , sk ) stay inside .N(9), and the duality measure
µk converges linearly to zero at the constant rate 1 — a.

The method is defined by filling in the Framework PD from Chapter 1.
We assign specific values to 0 and a, justifying them in the analysis that
follows.

Algorithm SPF
Given 0 = 0.4, a = 1 — 0.4//, and (x ° , A ° , s°) E NZ(0);
for k=0,1,2,...

set Uk = a and solve (1.13) to obtain (Oxk, AAk , A sk) ;
set (xk+l, Ak +1 , (Sk+1) = (x k , Ak , sk)

1
 + Qx k , AAk , ask) ;

end (for). 
J l l

This algorithm is illustrated in Figure 5.1, which plots the first few it-
erates of the algorithm projected into an unusual space. The horizontal
and vertical axes represent the pairwise products x1s1 and x2s2 for this
two-dimensional problem, so the central path is the line emanating from
(0, 0) at an angle of ir/4 radians. In this (nonlinear) space, the search direc-
tions transform to curves rather than straight lines. The solution is at the
origin, and the challenge facing the algorithm is to reach this point while
maintaining the feasibility conditions Ax = b, ATA + s = c at all iterates.D
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Path-Following Algorithms 87

x2 5 21

N2 (e)

path

xi s '

Figure 5.1. Iterates of Algorithm SPF, plotted in (xs) space.

The representations of the central path C and the neighborhoods N2 (9) and
N(ry) in Figures 5.1, 5.2, and 5.3 make it easy to see how step lengths are
affected by neighborhood boundaries.

Most of the effort in the analysis of Algorithm SPF goes into showing that
all its iterates stay in the neighborhood N2(0). We prove this claim below
in Lemmas 5.4 and 5.5 and Theorem 5.6. For now, let us take this claim on
trust and prove the global convergence and polynomial complexity results.
Linear convergence follows from Lemma 5.1, which we state in general terms
because it applies to all algorithms that obtain their search directions from
the system (1.12). The following notation is useful:

(x(a), A(a), s(ce)) = (x, A , s) + a(Ax, AA, As), (5.5a)
µ(a) = x(a)T S(a)/n. (5.5b)

Lemma 5.1 Let the step (Ax, AA, As) be defined by (1.12). Then

AxT Os = 0 (5.6)

and
µ(a) = (1 — a(1 — o)». (5.7)D
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88 Primal-Dual Interior-Point Methods

Proof. The first result is left as an exercise. For the second result, we
use the third row of (1.12), namely,

SAx + X Os = — XSe + ape. (5.8)

By summing the n components of this equation, we obtain sT Ox + xT Os =
—(1 — a)x T s. From this formula and (5.6), we obtain

x(o)Ts(o) = xT s + a(ST Ox + x T Os) + a2 AXT OS = xT s(1 — a(1 — a)),

giving the result. ❑
For Algorithm SPF, we have by our specific choices of ak and cak that

Pk+1 = Qµk = (1 — =) µk, k = 0,1, ... , (5.9)

so global linear convergence follows. The polynomial complexity result is an
immediate consequence of (5.9) and Theorem 3.2.

Theorem 5.2 Given E > 0, suppose that the starting point (x°, A ° , s° ) E
A/(0.4) in Algorithm SPF has

µo < 1 /€'

for some positive constant i. Then there is an index K with K = O('log 1/c)
such that

µk<6 forallk>K.

Proof. Because of (5.9), we can set 6 = 0.4 and w = 0.5 in Theorem 3.2,
and the result follows immediately. ❑

In the next section, we return to the task of showing that the iterates
(x k , ijk , s k ) stay inside N2(0).

Technical Results

The first result is purely technical; its proof can be found at the end of
the chapter.

Lemma 5.3 Let u and v be any two vectors in Rn with uT v > 0. Then

IIUVeII < 2 -3/2 11u + v11 2 ,

where
U = diag(ul, u2, ... , urm,), V = diag(vl, v2,. . . , vn).D
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Path-Following Algorithms 89

We showed in Lemma 5.1 that the inner product Ax T As = > AxiAsi
is zero, but there is no reason for the individual pairwise products to be
zero. In the next result, Lemma 5.4, we find a bound on the vector of these
pairwise products.

