
Randomized Coordinate Descent
for Big Data Optimization

(Theory)

c©2014 Peter Richtárik

University of Edinburgh

Grenoble, June 11-12, 2014

1 / 116

Contents I

1. NSync
Samplings
Assumptions
Complexity
Proof

2. Blocks
Decomposition
Projection
Norms

3. Samplings
Definition
Sampling Zoo
Basic Identity
Consequences of the Basic Identity
Identities for Uniform Samplings
Identities for Doubly Uniform Samplings

Elementary Samplings
Probability Matrices

2 / 116

Contents II
Sampling Identity for a Quadratic
Distributed Sampling

4. Functions
Model 1
Model 2
Model 3

5. ESO
Model 1

General ESO
Bounds
Eigenvalues of Probability Matrices
ESO 2
ESO2: Bounds
Product Sampling
τ -Nice Sampling
Distributed τ -Nice Sampling
Distributed NSync

Model 3
ESO
DSO

ESO and Lipschitz Continuity
3 / 116

Contents III
6. APPROX

Algorithm
Complexity
4 Lemmas
Lemmas
Proof of the Main Theorem

4 / 116

Lecture 1
NSync

5 / 116

The Problem

In order to quickly illustrate the important topics and notions that we will
study in more depth later, we first consider the following simple problem:

minimize f (x) (1)

subject to x ∈ Rn

We will assume that f is:

I “smooth” (will be made precise later)

I strongly convex

6 / 116

Introduction to Parallel Coordinate Descent

This NSync algorithm was introduced in a brief 5p paper by R. and
Takáč [11] and was meant to be an entry point to the field of parallel
coordinate descent.

Algorithm (NSync)

Input: initial point x0 ∈ Rn

subset probabilities {pS} for each S ⊆ [n]
def
= {1, 2, . . . , n}

stepsize parameters v1, . . . , vn > 0
for k = 0, 1, 2, . . . do

a) Select a random set of coordinates Sk ⊆ [n] following the law

P(Sk = S) = pS , S ⊆ [n]

b) Update (possibly in parallel) selected coordinates:

xk+1 = xk −
∑
i∈Sk

1

vi
(eT

i ∇f (xk))ei

end for
7 / 116

Two More Ways of Writing the Update Step

1. Coordinate-by-coordinate:

x
(i)
k+1 =

{
x

(i)
k , i /∈ Sk ,

x
(i)
k −

1
vi

(∇f (xk))(i), i ∈ Sk .

2. Via projection to a subset of blocks: If for h ∈ Rn and S ⊆ [n]
we write

h[S]
def
=
∑
i∈S

h(i)ei ,

then

xk+1 = xk + h[Sk] for h = −(Diag(v))−1∇f (xk).

We shall interchangeably write:

∇i f (x) = eT
i ∇f (x) = (∇f (x))(i)

8 / 116

Samplings
Definition 1 (Sampling)
By the name sampling we will refer to a set valued random mapping
with values being subsets of [n] = {1, 2, . . . , n}. For sampling Ŝ we
define p = (p1, . . . , pn)T , where

pi = P(i ∈ Ŝ) (2)

We say that Ŝ is proper, if pi > 0 for all i .

Lemma 2 ([5])

n∑
i=1

pi = E[|Ŝ |]. (3)

Proof.

n∑
i=1

pi
(2)
=

n∑
i=1

∑
S⊆[n]:i∈S

pS =
∑
S⊆[n]

∑
i :i∈S

pS =
∑
S⊆[n]

pS |S | = E[|Ŝ |].

9 / 116

Assumption: Strong convexity

Assumption 1 (Strong convexity)
f is differentiable and γ-strongly convex with respect to the norm ‖ · ‖s
(weighted Euclidean norm with weights s = (s1, . . . , sn)T > 0). That is,
for all x , h ∈ Rn,

f (x + h) ≥ f (x) + 〈∇f (x), h〉+ γ
2 ‖h‖

2
s . (4)

Notation used above:

‖h‖s
def
=

(
n∑

i=1

si (h(i))2

)1/2

(weighted Euclidean norm)

10 / 116

Assumption: Expected Separable Overapproximation
Assumption 2 (ESO)
Assume Ŝ is proper and that for some vector of positive weights
v = (v1, . . . , vn) and all x , h ∈ Rn,

E[f (x + h[Ŝ])] ≤ f (x) + 〈∇f (x), h〉p + 1
2‖h‖

2
p•v . (5)

For simplicity, we will often write

(f , Ŝ) ∼ ESO(v).

Note that the ESO parameters v , p depend on both f and Ŝ .

Notation used above:

h[S]
def
=

∑
i∈S

h(i)ei (projection of h ∈ Rn onto coordinates i ∈ S)

〈g , h〉p
def
=

n∑
i=1

pig
(i)h(i) (weighted inner product)

p • v
def
= (p(1)v (1), . . . , p(n)v (n)) (Hadamard product)

11 / 116

Complexity of NSync

Theorem 3 ([11])
Let x∗ be a minimizer of f . Let Assumptions 1 and 2 be satisfied for a
proper sampling Ŝ (that is, (f , Ŝ) ∼ ESO(v)). Choose

I starting point x0 ∈ Rn,

I error tolerance 0 < ε < f (x0)− f (x∗) and

I confidence level 0 < ρ < 1.

If {xk} are the random iterates generated by NSync where the random
sets Sk are iid following the distribution of Ŝ, then

K ≥ Λ

γ
log

(
f (x0)− f (x∗)

ερ

)
⇒ P(f (xK)− f (x∗) ≤ ε) ≥ 1− ρ, (6)

where

Λ
def
= max

i=1,...,n

vi
pi si

≥
∑n

i=1
vi
si

E[|Ŝ |]
. (7)

12 / 116

What does this mean?
I Linear convergence. NSync converges linearly (i.e., logarithmic

dependence on ε)

I High confidence is not a problem. ρ appears inside the logarithm,
so it easy to achieve high confidence (by running the method longer;
there is no need to restart)

I Focus on the leading term. The leading term is Λ; and we have
closed from expression for it in terms of

I parameters v1, . . . , vn (which depend on f and Ŝ)
I parameters p1, . . . , pn (which depend on Ŝ)

I Parallelization speedup. The lower bound suggests that if it was
the case that the parameters vi did not grow with increasing

τ
def
= E[|Ŝ |], then we could potentially be getting linear speedup in τ

(average number of updates per iteration).
I So we shall study the dependence of vi on τ (this will depend on

f and Ŝ)
I As we shall see, speedup does is often guaranteed for sparse

problems.

Question: How to design sampling Ŝ so that Λ is minimized?
13 / 116

Proof of Theorem 3 - Part I

I If we let µ
def
= γ/Λ, then

f (x + h)
(4)

≥ f (x) + 〈∇f (x), h〉+ γ
2 ‖h‖

2
s

≥ f (x) + 〈∇f (x), h〉+ µ
2 ‖h‖

2
v•p−1 . (8)

Indeed, µ is defined to be the largest number for which
γ‖h‖2

s ≥ µ‖h‖2
v•p−1 holds for all h. Hence, f is µ-strongly convex

with respect to the norm ‖ · ‖v•p−1 .

I Let x∗ be a minimizer of f , i.e., an optimal solution of (1).
Minimizing both sides of (8) in h, we get

f (x∗)− f (x)
(8)

≥ min
h∈Rn
〈∇f (x), h〉+ µ

2 ‖h‖
2
v•p−1

= − 1
2µ‖∇f (x)‖2

p•v−1 . (9)

14 / 116

Proof of Theorem 3 - Part II
I Let hk

def
= −v−1 • ∇f (xk). Then xk+1 = xk + (hk)[Ŝ], and utilizing

Assumption 2, we get

E[f (xk+1) | xk] = E
[
f (xk + (hk)[Ŝ]) | xk

]
(5)

≤ f (xk) + 〈∇f (xk), hk〉p + 1
2‖hk‖2

p•v

= f (xk)− 1
2‖∇f (xk)‖2

p•v−1

(9)

≤ f (xk)− µ(f (xk)− f (x∗)).

I Taking expectations in the last inequality,

E[f (xk)− f (x∗)] ≤ (1− µ)k(f (x0)− f (x∗)). (10)

I Using Markov inequality, (10) and the definition of K , we finally get

P(f (xK)− f (x∗) ≥ ε) ≤ E[f (xK)− f (x∗)]/ε

(10)

≤ (1− µ)K (f (x0)− f (x∗))/ε
(6)

≤ ρ.

15 / 116

Proof of Theorem 3 - Part III

I Finally, let us now establish the lower bound on Λ. Letting

∆
def
= {p′ ∈ Rn : p′ ≥ 0,

∑
i p′i = E[|Ŝ |]}, we have

Λ
(7)
= max

i

vi
pi si

(3)

≥ min
p′∈∆

max
i

vi
p′i si

=
1

E[|Ŝ |]

n∑
i=1

vi
si
,

where the last equality follows since optimal p′i is proportional to
vi/si .

16 / 116

Lecture 2
BLOCKS

17 / 116

The idea

We now assume the decision vector x has N coordinates

x ∈ RN

which we partition into n “blocks”.

Idea: We let the algorithm operate on “block level” instead ⇒ block
coordinate descent. That is, at iteration k ,

I a random subset Sk of blocks [n] = {1, 2, . . . , n} is chosen

I and updated.

18 / 116

What do we gain by introducing blocks?

I Flexibility: We can partition the coordinates any way we like for
any reason we might have.

I Sometimes block structure is implied by the problem at hand. In L1
optimization, one often chooses Ni = 1 for all i . In group LASSO
problems, groups correspond to blocks.

I Generality: By allowing for general block structure, we
simultaneously analyze several classes of algorithms:

I coordinate descent (if we choose Ni = 1 for all i)
I block coordinate descent (if we choose Ni > 1 and n > 1)
I gradient descent (if we choose n = 1)
I fast (O(1/k2)) versions of the above. . .

I Efficiency: It is sometimes more efficient to have blocks because:
I this leads to a more “chunky” workload for each processor if we

think that each processor handles one block
I one can design block-norms based on data, which leads to better

approximation and hence faster convergence
I one can try to optimize the partitioning of coordinates to blocks

(say, by trying to optimize complexity bounds, which depend on
block structure)

19 / 116

Block Decomposition of RN

I Partition. Let H1, . . . ,Hn be a partition of the set of
coordinates/variables {1, 2, . . . ,N} into n nonempty subsets. Let
Ni = |Hi |.

I Projection/lifting matrices. Let Ui ∈ RN×Ni be the column
submatrix of the N ×N identity matrix corresponding to coordinates
in Hi .

I Projection of RN to RNi For x ∈ RN , define

x (i) def
= UT

i x ∈ RNi , i = 1, 2, . . . , n.

Notice that x (i) is the block of coordinates of x belonging to Hi .

I Lifting RNi to RN . Given x (i) ∈ RNi , notice that the vector
s = Uix

(i) ∈ RN has all blocks equal to 0 except for block i , which is
equal to x (i). That is,

s(j) =

{
x (j) j = i

0 otherwise.

20 / 116

Examples - Part I

Example 4
1. Single block.

n = 1; H1 = {1, 2, . . . ,N}; U1 = I

2. Blocks of size 1. This is the setting already introduced in NSync:

N = n; Hi = {i}; Ui = ei

3. Two blocks of different sizes. Let N = 5 (5 coordinates), n = 2 (2
blocks) and let the partitioning be given by

H1 = {1, 3}, H2 = {2, 4, 5}.

Then

U1 =

1 0
0 0
0 1
0 0
0 0

 U2 =

0 0 0
1 0 0
0 0 0
0 1 0
0 0 1

21 / 116

Examples - Part II

For x ∈ RN = R5 we have

x(1) = UT
1 x =

(
1 0 0 0 0
0 0 1 0 0

)
x1

x2

x3

x4

x5

 =

(
x1

x3

)
∈ RN1 = R2

x(2) = UT
2 x =

 0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

x1

x2

x3

x4

x5

 =

 x2

x4

x5

 ∈ RN2 = R3

On the other hand, for any x ∈ R5:

U1x
(1) = U1(UT

1 x) =

1 0
0 0
0 1
0 0
0 0

(

x1

x3

)
=

x1

0
x3

0
0

 ∈ R5

22 / 116

Examples - Part III

and

U2x
(2) = U2(UT

2 x) =

0 0 0
1 0 0
0 0 0
0 1 0
0 0 1

 x2

x4

x5

 =

0
x2

0
x4

x5

 ∈ R5

So, we have the unique decomposition:

x = U1x (1) + U2x (2)

The next simple result will formalize this.

23 / 116

Block Decomposition: Formal Statement
Proposition 1 (Block Decomposition)
Any vector x ∈ RN can be written uniquely as

x =
n∑

i=1

Uix
(i), (11)

where x (i) ∈ RNi . Moreover,

x (i) = UT
i x . (12)

Proof.
Fix any x ∈ RN . Noting that

∑
i UiU

T
i is the N × N identity matrix, we

have x =
∑

i UiU
T
i x , where UT

i x ∈ RNi . Let us now show uniqueness.

Assume that x =
∑

i Uix
(i)
1 =

∑
i Uix

(i)
2 , where x

(i)
1 , x

(i)
2 ∈ RNi . Since

UT
j Ui =

{
Nj × Nj identity matrix, if i = j ,

Nj × Ni zero matrix, otherwise,
(13)

we get 0 = UT
j (x − x) = UT

j

∑
i Ui (x

(i)
1 − x

(i)
2) = x

(j)
1 − x

(j)
2 , for all j .

24 / 116

Projection onto (a subspace spanned by) a set of blocks

For h ∈ RN and ∅ 6= S ⊆ [n]
def
= {1, 2, . . . , n}, we write

h[S] =
∑
i∈S

Uih
(i). (14)

In words, h[S] is a vector in RN obtained from h ∈ RN by zeroing out the
blocks that do not belong to S . Hence:

(h[S])
(i) =

{
h(i), i ∈ S ,

0, i /∈ S .

25 / 116

Norms in RNi and RN

With each block i ∈ [n] we associate a positive definite matrix
Bi ∈ RNi×Ni and a scalar vi > 0, and equip RNi and RN with the norms

‖x (i)‖(i)
def
= 〈Bix

(i), x (i)〉1/2, ‖x‖v
def
=
(∑n

i=1 vi‖x (i)‖2
(i)

)1/2

. (15)

The corresponding conjugate norms, defined by

‖s‖∗ = max{〈s, x〉 : ‖x‖ ≤ 1}

are given by

‖x (i)‖∗(i)
def
= 〈B−1

i x (i), x (i)〉1/2, ‖x‖∗v =

(∑n
i=1

1
vi

(
‖x (i)‖∗(i)

)2
)1/2

.

(16)

26 / 116

Norms: Examples

Example 5
Consider the following extreme special cases:

1. Single block. Let n = 1, v = 1 and B be a positive definite matrix.
Then

‖x‖(1) = ‖x‖v = 〈Bx , x〉1/2, x ∈ RN .

For instance, if f (x) = 1
2‖Ax − b‖2 we may choose:

I B = ATA (assuming ATA is positive definite)
I B = Diag(ATA) (assuming no column in A is zero, ATA is positive

definite)

2. Blocks of size one. Let Ni = 1 for all i and set Bi = 1. Then

‖t‖(i) = ‖t‖∗(i) = |t|, t ∈ R

and

‖x‖v =

(
n∑

i=1

vi (x (i))2

)1/2

, x ∈ RN .

27 / 116

Exercises

Exercise 1
Show that ‖ · ‖∗v , as defined above, is indeed the conjugate norm of ‖ · ‖v .

Exercise 2
Generalize NSync to the block setting and provide a complexity analysis.

28 / 116

Lecture 3
SAMPLINGS

29 / 116

Samplings: Definition

Definition 6 (Sampling)
Sampling is a random set-valued mapping Ŝ with values in 2[n], the
collection of subsets of [n] = {1, 2, . . . , n}.

I A sampling Ŝ is uniquely characterized by the probability mass
function

P(S)
def
= P(Ŝ = S), S ⊆ [n]; (17)

that is, by assigning probabilities to all subsets of [n].

I Let
pi

def
= P(i ∈ Ŝ). (18)

I Let
pij

def
= P(i ∈ Ŝ , j ∈ Ŝ) =

∑
S:{i,j}⊂S

P(S). (19)

30 / 116

Sampling Zoo - Part I

Why consider different samplings?

1. Basic Considerations. It is important that each block has a
positive probability of being chosen, otherwise an algorithm will not
be able to update some blocks and hence will not converge to
optimum. For technical/sanity reasons, we define:

I Proper sampling. pi = P(i ∈ Ŝ) > 0 for all blocks i ∈ [n]
I Nil sampling: P(Ŝ = ∅) = 1
I Vacuous sampling: P(Ŝ = ∅) > 0

2. Parallelism. Choice of sampling affects the level of parallelism:
I E[|Ŝ |] is the average number of updates performed in parallel in one

iteration; and is hence closely related to the number of iterations.
I serial sampling: picks one block:

P(|Ŝ | = 1) = 1

We call this sampling serial although nothing prevents us from
computing the actual update to the block, and/or to apply he
update in parallel.

31 / 116

Sampling Zoo - Part II

I fully parallel sampling: always picks all blocks:

P(Ŝ = {1, 2, . . . , n}) = 1

3. Processor reliability. Sampling may be induced/informed by the
computing environment:

I Reliable/dedicated processors. If one has reliable processors, it is
sensible to choose sampling Ŝ such that P(|Ŝ | = τ) 1 for some τ
related to the number of processors.

I Unreliable processors. If processors given a computing task are busy
or unreliable, they return answer later or not at all - it is then
sensible to ignore such updates and move on. This then means that
Ŝ varies from iteration to iteration.

4. Distributed computing. In a distributed computing environment it
is sensible:

I to allow each node as much autonomy as possible so as to minimize
communication cost,

I to make sure all nodes are busy at all times

32 / 116

Sampling Zoo - Part III

This suggests a strategy where the set of blocks is partitioned, with
each node owning a partition, and independently picking a “chunky”
subset of blocks at each iteration it will update, ideally from local
information.

5. Uniformity. It may or not may make sense to update some blocks
more often than others:

I uniform samplings:

P(i ∈ Ŝ) = P(j ∈ Ŝ) for all i , j ∈ [n]

I doubly uniform (DU): These are samplings characterized by:

|S ′| = |S ′′| ⇒ P(Ŝ = S ′) = P(Ŝ = S ′′) for all S ′, S ′′ ⊆ [n]

I τ -nice: DU sampling with the additional property that

P(|Ŝ | = τ) = 1

I distributed τ -nice: will define later
I independent sampling: union of independent uniform serial samplings

I nonuniform samplings

33 / 116

Sampling Zoo - Part IV

6. Complexity of generating a sampling. Some samplings are
computationally more efficient to generate than others: the potential
benefits of a sampling may be completely ruined by the difficulty to
generate sets according to the sampling’s distribution.

I a τ -nice sampling can be well approximated by an independent
sampling, which is easy to generate. . .