Lemma 5.4 If (x, A, s) E N2 (0), then

AXASeII G 02+ n(1—a)2 µ
23/2(1_0)

Proof. Recall the definition of the diagonal matrix D as X112S-1/2 from
(1.24). If we multiply (5.8) by (XS) -1/2 , we obtain

D-1 0x + DAs = (X  S) - 1 /2 (-XSe + Qµe). (5.10)

Now, apply Lemma 5.3 with u = D-1 0x and v = DAs to obtain

IIoXASeII = II (D- 'AX)(DAS)eIi
c 2-3/2 IID-pox + DAsII 2

= 2-3/2 11 (XS) -1/2 (—XSe+ ate) I 2
n

= 2-3/2 n (— xzs + orjU)
2

i=1 xisi

< 2-3/2 II XSe — aµe1I 2

mini xisi

Since (x, A , s) E M(9), we have

min xísi > (1 - B)µ.
2

For a bound on the numerator in (5.11), note first that

eT (X  Se - µe) = x T s - peT e = 0,

and therefore

from Lemma 5.3
from (5.10)

(5.11)

(5.12)

IIXSe — aµeII 2

= II(XSe—µe)+( 1 —a)µell 2

= IIXSe-µe11 2 +2(1 -a)peT (XSe-µe)+(1 -a) 2 92 eT e
< 02ti2 + (1 - o) 2µ2n. (5.13)D
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90 Primal-Dual Interior-Point Methods

We obtain the result by substituting (5.12) and (5.13) into (5.11). ❑
Lemma 5.10 is a result similar to Lemma 5.4 that is proven during our

analysis of Algorithm LPF. Lemma 5.4 gives a tighter bound, however, be-
cause the current point (x, A, s) lies in the more restrictive neighborhood
N2(9). The difference in the bounds obtained in Lemmas 5.4 and 5.10 ac-
counts for the difference in polynomial complexity estimate for Algorithms
SPF and LPF.

We know from Lemma 5.1 that p decreases linearly as we move along
the direction (Ax, AA, As). But how far does the point (x(a), A(a), s(a))
stray from the central path in the 2-norm measure? The answer is provided
by the following result, which is a simple consequence of Lemma 5.4.

Lemma 5.5 If (x, A , s) E N2(0), we have

IIX(a)S(a)e — p(a)eII
< 11— aI IIXSe — ,ell + a2 II 1XASeII (5.14a)

< Il— albµ+a2 02 +n(1 —Q)2
j ii . (5.14b)

23/2 (1 — 0)

Proof. We use the third row of (1.12) to resolve the components of
X(a)S(a)e — p(a)e. From this equation and Lemma 5.1, we have

x(a)s(a) — µ(a)
= xisi + a(si0xi + xizsi) + a2 0xi0si — (1 — a(1 — Q))µ
= x-s(1 — a) + amµ + a2 0xi0si — (1 — a + av»C
= xisi(1 — a) + JAX,Asi — (1 — a)µ.

Reassembling these components into a vector, we obtain

IIX(a)S(a)e — µ(a)eII

II Lxisi(1 — a) — (1 — a)µ + a20xZOsi 
I i l

< I1— al II XSe — µell + a2 IIzXASell

I1 — al 0p + a2 0
2 -1- n(1 — v)2

 µ. ❑23/2(1_0)

Theorem 5.6 defines a relationship between 0 and a and shows that even
a full step (a = 1) along the search direction will not take the new iterate
outside the neighborhood N2(0).D
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Path-Following Algorithms 91

Theorem 5.6 Let the parameters 0 E (0, 1) and a E (0, 1) be chosen to
satisfy

 02+n(1 —a)2 o'0. (5.15)
23/2 (1 — 0)

Then if (x, A , s) E N2 (9), we have

(x(a), A(a), s(a)) E N2(0)

for all a E [0,1].

Proof. Substituting (5.15) into (5.14b), we have for a E [0, 1] that

IIX(a)S(a)e — p(a)eJJ < (1 — a)Bµ + a2Q0µ
< (1 — a + aa)0µ since a E [0,1]

 

= 0µ(a) from (5.7). (5.16)

Hence the point (x(a), )(a), s(a)) satisfies the proximity condition for f2(0).
We still have to check that (x(a), )t(a), s(a)) E .F°. It is easy to verify

that
 Ax(a) = b, AT A(a) + s(a) = c.