I a general sampling, as considered in NSync, will be hard to generate

34 / 116

Basic Identity

Theorem 7 (Sum over a random index set)
Let ∅ 6= J, J1, J2 ⊂ [n] and Ŝ be any sampling. If θi , i ∈ [n], and θij , for
(i , j) ∈ [n]× [n] are real constants, then1

E

 ∑
i∈J∩Ŝ

θi

 =
∑
i∈J

piθi ,

E

 ∑
i∈J∩Ŝ

θi | |J ∩ Ŝ | = k

 =
∑
i∈J

P(i ∈ Ŝ | |J ∩ Ŝ | = k)θi , (20)

E

 ∑
i∈J1∩Ŝ

∑
j∈J2∩Ŝ

θij

 =
∑
i∈J1

∑
j∈J2

pijθij . (21)

1Sum over an empty index set will, for convenience, be defined to be zero.
35 / 116

Proof of Theorem 7

We prove the first statement, proof of the remaining statements is
essentially identical:

E

 ∑
i∈J∩Ŝ

θi

 (17)
=
∑
S⊂[n]

(∑
i∈J∩S

θi

)
P(Ŝ = S)

=
∑
i∈J

∑
S :i∈S

θiP(Ŝ = S)

=
∑
i∈J

θi
∑
S :i∈S

P(Ŝ = S)

=
∑
i∈J

piθi .

36 / 116

Consequences of Theorem 7

Corollary 8 ([5])
Let ∅ 6= J ⊂ [n] and Ŝ be an arbitrary sampling. Further, let a, h ∈ RN ,
w ∈ Rn

+ and let g be a block separable function, i.e., g(x) =
∑

i gi (x (i)).
Then

E
[
|J ∩ Ŝ |

]
=

∑
i∈J

pi , (22)

E
[
|J ∩ Ŝ |2

]
=

∑
i∈J

∑
j∈J

pij , (23)

E
[
〈a, h[Ŝ]〉w

]
= 〈a, h〉p•w , (24)

E
[
‖h[Ŝ]‖

2
w

]
= ‖h‖2

p•w , (25)

E
[
g(x + h[Ŝ])

]
=

n∑
i=1

[
pigi (x (i) + h(i)) + (1− pi)gi (x (i))

]
. (26)

Moreover, the matrix P
def
= (pij) is positive semidefinite.

37 / 116

Proof of Corollary 8
All 5 identities follow by applying Lemma 7 and observing that:

I |J ∩ Ŝ | =
∑

i∈J∩Ŝ 1

I |J ∩ Ŝ |2 = (
∑

i∈J∩Ŝ 1)2 =
∑

i∈J∩Ŝ
∑

j∈J∩Ŝ 1

I 〈a, h[Ŝ]〉w =
∑

i∈Ŝ wi 〈a(i), h(i)〉
I ‖h[Ŝ]‖2

w =
∑

i∈Ŝ wi‖h(i)‖2
(i) and

I

g(x + h[Ŝ]) =
∑
i∈Ŝ

gi (x (i) + h(i)) +
∑
i /∈Ŝ

gi (x (i))

=
∑
i∈Ŝ

gi (x (i) + h(i)) +
n∑

i=1

gi (x (i))−
∑
i∈Ŝ

gi (x (i)),

Finally, for any θ = (θ1, . . . , θn)T ∈ Rn,

θTPθ =
∑n

i=1

∑n
j=1 pijθiθj

(21)
= E

[(∑
i∈Ŝ θi

)2
]
≥ 0.

Remark: The above results hold for arbitrary samplings. Let us specialize
them, in order of decreasing generality, to uniform, doubly uniform and
nice samplings.

38 / 116

Identities: uniform samplings

If Ŝ is uniform, then from (22) using J = [n] we get

pi =
E[|Ŝ |]

n
, i ∈ [n]. (27)

Plugging (27) into (22), (24), (25) and (26) yields

E
[
|J ∩ Ŝ |

]
=
|J|
n

E[|Ŝ |], (28)

E
[
〈a, h[Ŝ]〉w

]
=

E
[
|Ŝ |
]

n
〈a, h〉w , (29)

E
[
‖h[Ŝ]‖

2
w

]
=

E
[
|Ŝ |
]

n
‖h‖2

w , (30)

E
[
g(x + h[Ŝ])

]
=

E[|Ŝ |]
n

g(x + h) +

(
1− E[|Ŝ |]

n

)
g(x). (31)

39 / 116

Identities: doubly uniform samplings

Consider the case n > 1; the case n = 1 is trivial. For doubly uniform Ŝ ,
pij is constant for i 6= j :

pij =
E[|Ŝ |2 − |Ŝ |]

n(n − 1)
. (32)

Indeed, this follows from

pij =
n∑

k=1

P({i , j} ⊆ Ŝ | |Ŝ | = k)P(|Ŝ | = k) =
n∑

k=1

k(k − 1)

n(n − 1)
P(|Ŝ | = k).

Substituting (32) and (27) into (23) then gives

E[|J ∩ Ŝ |2] = (|J|2 − |J|) E[|Ŝ |2 − |Ŝ |]
n max{1, n − 1}

+ |J| |Ŝ |
n
. (33)

40 / 116

Identities: τ -nice sampling

Finally, if Ŝ is τ -nice (and τ 6= 0), then E[|Ŝ |] = τ and E[|Ŝ |2] = τ 2,
which used in (33) gives

E[|J ∩ Ŝ |2] =
|J|τ

n

(
1 +

(|J| − 1)(τ − 1)

max{1, n − 1}

)
. (34)

Moreover, assume that P(|J ∩ Ŝ | = k) 6= 0 (this happens precisely when
0 ≤ k ≤ |J| and k ≤ τ ≤ n − |J|+ k). Then for all i ∈ J,

P(i ∈ Ŝ | |J ∩ Ŝ | = k) =

(|J|−1
k−1

)(
n−|J|
τ−k

)(|J|
k

)(
n−|J|
τ−k

) =
k

|J|
.

Substituting this into (20) yields

E

 ∑
i∈J∩Ŝ

θi | |J ∩ Ŝ | = k

 =
k

|J|
∑
i∈J

θi . (35)

41 / 116

Elementary Samplings, Intersection and Restriction

Definition 9 (Elementary samplings)
Elementary sampling associated with J ⊆ [n] is sampling ÊJ for which

P(ÊJ = J) = 1.

Definition 10 (Intersection of samplings)
For two samplings Ŝ1 and Ŝ2 we define the intersection Ŝ

def
= Ŝ1 ∩ Ŝ2 as

the sampling for which:

P(Ŝ = S) = P(Ŝ1 ∩ Ŝ2 = S), S ⊆ [n].

Definition 11 (Restriction of a sampling to a subset)
Let Ŝ be a sampling and J ⊆ [n]. By restriction of Ŝ to J we mean the
sampling

ÊJ ∩ Ŝ .

42 / 116

Probability matrices associated with samplings - Part I

Definition 12 (Probability matrix)
With arbitrary sampling Ŝ we associate an n-by-n matrix P = P(Ŝ) with
entries

[P(Ŝ)]ij = P(i ∈ Ŝ , j ∈ Ŝ).

Lemma 13 (Intersection of independent samplings; [14])
Let Ŝ1, Ŝ2 be independent samplings. Then

P(Ŝ1 ∩ Ŝ2) = P(Ŝ1) • P(Ŝ2).

That is, the probability matrix of an intersection of independent
samplings is the Hadamard product of their probability matrices.

Proof.
[P(Ŝ1 ∩ Ŝ2)]ij = P({i , j} ∈ Ŝ1 ∩ Ŝ2) = P({i , j} ∈ Ŝ1)P({i , j} ∈ Ŝ2) =

[P(Ŝ1)]ij [P(Ŝ2)]ij .

43 / 116

Probability matrices associated with samplings - Part II
Example 14 (Probability Matrix of an Elementary Sampling)
Note that the probability matrix of the elementary sampling ÊJ is the
matrix

P(ÊJ)
def
= eJeT

J , (36)

where eJ we denote the binary vector in Rn with ones in places
corresponding to set J. That is,

[P(ÊJ)]ij =

{
1 i , j ∈ J,

0 otherwise.

Hence, for arbitrary sampling Ŝ , the probability matrix of J ∩ Ŝ is the
submatrix of P(Ŝ) corresponding to the rows and columns indexed by J:

[P(J ∩ Ŝ)]ij = [P(ÊJ) • P(Ŝ)]ij =

{
[P(Ŝ)]ij , i , j ∈ J,

0, otherwise.
(37)

44 / 116

Probability matrices associated with samplings - Part III
Lemma 15 (Decomposition of a Probability Matrix; [14])
Let Ŝ be any sampling. Then

P(Ŝ) =
∑
S⊆[n]

P(Ŝ = S)P(ÊS). (38)

That is, the probability matrix of arbitrary sampling is a convex
combination of elementary probability matrices.

Proof.
Fix any i , j ∈ [n]. Since (P(ÊS))ij = 1 iff {i , j} ⊆ S , from definition we
have

(P(Ŝ))ij =
∑

S:{i,j}⊆S P(Ŝ = S)

=
∑

S:{i,j}⊆S P(Ŝ = S)(P(ÊS))ij

=
(∑

S:{i,j}⊆S P(Ŝ = S)P(ÊS)
)
ij
.

45 / 116

Sampling Identity for a Quadratic

Lemma 16
Let G be any real n × n matrix and Ŝ an arbitrary sampling. Then for
any h ∈ Rn we have

E
[
hT

[Ŝ]
Gh[Ŝ]

]
= hT

(
P(Ŝ) • G

)
h, (39)

where • denotes the Hadamard (elementwise) product of matrices.

Proof.

E
[
hT

[Ŝ]
Gh[Ŝ]

]
(14)
= E

∑
i∈Ŝ

∑
j∈Ŝ

Gijh
(i)h(j)

(21)
=

n∑
i=1

n∑
j=1

pijGijh
(i)h(j) = hT

(
P(Ŝ) • G

)
h.

46 / 116

Distributed sampling

The following sampling is useful in the design of a distributed
coordinate descent method.

Definition 17 (Distributed τ -nice sampling; [10, 13])
Let P1, . . . ,Pc be a partition of {1, 2, . . . , n} such that |Pl | = s for all l .
That is, sc = n. Now let Ŝ1, . . . , Ŝc be independent τ -nice samplings
from P1, . . . ,Pc , respectively. Then the sampling

Ŝ
def
= ∪cl=1Ŝl , (40)

is called distributed τ -nice sampling.

Idea: Blocks in Pl , and all associated data, will be handled/stored by
computer/node l only. Node l picks blocks in Ŝl , computes the updates
fro local information, and applies the updates to locally stored x (i) for
i ∈ Pl .

47 / 116

Probability Matrix of Distributed τ -nice Sampling

Consider the distributed τ -nice sampling and define:

I E = P(Ê[n]): the n × n matrix of all ones

I I be the n × n identity matrix

I B =
∑c

l=1 P(ÊPl
) : the 0-1 matrix with Bij = 1 iff i , j belong to the

same partition

Lemma 18 ([10]; presented in a different form)
Consider the distributed τ -nice sampling Ŝ. Its probability matrix can be
written as

P(Ŝ) =
τ

s
[α1I + α2E + α3(E − B)] , (41)

where

α1 = 1− τ − 1

ss1
, α2 =

τ − 1

s1
, α3 =

τ

s
− τ − 1

s1
,

and s1 = max{1, s − 1}.

48 / 116

Proof of Lemma 18

Let P = P(Ŝ). It is easy to see that

I Pij = τ
s

def
= β3 if i = j ,

I Pij = τ(τ−1)
ss1

def
= β2 if i 6= j and i , j belong to the same partition,

I Pij = τ 2

s2

def
= β3 if i 6= j belong to different partitions.

So, we can write

P = β1I + β2(B − I) + β3(E − B)

= (β1 − β2)I + β2E + (β3 − β2)(E − B).

49 / 116

Exercises

Exercise 3
Find an expression for the probability matrix of

I the τ -nice sampling,

I arbitrary doubly uniform sampling.

Exercise 4
Let Ŝ be any sampling. Show that

I λmax(P) ≤ E[|Ŝ |] and that the bound is tight,

I P � ppT .

50 / 116

Lecture 4
FUNCTIONS

51 / 116

Introduction

I In this part we describe three models for f .

I These models can be thought of as function classes described by a
list of properties.

I However, a single function may belong to more function classes.

In big data setting, some information is computationally difficult to
extract from data.

Consider f (x) = 1
2‖Ax − b‖2.

I It is difficult to compute the largest eigenvalue of ATA if A is large
(this is the Lipschitz constant of ∇f with respect to the standard
Euclidean norm)

I It is easier to compute the squared norm of each column (these
correspond to coordinate-wise Lipschitz constants).

Important point: The models differ in the amount of information they
reveal about f .

52 / 116

Model: Quadratic

Model 1 ([10, 13])
We assume that

1. Structure and Smoothness: f : RN → R is differentiable and for
all x , h ∈ RN satisfies

f (x + h) ≤ f (x) + (∇f (x))Th + 1
2 hTATAh, (42)

where A ∈ Rm×N .

2. Sparsity: Row j of A depends on blocks i ∈ Cj only. Formally,

Cj
def
= {i : Aji 6= 0},

where Aji
def
= eT

j AUi ∈ R1×Ni . Let ωj
def
= |Cj |.

3. Convexity: f is convex.

Remark: Information about f is contained in the matrix A.

53 / 116

Examples
Example 19
In machine learning (ML), functions f of the following form are common:

f (x) =
∑m

j=1 fj(x) =
∑m

j=1 `(x ; aj , y
j),

where N is the number of features, m number of examples, aj ∈ RN

corresponds to jth example and y j is a label associated with jth example.

Here are some convex loss functions ` often used in ML for which the
total loss f satisfies (42):

Loss function ` fj (x) (42) satisfied for A given by

square loss (SL) 1
2

(y j − aTj x)2 Aj : = aTj

logistic loss (LL) log(1 + exp(−y jaTj x)) Aj : = 1
2
aTj

square hinge loss (HL) 1
2

max{0, 1− y jaTj x}
2 Aj : = aTj

Interpretation of ωj (point 2 in Model 1) : # features in example j

54 / 116

Block gradients

Definition 20 (Block Gradients)
The ith block gradient of f : RN → R at x is defined to be the ith
block of the gradient of f at x :

∇i f (x)
def
= (∇f (x))(i) = UT

i ∇f (x) ∈ RNi . (43)

In other words, ∇i f (x) is the vector of partial derivatives with respect to
coordinates belonging to block i .

55 / 116

Model: Classical

Model 2 ([2, 5, 9])
We assume that

1. Structure: Function f : RN → R is of the form

f (x) =
m∑
j=1

fj(x).

2. Sparsity: fj depends on x via blocks i ∈ Cj only.

3. Convexity: Functions {fj} are convex.

4. Smoothness: Function f has block-Lipschitz gradient with
constants L1, . . . , Ln > 0. That is, for all i = 1, 2, . . . , n,

‖∇i f (x + Ui t)−∇i f (x)‖∗(i) ≤ Li‖t‖(i), x ∈ RN , t ∈ RNi . (44)

Remark: Information about f is contained in the constants L1, . . . , Ln.

56 / 116

Examples

Example 21 (Least squares)
Consider the quadratic function f (x) = 1

2
‖Ax − b‖2.

(i) Consider the block setup with Ni = 1 (all blocks are of size 1) and Bi = 1 for all
i ∈ [n] (standard Eucl. norms for each block: ‖t‖(i) = |t|). Then Ui = ei and

‖∇i f (x + Ui t)−∇i f (x)‖∗(i) = |eTi AT (A(x + tei)− b)− eTi AT (Ax − b)|

= |eTi ATAei ||t| = ‖A:i‖2|t|,

whence Li = ‖A:i‖2.

(ii) Choose nontrivial block sizes (Ni > 1) and define data-driven block norms with
Bi = AT

i Ai , where Ai = AUi , assuming that Bi � 0. Then

‖∇i f (x + Ui t)−∇i f (x)‖∗(i) = ‖UT
i AT (A(x + Ui t)− b)− UT

i AT (Ax − b)‖∗(i)
= ‖UT

i ATAUi t‖∗(i)
(16)
= 〈(AiA

T
i)−1UT

i ATAUi t,U
T
i ATAUi t〉1/2

= 〈Bi t, t〉1/2 (15)
= ‖t‖(i),

whence Li = 1.

57 / 116

Model: Newest

Model 3 ([12])
We assume that

1. Structure: f : RN → R is of the form

f (x) =
m∑
j=1

fj(x). (45)

2. Sparsity: fj depends on x via blocks i ∈ Cj only. Let ωj = |Cj |.
(Note that i /∈ Cj ⇒ Lji = 0)

3. Convexity: Functions {fj} are convex.

4. Smoothness: Functions {fj} have block-Lipschitz gradient with
constants Lji ≥ 0. That is, for all j = 1, 2, . . . ,m and i = 1, 2, . . . , n,

‖∇i fj(x + Ui t)−∇i fj(x)‖∗(i) ≤ Lji‖t‖(i), x ∈ RN , t ∈ RNi . (46)

Remark: Information about f is contained in the constants {Lji}

58 / 116

Computation of Lji

We now give a formula for the constants Lji in the case when fj arises as
a composition of a scalar function φj whose derivative has a known
Lipschitz constant (this is often easy to compute), and a linear functional.

Proposition 2 ([12])
Let fj(x) = φj(eT

j Ax), where φj : R→ R is a function with Lφj -Lipschitz
derivative:

|φj(s)− φj(s ′)| ≤ Lφj |s − s ′|, s, s ′ ∈ R. (47)

Then fj has a block Lipshitz gradient (i.e., satisfies (46)) with constants

Lji = Lφj

(
‖AT

ji ‖∗(i)
)2

, i = 1, 2, . . . , n, (48)

where
Aji = eT

j AUi (49)

(i.e., Aji is the ith block of j-th row of A).

59 / 116

Proof of Proposition 2

For any x ∈ RN , t ∈ RNi and i we have

‖∇i fj(x + Ui t)−∇i fj(x)‖∗(i)
(43)
= ‖UT

i (eT
j A)Tφ′j(eT

j A(x + Ui t))− UT
i (eT

j A)Tφ′j(eT
j Ax)‖∗(i)

= ‖AT
ji φ
′
j(eT

j A(x + Ui t))− AT
ji φ
′
j(eT

j Ax)‖∗(i)
≤ ‖AT

ji ‖∗(i)|φ
′
j(eT

j A(x + Ui t))− φ′j(eT
j Ax)|

(47)

≤ ‖AT
ji ‖∗(i)Lφj |Aji t| ≤ ‖AT

ji ‖∗(i)Lφj‖AT
ji ‖∗(i)‖t‖(i),

where the last step follows by applying the Cauchy-Schwartz inequality.

60 / 116

Examples

Example 22 (Least squares)
Consider the quadratic function

f (x) = 1
2
‖Ax − b‖2 = 1

2

∑m
j=1(eTj Ax − bj)

2.

Then fj (x) = φj (e
T
j Ax), where φj (s) = 1

2
(s − bj)

2 and Lφj
= 1.

(i) Consider the block setup with Ni = 1 (all blocks are of size 1) and Bi = 1 for all
i ∈ [n] (standard Euclidean norms for each block). Then by Proposition 2,

Lji
(48)
= Lφj

(‖AT
ji ‖
∗
(i))2 = A2

ji .