To check the positivity condition (x(a), s(a)) > 0, note first that (x, s) _
(x(0), s(0)) > 0. It follows from (5.16) that

 xi(a)s2(a) > (1 — 0)u(a) = (1 — 0)(1 — a(1 — v))µ > 0, (5.17)

where the strict inequality is a consequence of 0 E (0, 1), a E (0, 1], and
or E (0, 1). Hence, we cannot have xi(a) = 0 or s(a) = 0 for any index
i when a E [0, 1]. Therefore (x(a), s(a)) > 0 for all a E [0, 1], and so
(x(a), A(a), s(a)) E F°, as claimed. ❑

At this point, the proof of validity of Algorithm SPF is nearly complete.
It remains only to check that our specific choice of parameters 0 and a,
namely,

 

9 = 0.4, a= 1-0.4/ / ,

satisfies the condition (5.15) for all n > 1. We leave this as an exercise.

The Predictor-Corrector Method

In Algorithm SPF, we chose aj - o to lie strictly between 0 and 1.
This choice achieves the twin goals of improving centrality and reducing
the duality measure µ into a single step. The predictor-corrector method,D
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92 Primal-Dual Interior-Point Methods

Algorithm PC, takes two different kinds of steps to achieve each of these
two goals. Successive iterations of Algorithm PC alternate between the two
types of steps, which are

• predictor steps (Uk = 0) to reduce p,

• corrector steps (Qk = 1) to improve centrality.

The other important ingredient in Algorithm PC is a pair of N2 neighbor-
hoods, nested one inside the other. Even-index iterates ((x k , A k , s k ), with
k even) are confined to the inner neighborhood, whereas odd-index iterates
are allowed to stray into the outer neighborhood, but not beyond.

The term predictor-corrector arose because of the analogy with predictor-
corrector algorithms in ordinary differential equations (ODEs). These algo-
rithms follow the solution trajectory of an initial-value ODE problem by
alternating between predictor steps (which move along a tangent to the tra-
jectory) and corrector steps (which move back toward the trajectory from
the predicted point).

We examine the first two iterations of Algorithm PC, which suffice to
illustrate the whole algorithm. Starting from a point (x ° , A° , s° ) in the inner
neighborhood, we calculate a predictor step by setting oo = 0. We move
along this direction until we reach the boundary of the outer neighborhood.
We stop at this point and define the new iterate (x', A, s'). A corrector step
is now calculated by setting al = 1. A unit step along this direction (a = 1)
leads to a new iterate (x 2 , A 2 , s2 ) that is back inside the inner neighborhood.
The two-step cycle then repeats, generating a sequence of iterates with the
even-index iterates inside the inner neighborhood and the odd-index iterates
on the boundary of the outer region. See Figure 5.2 for a depiction of this
process.

Predictor steps reduce the value of p by a factor of (1 — a), where a is
the step length. Corrector steps leave p unchanged, but by moving back into
the inner neighborhood, they give the algorithm more room to maneuver on
the next (predictor) iteration.

We obtain a formal specification of Algorithm PC by again filling in
Framework PD of Chapter 1. For simplicity, we define the inner neigh-
borhood to be M(0.25) and the outer neighborhood to be J(0.5). Other
choices are possible, provided that the two neighborhoods are related to each
other in a way that we define below.
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4

xZ s 2 central path

 

0 iterates

2
4

N2 (0.25)

2(0.5)

x^s I

Figure 5.2. Iterates of Algorithm PC, plotted in (xs) space.

Algorithm PC
Given (x° , )°, s°) E 2(0.25);
for k=0,1,2,...

if k is even
(* predictor step *)
solve (1.13) with vk = 0 to obtain (Axk, OAk , Ask) ;

choose ak as the largest value of a in [0, 1] such that

 (x k (a), A k (a), sk (a)) E A/(0.5); (5.18)

set (x'', A' 4 , sk+1 ) = (x k (ak), A k (ak), sk (ak)) ;
else

(* corrector step *)
solve (1.13) with Qk = 1 to obtain (Oxk, AAk , A sk) ;
set (xk+l , Ak+1 , 8k+1) = (xk , Ak , sk ) + (Oxk , A á k , Ask );

end (if)
end (for).

Our analysis of Algorithm PC is brief because most of the work has
already been done in the analysis of Algorithm SPF. The behavior of eachD
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94 Primal-Dual Interior-Point Methods

predictor step is described by the following lemma, which finds a lower bound
on its step length and therefore an estimate of the reduction in µ.

Lemma 5.7 Suppose that (x, A, s) E.2(0.25), and let (Ox, AA, Os) be cal-
culated from (1.12) with a = 0. Then (x(a), A(a), s(a)) E N2(0.5) for all
a E [0, á], where

1/2
Ee = min l (5.19)

2 ' 8^JAXOSeIIl

Hence, the predictor step has length at least d, and the new value of p is at
most (1 — á)µ.

Proof. Fiom (5.14a), we have

IX(a)S(a)e — µ(a)eII
< (1 — a)IIXSe — peil + a2 IIAXOSell
< (1 — a)IIXSe — peil + 8llOXOSeII ll LX /Sell from (5.19),

8(1
< 4 (1 — a)µ + 1 (1 — a)µ since (x, A , s) E N2(0.25),
— — a)

< 4 (1 — a)µ + 4 (1 — a)µ since a < 2,
< 2µ(a) by (5.7), with a = 0.

Hence, the point (x(a), A(a), s(a)) satisfies the proximity condition for A/(0.5).
The remaining strict feasibility conditions can be verified as in the proof of
Theorem 5.6. ❑

Lemma 5.4 can be used to find a lower bound on a. Setting 0 = 0.25
and a = 0 in this result, we obtain

µ > 2"(1-0.25) — 3^ > 0.16
8II/XOSell — 8((0.25) 2 + n) 1 + 16n — n

since n > 1. Hence, from (5.19) we have

2, ( 0.16 1 1/2 0.4
a > min l  =

 n  ;7•

Since predictor steps are taken at even-index iterates, this bound implies
that

< 0.4 1
 / 2k+1_ (1_/2k, k=0,2,4  .... (5.20)D
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Path-Following Algorithms 95

Corrector steps are described by the following lemma, which shows that
they return any point in .N(0.5) to the inner neighborhood M(0.25) without
changing the value of p.

Lemma 5.8 Suppose that (x, A , s) E .2(0.5), and let (Ox, AA, Os) be cal-
culated from (1.12) with a = 1. Then we have

(x(1), X(1), s(1)) E A/(0.25), µ(1) = p.

Proof. By substituting v = 1 into (5.7), we have immediately that a(1) _
p. (In fact, µ(a) = µ for all a E [0,1].)

By substituting 0 = 0.5, a = 1, and a = 1 into (5.14b), we find that

IIX(1)S(1)e — µ(1)eJI <t/4 = µ(1)/4.

Hence, (x(1), A(1), s(1)) satisfies the proximity conditions for .2(0.25). The
proof is completed by verifying that (x(1), A(1), s(1)) is also strictly feasible,
which follows as in Theorem 5.6. 0

As we see from this lemma, corrector iterations leave the value of the
duality measure µ unchanged. However, because the predictor iterations
achieve a substantial reduction in p (5.20), we can prove the same kind of
polynomial complexity result as for the short-step algorithm.

Theorem 5.9 Given e > 0, suppose that the starting point (x°, A°, sc) E
.2(0.25) in Algorithm PC has

µo < 1 /E'`

for some positive constant ic. Then there is an index K with K = O(,/ log 1/c)
such that

Ilk<E forallk>K.

Proof. Combining (5.20) with Lemma 5.8, we have

( 0.4\
11k+2 = µk+1  (1—  J µk , k = 0, 2, 4, ... .