(ii) Choose nontrivial block sizes (Ni > 1) and define data-driven block norms with
Bi = AT

i Ai , where Ai = AUi , assuming that the matrices AT
i Ai are positive

definite. Then by Proposition 2,

Lji
(48)
= Lφj

(‖AT
ji ‖
∗
(i))2 (16)

= 〈(AT
i Ai)

−1AT
ji ,A

T
ji 〉

(49)
= eTj Ai (A

T
i Ai)

−1AT
i ej .

61 / 116

Lecture 5
Expected Separable
Overapproximation

62 / 116

Introduction

In this part we shall look at the three models of f (Lecture 3) and various
types of samplings Ŝ (Lecture 4) and compute paramters
v = (v1, . . . , vn) such

(f , Ŝ) ∼ ESO(v).

These parameters are important since:

I They are stepsize parameters needed in the algorithm (in NSync,
but also in other randomized block coordinate descent methods).

I Their size as a function of τ = E[|Ŝ |] describes achievable
parallelization speedup.

I By computing v we get one step closer to ultimate goal of designing
sampling Ŝ optimizing the complexity bound.

63 / 116

ESO(f ∼ Model 1, Ŝ ∼ arbitrary)

Theorem 23 ([14])
Let f satisfy assumptions in Model 1, assume all blocks are of size 1
(Ni = 1) and Ŝ be any sampling. Then for all x , h ∈ RN ,

E
[
f (x + h[Ŝ])

]
≤ f (x) + 〈∇f (x), h〉p +

1

2
‖h‖2

p•v , (50)

where v is any vector such that

P • ATA � Diag(p • v), (51)

where P = P(Ŝ) is the probability matrix associated with Ŝ.

Remark: The Hadamard product of two PSD matrices is PSD (P is PSD
by Corollary 8).

64 / 116

Proof of Theorem 23

We have

E
[
f (x + h[Ŝ])

] (42)

≤ E
[
f (x) + 〈∇f (x), h[Ŝ]〉+ 1

2 〈A
TAh[Ŝ], h[Ŝ]〉

]
(24)
= f (x) + 〈∇f (x), h〉p + 1

2 E
[
hT

[Ŝ]
ATAh[Ŝ]

]
(∗)
= f (x) + 〈∇f (x), h〉p + 1

2 hT
(
P • ATA

)
h

≤ f (x) + 〈∇f (x), h〉p + 1
2 hT Diag(p • v)h︸ ︷︷ ︸

=‖h‖2
p•v

,

where (*) comes from Lemma 16.

65 / 116

Ways of satisfying (51)

Let us fix a sampling Ŝ (and hence P) and data A. We can find v for
which P • ATA � Diag(p • v) in several ways:

1. vi = λ1‖A:i‖2 and

λ1 = max
θ∈Rn
{θT (P • ATA)θ : θT Diag(P • ATA)θ ≤ 1}.

2. vi = λmax (P•ATA)
pi

.

3. vi = λmax(ATA)
(maxj pj)

pi
(using Lemma 24 with X = P)

4. vi = λmax (P)
pi

maxi ‖A:i‖2 (using Lemma 24 with X = ATA)

Lemma 24
For any two PSD matrices X ,Y with nonnegative elements,

λmax(X • Y) ≤ λmax(X) max
j

Yjj .

66 / 116

Eigenvalues of Probability Matrices

Definition 25 (Eigenvalues)
For arbitrary sampling Ŝ we define

λ(Ŝ)
def
= max

θ∈Rn
{θTP(Ŝ)θ : θT Diag(P(Ŝ))θ ≤ 1}. (52)

and
λ′(Ŝ)

def
= max

θ∈Rn
{θTP(Ŝ)θ : θT θ ≤ 1}. (53)

Example 26 (Elementary Sampling)
Fix S ⊆ [n] and consider the elementary sampling ÊS . Note that

λ(ÊS) = λmax(P(ÊS)) = λmax(eSeT
S) = ‖eS‖2 = |S |. (54)

Since J ∩ ÊS = ÊJ∩S , we get

λ(J ∩ ÊS) = λ(ÊJ∩S)
(54)
= |J ∩ S |. (55)

67 / 116

Insightful and Easily Computable Bound

Issues with Theorem 23:

I It does not provide insightful nor easily computable expressions for
vi (which are needed to run the algorithm).

I It does not answer the following inverse problem: given data matrix
A and/or its sparsity pattern {Cj}, design a “good” sampling.

The following two results go a good way to overcoming these issues.

Theorem 27 (Useful ESO; [14])
Let the assumptions of Theorem 23 be satisfied. Then (51) holds (i.e.,
(f , Ŝ) ∼ ESO(v)) with v given by:

vi =
m∑
j=1

λ(Cj ∩ Ŝ)A2
ji , i = 1, 2, . . . , n. (56)

68 / 116

Proof of Theorem 27
Note that it follows from (21) that for any vector θ ∈ Rn and any j the following
identity holds:

E

(∑
i∈Cj∩Ŝ

θi

)2

 =
n∑

i=1

[P(Cj ∩ Ŝ)]ijθiθj = θTP(Cj ∩ Ŝ)θ. (57)

Fix h ∈ Rn. Let zj = (z
(1)
j , . . . , z

(n)
j)T ∈ Rn be defined as follows: z

(i)
j = h(i)Aji . We

then have

E
[
hT

[Ŝ]
ATAh[Ŝ]

]
=

m∑
j=1

E
[
hT

[Ŝ]
AT
j : Aj :h[Ŝ]

]
=

m∑
j=1

E

(∑
i∈Cj∩Ŝ

h(i)Aji

)2

(57)
=

m∑
j=1

zTj P(Cj ∩ Ŝ)zj
(52)

≤
m∑
j=1

λ(Cj ∩ Ŝ)
(
zTj Diag(P(Cj ∩ Ŝ))zj

)
(37)
=

m∑
j=1

λ(Cj ∩ Ŝ)
∑
i∈Cj

pi (h
(i)Aji)

2 =
m∑
j=1

λ(Cj ∩ Ŝ)
n∑

i=1

pi (h
(i)Aji)

2

=
n∑

i=1

pi (h
(i))2

m∑
j=1

λ(Cj ∩ Ŝ)A2
ji =

n∑
i=1

pi (h
(i))2vi .

69 / 116

Useful bounds on λ(Ŝ)
Theorem 28 ([14])
Let Ŝ be an arbitrary sampling.

1. Lower bound. If Ŝ is not nill, then E[|Ŝ|2]

E[|Ŝ|] ≤ λ(Ŝ).

2. Upper bound. If |Ŝ | ≤ τ with probability 1, then λ(Ŝ) ≤ τ.
3. Identity. If |Ŝ | = τ with probability 1, then λ(Ŝ) = τ .

Let us apply the 2nd part of the above theorem to the sampling J ∩ Ŝ :

Corollary 29
Let Ŝ be an arbitrary sampling, J ⊆ [n] and c a constant such that
|J ∩ Ŝ | ≤ c with probability 1. Then

λ(J ∩ Ŝ) ≤ c .

In particular, if |Ŝ | ≤ τ with probability 1, then |J ∩ Ŝ | ≤ min{|J|, τ}
with probability 1, and hence λ(J ∩ Ŝ) ≤ min{|J|, τ}.

Remark: The above corollary is useful as we can apply it in connection
with Theorem 27 with J = Cj for j = 1, 2, . . . ,m.

70 / 116

Computing λ(J ∩ Ŝ): Product Sampling

Example 30 (Product Sampling)
Assume that the sets {Cj} in Model 1 form a partition of [n]. The

consider the sampling Ŝ defined as follows:

P(Ŝ = S) =

{
(
∏m

j=1 |Cj |)−1, S ∈ C1 × C2 × · · · × Cm,

0, otherwise.

Note that |Cj ∩ Ŝ | = 1 with probability 1, and hence by Corollary 29,

λ(Cj ∩ Ŝ) ≤ 1.

On the other hand, by the first part of Theorem 28, λ(Cj ∩ Ŝ) ≥ 1, and
hence this sampling achieves the smallest possible value of the “λ
parameters” in (56) (which is “good” as other things equal, ESO with
small {vi} is better). Let us remark that E[|Ŝ |] = m.

71 / 116

Computing λ(J ∩ Ŝ): τ -Nice Sampling

Exercise 5 (τ -Nice Sampling)
Show by direct computation that if Ŝ is a τ -nice sampling, then the lower
bound in part 1 of Theorem 28 is attained for Cj ∩ Ŝ for all j :

λ(Cj ∩ Ŝ) =
E[|Cj ∩ Ŝ |2]

E[|Cj ∩ Ŝ |]
(34)+(28)

= 1 +
(ωj − 1)(τ − 1)

max{n − 1, 1}
, (58)

where ωj = |Cj |.

72 / 116

Computing λ(J ∩ Ŝ): Distributed τ -Nice Sampling - Part I

Exercise 6 (Distributed τ -Nice Sampling; [14])
Show that if Ŝ is the distributed τ -nice sampling, then

λ(Cj ∩ Ŝ) ≤ 1 +
(τ − 1)(ωj − 1)

s1︸ ︷︷ ︸
λ1,j

+

(
τ

s
− τ − 1

s1

)
ω′j − 1

ω′j
ωj︸ ︷︷ ︸

λ2,j

, (59)

where s1 = max{1, s − 1}, ωj = |Cj |, and ω′j is the number of partitions
“active” at row j of A:

ω′j
def
= |{l : Aji 6= 0 for some i ∈ Pl}|.

Exercise 7
Show that if the number of partitions is 1 (c = 1), bound (59) for the
distributed τ -nice sampling specializes to the bound (58) for the τ -nice
sampling.