Hence, the reduction requirement (3.10) of Theorem 3.2 is almost satisfied
when we set 6 = 0.4 and w = 0.5, except that the reduction in p occurs
over a span of two iterations instead of just one. The proof of Theorem 3.2
can be modified easily to handle this slightly different condition (as weD
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96 Primal-Dual Interior-Point Methods

showed in the exercises for Chapter 3) without affecting the conclusion of
the theorem. ❑

The predictor-corrector algorithm is a definite improvement over the
short-step algorithm because of the adaptivity that is built into the choice of
predictor step length. In Algorithm SPF, the values of v and a are fixed at
conservative values so that they confine the iterates (x k , Ak , sk ) to the neigh-
borhood A/(û) under all circumstances. By contrast, the predictor step
lengths of Algorithm PC are longer when the predictor direction is a good
search direction, that is, when it produces a large reduction in p without
moving away from the central path too rapidly. During the final stages of the
algorithm, the predictor directions become better and better, and Algorithm
PC is eventually able to use step lengths close to 1. In fact, convergence of
the duality measures µk to zero is superlinear, as we see in Chapter 7.

Despite its adaptivity, Algorithm PC is still restricted by the cramped
nature of the N2 neighborhoods, particularly during early iterations when
far from the solution. We now describe a long-step path-following algorithm
that combines flexibility in the choice of step length with the use of a more
liberal neighborhood N_,,(y).

A Long-Step Path-Following Algorithm

Algorithm LPF generates a sequence of iterates in the neighborhood
N— m (ry), which, for small values of y (say, y = 10-3 ), occupies most of
the set .F° of strictly feasible points. At each iterate of Algorithm LPF, we
choose the centering parameter Uk to lie between the two fixed limits Amin
and Um , where 0 < Umin < amax < 1. The search direction is, as usual,
obtained by solving (1.13), and we choose the step length ak to be as large
as possible, subject to staying inside (y).

A formal statement of the algorithm follows.

Algorithm LPF
Given y, Umin, Umax with 'y E (0, 1), 0 < Umin < Umax < 1,

and (x°, A ° , s° ) E N m ('y);
for k=0,1,2,...

choose ak E [amin, umax];
solve (1.13) to obtain (Ox', AA k , Ask );
choose ak as the largest value of a in [0, 1] such that

(x k (a), A c (a), sk (a)) 
E Ar 

o('Y); (5.21)D
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Path-Following Algorithms 97

X2 S 2 path

XIS'

Figure 5.3. Iterates of Algorithm LPF, plotted in (xs) space.

set (x' +i ),k+1, sk+l ) = (x k (ak), A k (ak), sk (ak));
end (for).

Typical behavior of the algorithm is illustrated in Figure 5.3. As this
figure shows (and the analysis confirms), the lower bound m;fl on the cen-
tering parameter ensures that each search direction starts out by moving off
the boundary of N_^ (y) and into the interior of this neighborhood. That is,
small steps along the search direction improve the centrality. Larger values
of a take us outside the neighborhood again, since the error of approximating
the nonlinear system (5.1) by the linear step equations (1.12) becomes more
pronounced as a increases. Still, we are guaranteed that a certain minimum
step can be taken before we reach the boundary of N_^ (ry). Lemma 5.10 and
Theorem 5.11 find a lower bound on aj and a corresponding estimate of the
reduction in p at each iteration. Theorem 5.12 states the usual polynomial
complexity result.

As an aside, we note that the representation of the neighborhoods .NZ
and .N_,, in Figures 5.1, 5.2, and 5.3 is identical—both neighborhoods are
demarcated by straight lines emanating from the origin. We see in the
exercises that these two kinds of neighborhoods are closely related whenD
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Primal-Dual Interior-Point Methods

n = 2 but that this relationship breaks down for larger values of n. The
two neighborhoods NZ and would have different shapes if we extended
Figures 5.1, 5.2, or 5.3 into a third dimension.

Lemma 5.10 If (x, A , s) E then

IDXASelI <23/2(1 + 1 /y)nµ.

Proof. As in the proof of Lemma 5.4, we have

JAXASelI < 2-312 11(XS) -12 (—XSe + ape)11 2 .