73 / 116

Computing λ(J ∩ Ŝ): Distributed τ -Nice Sampling - Part II

Lemma 31 ([14])
Consider the distributed τ -nice sampling. Suppose τ ≥ 2. For any
1 ≤ η ≤ s the following holds:(

τ

s
− τ − 1

s − 1

)
η ≤ 1

τ − 1

(
1 +

(τ − 1)(η − 1)

s − 1

)
.

Note that Lemma 31 implies that

λ1,j + λ2,j ≤
(

1 +
1

τ − 1

)
λ1,j . (60)

74 / 116

Distributed NSync: Cost of Distribution
Assume f is 1-strongly convex, and consider running NSync with the

distributed τ -nice sampling. Then pi = E[Ŝ]
n = τc

sc = τ
s and hence the

leading term in the complexity bound is

Λ = max
i

vi
pi

(56)
= max

i

s
∑m

j=1 λ(Cj ∩ Ŝ)

τ

(60)

≤ max
i

s
∑m

j=1(λ1,j + λ2,j)A2
ji

τ

def
= Λ′.

I Notice that the effect of partitioning on complexity comes only
through λ2,j .

I Define a new quantity that does not depend on partitioning:

Λ′′ = max
i

s
∑m

j=1 λ1,jA
2
ji

τ

and notice that (60) implies that

Λ′′ ≤ Λ′ ≤ (1 + 1
τ−1)Λ′′

This means that:

Theorem 32 (Cost of Distribution: compare with [10, 14])
If τ ≥ 2, the worst-case partitioning is at most (1 + 1

τ) times worse than
the optimal partitioning, in terms of the number of iterations of NSync.

75 / 116

Proof of Theorem 28 - Part I

Point 1. For simplicity of notation, put P = P(Ŝ). If we choose θ ∈ Rn

with θi = (Tr(P))−1/2 for all i , we get θTDPθ =
∑

i Piiθ
2
i = 1 and hence

λ(Ŝ)
(52)

≥ θTPθ
(57)
= E

[(∑
i∈Ŝ

θi

)2]
=

E
[(∑

i∈Ŝ 1
)2]

Tr(P)

(22)
=

E[|Ŝ |2]

E[|Ŝ |]
.

Point 2. Let us represent Ŝ as a convex combination of elementary
samplings: Ŝ =

∑
S⊆[n] qS ÊS , where qS = P(Ŝ = S). Note that then we

also have

P(Ŝ) =
∑
S⊆[n]

qSP(ÊS)
(52)
=
∑
S⊆[n]

qSeSeT
S . (61)

76 / 116

Proof of Theorem 28 - Part II
Since |Ŝ | ≤ τ with probability 1, we have |S | ≤ τ whenever qS > 0. For
any θ ∈ Rn we can now estimate:

θTP(Ŝ)θ
(61)
=

∑
S :qS>0

qS(eT
S θ)2 ≤

∑
S:qS>0

qS‖eS‖2
∑
i∈S

θ2
i

(54)
=

∑
S:qS>0

qS |S |
∑
i∈S

θ2
i

≤ τ
∑

S:qS>0

qSθ
T Diag(eSeT

S)θ

= τθT

 ∑
S:qS>0

qS Diag(eSeT
S)

 θ

(61)
= τ

(
θT Diag(P(Ŝ))θ

)
.

We thus see that λ(Ŝ) ≤ τ .

77 / 116

Proof of Theorem 28 - Part III

Point 3. The result follows by combining the upper and lower bounds.
Alternatively, we can see this by inspecting the derivation in part 2.
Indeed, if |Ŝ | = τ with probability 1, then |S | = τ whenever qS > 0, and
hence the second inequality in point 2 above is an equality. By choosing
θi = α for any constant α, the first inequality turns into an equality (this
is because we then have equality in the Cauchy-Schwartz inequality
eT
S θ ≤ ‖eS‖2

∑
i∈S θ

2
i for all S).

78 / 116

ESO(f ∼ Model 3, Ŝ ∼ τ -nice)

Theorem 33
Let f satisfy assumptions in Model 3 and Ŝ be a τ -nice sampling. Then
for all x , h ∈ RN ,

E
[
f (x + h[Ŝ])

]
≤ f (x) +

τ

n

(
〈∇f (x), h〉+

1

2
‖h‖2

v

)
, (62)

where

vi
def
=

m∑
j=1

βjLji =
∑
j :i∈Cj

βjLji , i = 1, 2, . . . , n, (63)

βj
def
= 1 +

(ωj − 1)(τ − 1)

max{1, n − 1}
, j = 1, 2, . . . ,m.

That is, (f , Ŝ) ∼ ESO(v).

79 / 116

Proof of Theorem 33 - Part I

I We first claim that for all j ,

E
[
fj(x + h[Ŝ])

]
≤ fj(x) +

τ

n

(
〈∇fj(x), h〉+

βj
2
‖h‖2

Lj :

)
, (64)

where Lj : = (Lj1, . . . , Ljn) ∈ Rn. That is, (fj , Ŝ) ∼ ESO(βjLj :).
Equation (62) then follows by adding up the inequalities (64) for all
j . In the rest we prove the claim.

I A well known consequence of (46) is that for all x ∈ RN , t ∈ RNi ,

fj(x + Ui t) ≤ fj(x) + 〈∇i fj(x), t〉+
Lji

2
‖t‖2

(i). (65)

80 / 116

Proof of Theorem 33 - Part II
I We fix x and define

f̂j(h)
def
= fj(x + h)− fj(x)− 〈∇fj(x), h〉. (66)

Since

E
[
f̂j(h[Ŝ])

]
(66)
= E

[
fj(x + h[Ŝ])− fj(x)− 〈∇fj(x), h[Ŝ]〉

]
(29)
= E

[
fj(x + h[Ŝ])

]
− fj(x)− τ

n 〈∇fj(x), h〉,

it now only remains to show that

E
[
f̂j(h[Ŝ])

]
≤ τβj

2n ‖h‖
2
Lj :
. (67)

I We now adopt the convention that expectation conditional on an
event which happens with probability 0 is equal to 0. Let

ηj
def
= |Cj ∩ Ŝ |, and using this convention, we can write

E
[
f̂j(h[Ŝ])

]
=

n∑
k=0

P(ηj = k)E
[
f̂j(h[Ŝ]) | ηj = k

]
. (68)

81 / 116

Proof of Theorem 33 - Part III

I For any k ≥ 1 for which P(ηj = k) > 0, we now use use convexity of

f̂j to write

E
[
f̂j(h[Ŝ]) | ηj = k

]
= E

 f̂j

 1
k

∑
i∈Cj∩Ŝ

kUih
(i)

 | ηj = k

≤ E

 1
k

∑
i∈Cj∩Ŝ

f̂j
(

kUih
(i)
)
| ηj = k

(35)
= 1

ωj

∑
i∈Cj

f̂j
(

kUih
(i)
)

(65)+(66)

≤ 1
ωj

∑
i∈Cj

Lji

2 ‖kh(i)‖2
(i) = k2

2ωj
‖h‖2

Lj :
. (69)

82 / 116

Proof of Theorem 33 - Part IV

I Finally,

E
[
f̂j(h[Ŝ])

] (68)+(69)

≤
∑
k

P(ηj = k) k2

2ωj
‖h‖2

Lj :

= 1
2ωj
‖h‖2

Lj :
E[|Cj ∩ Ŝ |2]

(34)
=

τβj

2n ‖h‖
2
Lj :
,

and hence (67) is proved.

83 / 116

DSO(f ∼ Model 3)

Corollary 34
Let f satisfy assumptions in Model 3 and Ŝ be a τ -nice sampling. Then
for all x , h ∈ RN we have

f (x + h) ≤ f (x) + 〈∇f (x), h〉+
ω̄L̄

2
‖h‖2

w , (70)

where

ω̄
def
=
∑
j

ωj

∑
i Lji∑

k,i Lki
, L̄

def
=

∑
ji Lji

n
, wi

def
=

n∑
j,i ωjLji

∑
j

ωjLji . (71)

Note that ω̄ is a data-weighted average of the values {ωj} and that∑
wi = n.

Proof.
This follows from Theorem 33 used with τ = n (notice that
ω̄L̄w = v).

84 / 116

ESO and Lipschitz Continuity I

We will now study the collection of functions φ̂x : RN → R for x ∈ RN

defined by

φ̂x(h)
def
= E

[
φ(x + h[Ŝ])

]
. (72)

Let us first establish some basic connections between φ and φ̂x .

Lemma 35 ([9])
Let Ŝ be any sampling and φ : RN → R any function and x ∈ RN . Then

(i) if φ is convex, so is φ̂x ,

(ii) φ̂x(0) = φ(x),

(iii) If Ŝ is proper and uniform, and φ : RN → R is continuously
differentiable, then

∇φ̂x(0) =
E[|Ŝ |]

n
∇φ(x).

85 / 116

Proof of Lemma 35

Fix x ∈ RN . Notice that

φ̂x(h) = E[φ(x + h[Ŝ])] =
∑
S⊆[n]

P(Ŝ = S)φ(x + USh),

where
US

def
=
∑
i∈S

UiU
T
i .

As φ̂x is a convex combination of convex functions, it is convex,
establishing (i). Property (ii) is trivial. Finally,

∇φ̂x (0) = E
[
∇ φ(x + h[Ŝ])

∣∣∣
h=0

]
= E

[
UŜ∇φ(x)

]
= E

[
UŜ

]
∇φ(x) =

E[|Ŝ |]
n
∇φ(x).

The last equality follows from the observation that UŜ is an N × N binary diagonal

matrix with ones in positions (v , v) for coordinates v ∈ {1, 2, . . . ,N} belonging to

blocks i ∈ Ŝ only, coupled with the fact that for uniform samplings, pi = E[|Ŝ |]/n.

86 / 116

ESO and Lipschitz Continuity II

We now establish a connection between ESO and a uniform bound in x
on the Lipschitz constants of the gradient “at the origin” of the functions
{φ̂x , x ∈ RN}.

Theorem 36
Let Ŝ be proper and uniform, and φ : RN → R be continuously
differentiable. Then the following statements are equivalent:

(i) (φ, Ŝ) ∼ ESO(v),

(ii) φ̂x(h) ≤ φ̂x(0) + 〈∇φ̂x(0), h〉+ 1
2

E[|Ŝ|]
n ‖h‖

2
v , x , h ∈ RN .

Proof.
We only need to substitute (72) and Lemma 35(ii-iii) into inequality (ii)
and compare the result with the definition of ESO (5).

87 / 116

Lecture 6
APPROX

88 / 116

The Problem

We are interested in solving the following optimization problem:

min
x∈RN

f (x) + ψ(x), (73)

where

I f is a “smooth” convex function (to be made precise later),

I ψ is block separable:

ψ(x) =
n∑

i=1

ψi (x (i)), (74)

where ψi : RNi → R ∪ {+∞} are convex and closed.

89 / 116

Examples of Regularizers

I Smooth optimization:
ψ(x) ≡ 0

I Box constraints: Let Xi ⊆ RNi be closed convex sets and

ψ(x) =

{
0, x (i) ∈ Xi for all i ∈ [n]

+∞, otherwise.

I L2/Ridge:
ψ(x) = λ‖x‖2

2

I L1/LASSO:
ψ(x) = λ‖x‖1

I Group LASSO:

ψ(x) =
n∑

i=1

‖x (i)‖2

All are block separable and convex.

90 / 116

APPROX algorithm – Version 1

1: Choose x0 ∈ domψ and set z0 = x0 and θ0 > 0
2: for k ≥ 0 do
3: yk = (1− θk)xk + θkzk
4: Generate a random set of blocks Sk ∼ Ŝ
5: zk+1 = zk
6: for i ∈ Sk do

7: z
(i)
k+1 = arg minz∈RNi

{
〈∇i f (yk), z〉+ θkvi

2pi
‖z − z

(i)
k ‖2

(i) + ψi (z)
}

8: end for
9: xk+1 = yk + θk(zk+1 − zk) • p−1

10: θk+1 =

√
θ4
k+4θ2

k−θ
2
k

2 (fast) or θk+1 = θk (normal)
11: end for

Remark 1: Our analysis will follow this version.

Remark 2: The • product is to be applied block-wise, i.e., for a ∈ RN :

a • p−1 =
n∑

i=1

1
pi

Uia
(i).

91 / 116

Reformulation: Change of Variables - Part I

Focusing on the iterates xk , yk , zk only, the algorithm can schematically
be written as follows:

APPROX Schema: Version 1

yk ← (1− θk)xk + θkzk (75)

zk+1 ← Procedure(yk ; zk ; Sk) (76)

xk+1 ← yk + θk(zk+1 − zk) • p−1 (77)

Consider the change of variables from {xk , yk , zk , } to {zk , gk} where

gk = yk − zk (78)

Inverse change of variables: From {zk , gk} we can recover {xk , yk , zk}
as follows:

xk+1
(77)+(78)

= (zk + gk) + θk(zk+1 − zk) • p−1, yk
(78)
= zk + gk (79)

92 / 116

Reformulation: Change of Variables - Part II

It remains to show that gk+1 can be computed (from g and z):

gk+1
(78)
= yk+1 − zk+1

(75)
= (1− θk+1)(xk+1 − zk+1)

(79)
= (1− θk+1)(gk − (e − θkp−1) • (zk+1 − zk)),

where e ∈ Rn is the vector of all ones.

Method (75)–(77) can thus be written in the form:

APPROX Schema: Version 2

zk+1 ← Procedure(zk + gk ; zk ; Sk) (80)

gk+1 ← (1− θk+1)
(
gk − (e − θkp−1) • (zk+1 − zk)

)
(81)

93 / 116

Historical Notes

1. “Normal” & uniform. Choose θ0 = E[|Ŝ|]
n and θk = θ0 for all k and

let Ŝ be uniform, i.e., pi = E[|Ŝ|]
n . Then gk = 0 for all k and the

method simplifies to:

zk+1 ← Procedure(zk ; zk ; Sk) (82)

This is the PCDM method of R. and Takáč [5].

2. Fast & uniform. For uniform Ŝ , “fast” option in Step 10 and

θ0 = E[|Ŝ|]
n , this method reduces to the original APPROX method of

Fercoq & R. [12].

3. Fast & non-uniform. For non-uniform Ŝ presented here,
θ0 ≤ mini pi (and θ0 ≤ 1 if ψ ≡ 0) and for the “fast” option in Step
10, it was analyzed by Qu & R. [14].

94 / 116

APPROX algorithm – Version 2 (variables gk , zk)

In detail, version 2 has the following form:

1: Choose x0 ∈ domψ and θ0 > 0, g0 = 0 and z0 = x0

2: for k ≥ 0 do
3: Generate a random set of blocks Sk ∼ Ŝ
4: zk+1 ← zk
5: for i ∈ Sk do
6: t

(i)
k =

arg mint∈RNi

{
〈∇i f (gk + zk), t〉+ θkvi

2pi
‖t‖2

(i) + ψi (z
(i)
k + t)

}
7: z

(i)
k+1 ← z

(i)
k + t

(i)
k

8: end for
9: gk+1 ← (1− θk+1)(gk − (e − θkp−1) • tk)

10: θk+1 =

√
θ4
k+4θ2

k−θ
2
k

2 (fast) or θk+1 = θk (normal)
11: end for
12: OUTPUT: xk+1 = (zk + gk) + θk(zk+1 − zk) • p−1

95 / 116

Complexity

Theorem 37 ([12, 14])
Assume:

I {Sk}k≥1 are iid following the distribution of a proper sampling Ŝ,

I f is convex and (f , Ŝ) ∼ ESO(v),

I ψ is block separable, where ψi are convex and closed.

Let x0 ∈ dom F and choose θ0 ∈ (0,mini pi] (if ψ = 0, choose
θ0 ∈ (0, 1]). Then for any point y such that F (y) ≤ F (x0) (and hence
also for the optimal point x∗ if such a point exists), the iterates {xk} of
APPROX satisfy

E[F (xk)− F (y)] ≤ 4

((k − 1)θ0 + 2)2
C , k ≥ 1 (83)

where

C
def
= (1− θ0) (F (x0)− F (y)) +

θ2
0

2
‖x0 − y‖2

p−2•v . (84)

96 / 116

Comments: Smooth Case (ψ ≡ 0)
I In the smooth case (ψ ≡ 0) we may choose θ0 = 1 and get

E[F (xk)−F (x∗)] ≤
2‖x0 − x∗‖2

p−2•v

(k + 1)2
=

2

(k + 1)2

n∑
i=1

vi
p2
i

‖x (i)
0 −x

(i)
∗ ‖2

(i).

I If, moreover, we choose uniform sampling Ŝ and let τ = E[|Ŝ |], then
since pi = τ

n for all i , we get

E[F (xk)− F (x∗)] ≤ 2n2‖x0 − x∗‖2
v

τ 2(k + 1)2
.

In other words, the number of iterations for obtaining an ε-solution
(in expectation) does not exceed

k =

⌈√
2n‖x0 − x∗‖v

τ
√
ε

− 1

⌉
. (85)

I Note that the bound gets better as the average number of
processors (τ) increases (with the caveat that v will generally also
grow in τ , but less so for sparse problems; as ESO predicts).

97 / 116

Analysis

We shall now prove the Theorem. We first need to establish 4 lemmas.

98 / 116

Lemma: Properties of the sequence θk

In the first lemma we summarize well-known properties of the sequence
θk used in APPROX.

Lemma 38
The sequence {θk}k≥0 defined APPROX, under the FAST option, is
decreasing and satisfies

0 < θk ≤
2

k + 2/θ0
≤ 1 (86)

and
1− θk+1

θ2
k+1

=
1

θ2
k

. (87)

99 / 116

Lemma: xk is in the convex hull of z0, . . . , zk

Lemma 39
Let {xk , zk}k≥0 be the iterates of APPROX; and assume
0 < θ0 ≤ mini pi . Then for all k ≥ 0 we have

x
(i)
k =

∑k
l=0 γ

(i)
kl z

(i)
l , i = 1, 2, . . . , n (88)

where for each i , the coefficients γ
(i)
k0 , . . . , γ

(i)
kk are non-negative and sum

to 1. Moreover, the coefficients are defined recursively by setting

γ
(i)
00 = 1, γ

(i)
10 = 1− θ0

pi
, γ

(i)
11 = θ0

pi
and for k ≥ 1,

γ
(i)
k+1,l =

(1− θk)γ

(i)
kl , l = 0, . . . , k − 1,

(1− θk)γ
(i)
kk + θk − θk

pi
, l = k ,

θk
pi
, l = k + 1.

(89)

Moreover, for all k ≥ 0 and i ∈ [n], the following identity holds

γ
(i)
k+1,k + γ

(i)
k+1,k+1 = (1− θk)γ

(i)
kk + θk . (90)

100 / 116

Remarks about Lemma 39

I Note that if pi = pj for all i , j ∈ [n] (i.e., if Ŝ is a uniform sampling),

then γ
(i)
kl = γ

(j)
kl for all i , j , and hence the lemma says that xk is a

convex combination of the vectors z0, z1, . . . , zk .

I The lemma is only needed in the nonsmooth case (ψ 6= 0).

I The proof is straightforward of a “follow-your-nose” style.

101 / 116

Proof of Lemma 39 - Part I
We proceed by induction in k . Fix any i ∈ [n].

Step 1 (Base case).

I Since x0 = z0, we have γ
(i)
00 = 1.