Expanding the squared Euclidean norm and using such relationships as
xT s = np and eT e = n, we obtain

OXOSe 2-3^ — X S 1/2e + Q X S 1 ^2 2II II < 2— O ( ) µ( )  e^^
n

< 2-3/2 XT s - 2QµeT e +Q2µ2 ^
z= 1 xisi

<_ 2-3 '2 xT s - 2QµeT e + Q2 µ2 n 1
I since xis2 > yµ

yµ
2

< 2-3^2 1 - 2cr + np
,y ]

< 2-3/2 (1 + 1/y)np,

as claimed. ❑

Theorem 5.11 Given the parameters y, amin , and am in Algorithm LPF,
there is a constant S independent of n such that

µk+l: (1- n)µk

for all k > 0.

Proof. We start by proving that

(xk (a), Ak (a), sk (a)) E (y) for all a E [0, 23/2
y 1 + y n ] , (5.22)

from which we deduce that ak is bounded below as follows:

> 23/2 0k 1Y (5.23)D
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Path-Following Algorithms 99

For any i = 1, 2, .. . , n, we have from Lemma 5.10 that

AxkLsZ I < IIAXkASke II2 <23'2(1 + 1/ry)nµk. (5.24)

Using (5.8), we have from xksk > -yµ, and (5.24) that

x(a)s(a) = (xi + aAxk)(sk + a. s)
= xks + a(x^Ask + skAxk) + a2 0xkOsk
>_ xks,(1 — a) + aak/Lk — a2 I x%Osk)
> 'y(1 — a)µk + aak/lk — a2 2 -3/2 (1 + 1/-y)nµk•

Meanwhile, we have from (5.7) that

µk(a) = (1 - a(1 - ak))µk•

From these last two formulas, we can see that the proximity condition

xk(a)s (a) ^ Wtk(a)

is satisfied, provided that

'y(1 - a)µ + aaik - a22-3/2 (1 + 1 /7)npk ? 7( 1 - a + acrk)µk•

Rearranging this expression, we obtain

aakµk( 1 - 'Y) ? a22-3/2nµk( 1 + 1/'Y),

which is true if
23/2 1-7

a< n Qky l+
ry

We have proved that (x k (a), A k (a), sk(a)) satisfies the proximity condition
for T(y) when a lies in the range stated in (5.22). We can also show, as
in the proof of Theorem 5.6, that (xk (a), A k (a), sk (a)) E .F° for all a in the
given range. Hence, we have proved (5.22) and therefore (5.23).

We complete the proof of the theorem by estimating the reduction in µ
on the kth step. From (5.7) and (5.23), we have

/Lk+1 = (1 — ak(1 — Qk))Nlk
3/2

< 1 - 2 7 1-7ak(1-Qk) µk. (5.25)
n 1+ryD
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100 Primal-Dual Interior-Point Methods

Now, the function a(1 — v) is a concave quadratic function of v, so on any
given interval it attains its minimum value at one of the endpoints. Hence,
we have

ak(1—ak) > min {amin( 1 — amin), amax( 1 — Umax)} for all ak E [amin, amax]•

The proof is completed by substituting this estimate into (5.25) and setting

S = 23/2 ry 1 — 2 min {amin( 1 — amin), amax( 1 — am )}. ❑
7

The complexity result is an immediate consequence of Theorems 5.11
and 3.2.

Theorem 5.12 Given E > 0 and -y E (0, 1), suppose that the starting point
(x ° , A ° , s° ) E N(ry) in Algorithm LPF has

Ito < 1 /E'

for some positive constant ic. Then there is an index K with K = O(n log 1/e)
such that

µk<E forallk>K.

Limit Points of the Iteration Sequence

The convergence results of this chapter have focused thus far on con-
vergence of the sequence {µk} to zero, without saying anything about the
sequence of iterates { (x k , ) k , sk ) } . The behavior of the iterate sequence is a
little more complicated than one might expect. The main issue is to show
that the sequence {(x k , sk )} has a limit point, because we can construct a
primal-dual solution from any such limit point by the following argument:
If K is the subsequence for which limk EK(x k , sk ) = (x*, s*), we have for all
kEKthat

Ax k = b, c — sk E Range(AT ), (xk, sk) > 0.

Taking limits and using the facts that Range(AT ) is closed and Ak j 0, we
find that (x*, s*) satisfies

Ax* = b, c — s* E Range(AT ), (x*, s*) > 0, (x *)T s* = 0.D
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Path-Following Algorithms 101

Hence, c — s* = AA* for some A'. Comparing these conditions with the KKT
conditions (1.4), we conclude that (x*, A*, s*) E S2 as claimed.

In this section, we look at the limiting behavior of the sequence {(x c , sic)}
generated by each algorithm in this chapter. We show that the sequence is
bounded and therefore has at least one limit point. Further, all limit points
correspond to strictly complementary solutions, that is, solutions (x*, A*, s*)
for which

 xi > 0 (i E B), si > 0 (i E N), (5.26)

where B U N is the partition of {1, 2, ... , n} defined in (2.11).

Lemma 5.13 Let po > 0 and ry E (0, 1). Then for all points (x, A , s) with

 (x, A, s) E N ^('Y) C F' µ < µo (5.27)

(where p = x T s/n), there are constants Co and C3 such that

 II (x, s) II <_ Co, (5.28)
 0 < xi < p/C3 (i E N), 0 < si < p/C3 (i E B), (5.29)
 Si > C3'y (i E N), xi > C3ry (i E B). (5.30)

Proof. The first result (5.28) follows immediately from Lemma 2.5 if we
set K = npo.

For (5.29) and (5.30), let (x*, A*, s*) be any primal-dual solution. Since
this solution and the point (x, A, s) are both feasible, we have

Ax = Ax* = b, ATA  +s= ATA* +s* =

 therefore

(x — x* ) T (s — s * ) = —(x — x* ) T AT (íA — A* ) = 0.

Since (2.11) implies that xi = 0 for i E N and si = 0 for i E B, we can
rearrange this expression to obtain

np = x T s* + sT x * = E xisi + i: six'.
 iEJ%/ iE13

Since each term in the summations is nonnegative, each term is bounded by
np. Hence, for any i E N with si > 0, we have

0<xis2 <np = 0<xi< np. (5.31)
siD
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102 Primal-Dual Interior-Point Methods

Since the expression (5.31) holds for any solution (x*, )*, s*) with si > 0,
we choose the one that yields the tightest bound on xi, that is,

n
0<xi< *µ.

sup(A* y *) EcD si

Taking the maximum of this bound over the indices i E N, we obtain

n
max xi < µ.
iEiv miniENsuP(A*,s*)ES2p sZ

Similarly,
0<maxsi< n µ

iE6 miniEB SUPX*ES2p xi
Combining the two estimates, we obtain

max max xi, max si < n min min sup x, min sup si µiEJV ic-B ) iEB x*Elp iE. (A* s* ) ES D
_ n

E(A, b, c) µ'

where e(A, b, c) was defined in (3.5). The result (5.29) follows immediately
when we set

e(A b c)
C3 = (5.32)

n

Existence of a strictly complementary solution (Theorem 2.4) guarantees
that e(A, b, c) > 0, so C3 is positive.

Finally, since (x, A , s) E N_oo(y), we have xisi >_ ryµ for all i = 1, 2, ... , n.
Hence, we have from (5.29) that

Si? yµ _> rye` = C3y for all i E N.
xi µ/C3

In the same way, we can show that xi > C3ry for i E B, proving (5.30). 0

Theorem 5.14 Let {(x k , .fik , sk )} be a sequence of iterates generated by Al
gorithm SPF, PC, or LPF, and suppose that Pk J, 0 as k —+ oo. Then the
sequence {(xk , sk )} is bounded and therefore has at least one limit point.
Each limit point corresponds to a strictly complementary primal-dual solu-
tion.D
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Path-Following Algorithms 103

Proof. All three algorithms confine their iteration sequences to a neigh-
borhood N-oo (y) for some ry > 0. In Algorithm SPF, we have

(x k , A k , sk ) E.M2(0.4) C N_oo (0.4).

In Algorithm PC, all iterates belong to N2(0.5), which is a subset of N_á (0.5),
whereas in Algorithm LPF, the value of ry is chosen explicitly. Also, the se-
quences {µk} are nonincreasing for each method; in particular, µk <_ µo
for all k > 0. Hence each iterate (x k , A k , sk ) satisfies the assumptions of
Lemma 5.13.

Boundedness of {(x k , sk )} follows from (5.28). If (x*, s*) is a limit point,
we can find A* such that (x*, A*, s*) E 11 (see the discussion above).
Because of (5.30), we must have

 s, >C3y>0 (iEN), x%>C3y>0 (i13),

so the solution is strictly complementary. ❑
When the problem has a unique primal-dual solution (x*, A*, s*), it fol-

lows immediately from Theorem 5.14 that the iteration sequences for all
three algorithms converge to this point.

Proof of Lemma 5.3

We return to the technical lemma stated earlier in the chapter, which
claimed that for any vector pair u, v with uT v > 0, we have

IIUVeII <_ 2-3/2 11u + v11 2

First, note that for any two scalars a and 3 with a,3 > 0, we have from the
algebraic-geometric mean inequality that

1 2Ia + /3I. (5.33)

Since uT v > 0, we have

0 < uT V =  uivi + E uivi = l uivi l - juivi I , (5.34)
uiv;>O uivz<0 iEP iEM

where we partitioned the index set {1, 2, ... , n} as

 P={i1uivi>0}, M ={ iI uivi <0}.D
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Now,

IIUVeII = (II [ujvi]iEPII 2 + II[uivi]iEMII 2) 1/2

2<_ (II [uivi]iEP II1 + II [uivi]iEM Ii l) 1/2 since 11 • 11 2 < 11 • Iii

<_ (2 II[uivi]iEP112)1/2 from (5.34)

< V I  (u2 -f- vi) 2J ( from (5.33)
sEP 1

= 2-3/2 >(u + vi) 2
iEP
n

< 2-3/2 ^(ui + vi) 2
i=1

= 2-3/2 11u + v11 2 ,
completing the proof.

Notes and References

Xu [152] has described a way to avoid the tight confines of the neigh-
borhood N2(0), 0 < 1 without sacrificing O(-/hL) complexity. He uses the
neighborhood N2(0) n N-.('y), where -y > 0 is small but 0 may be much
larger than 1. Steps in this neighborhood can be almost as long as in the
neighborhood alone, and the strategy has been successfully imple-
mented by Xu, Hung, and Ye [153].

Lemma 5.13 and Theorem 5.14 are due to Guler and Ye [50]. The set
of limit points of {(x", s k )} actually forms a continuum (see Tapia, Zhang,
and Ye [126, Theorem 4.1]). Convergence of {(x k , sk )} is discussed further
in Chapters 6 and 7.

Exercises

1. Check that the choices of 0 and o used in Algorithm SPF satisfy the
relationship (5.15).

2. Prove (5.6). Does this result still hold for the infeasible step (1.20)?

3. For a given 0 E (0, 1), the problem of finding a value of a that satis-
fies (5.15) while maximizing the decrease in µ for a unit step can be
posed as a simple constrained optimization problem. Write down this
problem. Does this problem have a solution for all 0 E (0, 1)? Explain.
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Path-Following Algorithms 105

4. Theorem 5.6 shows that the unit step for Algorithm SPF keeps the
new iterate inside the neighborhood N2(0). Express the problem of
finding the maximal a such that IIX(a)S(a)e — µ(a)eI^2 G_ 0µ(a) as a
quartic polynomial in a.

5. In Algorithms SPF and LPF, is there any benefit to taking a step
of length longer than 1, if such a step remains inside the required
neighborhood?

6. In Algorithm PC, we chose the inner and outer neighborhoods to be
.2(0.25) and .2(0.5), respectively. In this exercise, you are asked to
consider more general neighborhoods N2(0in) and J'12(eout) and look
for conditions on the scalars Bi„ and °out for which the analysis of the
algorithm continues to hold.

(i) Redefine the lower bound á on the predictor step length obtained
in Lemma 5.7 for arbitrary values of Bin and Bout . That is, find a
value rl such that

( i/z
=min 2' ( IIAXASe^^ )

(ii) Modify the analysis of Lemma 5.8 to find the relationship between
Bin and 0o„t that guarantees that the corrector step returns to the
inner neighborhood.

(iii) What is the largest value of fl out for which the gin of part (ii)
satisfies Bi„ E (0, 0o„t )?

7. Prove that when n = 2, the neighborhoods N2(0) and N_á(1— 0/^)
are identical. Does a similar relationship hold when n = 3?
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