I Since x1 = y0 + θ0(z1 − z0) • p−1 and y0 = x0, we get

x
(i)
1 = (1− θ0

pi
)z

(i)
0 + θ0

pi
z

(i)
1 , whence γ

(i)
10 = 1− θ0

pi
, γ

(i)
11 = θ0

pi
.

Note that for each k, the coefficients are nonnegative and sum to one.

Step 2 (Recursive relation). If the recursive relation (89) holds for
some k ≥ 1, then it holds for k + 1:

x
(i)
k+1

(Step 9)
= y

(i)
k + θk

pi
(z

(i)
k+1 − z

(i)
k)

(Step 3)
= (1− θk)x

(i)
k + θkz

(i)
k + θk

pi
(z

(i)
k+1 − z

(i)
k)

(88)
= (1− θk)

k∑
l=0

γ
(i)
kl z

(i)
l + θkz

(i)
k + θk

pi
(z

(i)
k+1 − z

(i)
k)

=

k−1∑
l=0

(1− θk)γ
(i)
kl︸ ︷︷ ︸

γ
(i)
k+1,l

z
(i)
l + ((1− θk)γ

(i)
kk + θk − θk

pi
)︸ ︷︷ ︸

γ
(i)
k+1,k

z
(i)
k + θk

pi︸︷︷︸
γ

(i)
k+1,k+1

z
(i)
k+1.

102 / 116

Proof of Lemma 39 - Part II

Step 3 (Nonnegativity).

I Since 0 < θk ≤ 1 (because θ0 ≤ mini pi ≤ 1 and {θk} is a decreasing
sequence of positive numbers), we deduce from (89) and, using the

inductive non-negativity assumption, that γ
(i)
k+1,l ≥ 0 for

l = 0, . . . , k − 1.

I Moreover,

γ
(i)
k+1,k

(89)
= (1− θk)γ

(i)
kk + θk − θk

pi

= θk(1− γ(i)
kk) + γ

(i)
kk −

θk
pi

(89)
= θk(1− γ(i)

kk) + θk−1−θk
pi

> θk(1− γ(i)
kk) ≥ 0.

where the first inequality follows since {θk} is a decreasing sequence,

and the last inequality by the inductive hypothesis that γ
(i)
kl ,

l = 0, 1, . . . , k are nonnegative and sum to 1.

I Finally, γ
(i)
k+1,k+1 = θk

pi
> 0.

103 / 116

Proof of Lemma 39 - Part III

Step 4 (Unit sum). Finally, we can write

k+1∑
l=0

γ
(i)
k+1,l =

k−1∑
l=0

γ
(i)
k+1,l + γ

(i)
k+1,k + γ

(i)
k+1,k+1

(89)
= (1− θk)

k−1∑
l=0

γ
(i)
kl +

(
(1− θk)γ

(i)
kk + θk − θk

pi

)
+ θk

pi

= (1− θk)
k∑

l=0

γ
(i)
kl + θk

= 1,

where the last step follows from the inductive hypothesis that {γ(i)
kl } for

l = 0, 1, . . . , k sum to one.

104 / 116

Lemma: Tseng
Define

z̃k+1
def
= arg min

z∈RN

{
ψ(z) + 〈∇f (yk), z − yk 〉+

nθk

2τ
‖z − zk‖2

v

}
(15)+(74)

= arg min
z(i)∈RNi

i∈[n]

n∑
i=1

{
ψi (z

(i)) + 〈∇i f (yk), z(i) − y
(i)
k 〉+

nθkvi

2τ
‖z(i) − z

(i)
k ‖

2
(i)

}
.

From this and the definition of zk+1 in APPROX, we see that

z
(i)
k+1 =

{
z̃

(i)
k+1, i ∈ Sk

z
(i)
k , i 6∈ Sk .

(91)

Lemma 40 (Property 1 in [1])
Let ξ(u)

def
= f (yk) + 〈∇f (yk), u − yk〉+ θk

2 ‖u − zk‖2
p−1•v . Then for any

y ∈ domψ,

ψ(z̃k+1) + ξ(z̃k+1) ≤ ψ(y) + ξ(y)− θk
2
‖y − z̃k+1‖2

p−1•v . (92)

105 / 116

Lemma: Gradient vs Stochastic Gradient Mapping

We now connect the gradient mapping (producing z̃k+1) and the
stochastic block gradient mapping (producing the random vector zk+1).

From now on, by Ek we denote the expectation with respect to Sk ,
conditioned on all history.

Lemma 41 ([12])
For any y ∈ RN and k ≥ 0,

Ek

[
‖zk+1 − y‖2

v − ‖zk − y‖2
v

]
= ‖z̃k+1 − y‖2

p•v − ‖zk − y‖2
p•v . (93)

106 / 116

Proof of Lemma 41

Let Ŝ be any proper sampling and a, h ∈ RN . Recall the following
sampling identities:

E[‖h[Ŝ]‖
2
v]

(25)
= ‖h‖2

p•v , E[〈a, h[Ŝ]〉v]
(24)
= 〈a, h〉p•v . (94)

Let h = z̃k+1 − zk . In view of (14) and (91), we can write
h[Sk] = zk+1 − zk . Now,

Ek

[
‖zk+1 − y‖2

v − ‖zk − y‖2
v

]
= Ek

[
‖h[Sk]‖2

v + 2〈zk − y , h[Sk]〉v
]

(94)
= ‖h‖2

p•v + 2〈zk − y , h〉p•v
=

(
‖z̃k+1 − y‖2

p•v − ‖zk − y‖2
p•v
)
.

107 / 116

Proof of the Main Result (Theorem 37) - Part I

Step 1 (Bounding f). From the definition of yk in the algorithm:

θk(yk − zk) = (1− θk)(xk − yk). (95)

Since xk+1 = yk + h[Sk] with h = θk(z̃k+1 − zk) • σ, we use ESO and
obtain the following bound:

Ek [f (xk+1)] = Ek [f (yk + h[Sk])]

≤ f (yk) + 〈∇f (yk), h〉p + 1
2
‖h‖2

p•w

= f (yk) + θk 〈∇f (yk), z̃k+1 − zk 〉+
θ2
k

2
‖z̃k+1 − zk‖2

σ•v

= (1− θk)f (yk)− θk 〈∇f (yk), zk − yk 〉

+θk
(
f (yk) + 〈∇f (yk), z̃k+1 − yk 〉+ θk

2
‖z̃k+1 − zk‖2

σ•v
)

(95)
= (1− θk)(f (yk) + 〈∇f (yk), xk − yk 〉)

+θk
(
f (yk) + 〈∇f (yk), z̃k+1 − yk 〉+ θk

2
‖z̃k+1 − zk‖2

σ•v
)
.(96)

108 / 116

Proof of the Main Result (Theorem 37) - Part II

Step 2 (Bounding ψ for “fast θk”). By Lemma 39, each block of the
vector xk is a convex combination of the corresponding blocks of the
vectors z0, . . . , zk . By the convexity of each function ψi , for all k ≥ 0 we
have

ψi (x
(i)
k)

(88)
= ψi

(
k∑

l=0

γ
(i)
kl z

(i)
l

)
≤

k∑
l=0

γ
(i)
kl ψi (z

(i)
l)

def
= αi

k . (97)

Moreover,

ψ(xk) =
n∑

i=1

ψi (x
(i)
k)

(97)

≤
n∑

i=1

αi
k

def
= ψ̂k . (98)

109 / 116

Proof of the Main Result (Theorem 37) - Part III
Then, for all k ≥ 0 and i ∈ {1, . . . , n}, we have:

Ek [αi
k+1]

(97)+(89)
= Ek

[
k∑

l=0

γ
(i)
k+1,lψi (z

(i)
l) + θk

pi
ψi (z

(i)
k+1)

]

=
k∑

l=0

γ
(i)
k+1,lψi (z

(i)
l) + θk

pi
Ek [ψi (z

(i)
k+1)]

(91)
=

k∑
l=0

γ
(i)
k+1,lψi (z

(i)
l) + θk

pi

(
piψi (z̃

(i)
k+1) + (1− pi)ψi (z

(i)
k)
)

=
k∑

l=0

γ
(i)
k+1,lψi (z

(i)
l) + (1

pi
− 1)θkψi (z

(i)
k) + θkψi (z̃

(i)
k+1)

(89)
= (1− θk)

k−1∑
l=0

γ
(i)
kl ψi (z

(i)
l) +

(
γ

(i)
k+1,k + (1

pi
− 1)θk

)
ψi (z

(i)
k) + θkψi (z̃

(i)
k+1)

(89)
= (1− θk)

k−1∑
l=0

γ
(i)
kl ψi (z

(i)
l) +

(
γ

(i)
k+1,k + γ

(i)
k+1,k+1 − θk

)
ψi (z

(i)
k) + θkψi (z̃

(i)
k+1)

(90)
= (1− θk)

k∑
l=0

γ
(i)
kl ψi (z

(i)
l) + θkψi (z̃

(i)
k+1)

(97)
= (1− θk)αi

k + θkψi (z̃
(i)
k+1).

(99)

110 / 116

Proof of the Main Result (Theorem 37) - Part IV

Finally,

Ek [ψ̂k+1]
(98)
= Ek

[
n∑

i=1

αi
k+1

]

=
n∑

i=1

Ek [αi
k+1]

(99)
=

n∑
i=1

(1− θk)αi
k + θkψi (z̃

(i)
k+1)

(98)
= (1− θk)ψ̂k + θkψ(z̃k+1). (100)

111 / 116

Proof of the Main Result (Theorem 37) - Part V
Step 3 (Recursion). For all k ≥ 0 define:

F̂k
def
= ψ̂k + f (xk), (101)

and bound the expectation of F̂k+1 as follows:

Ek [F̂k+1]
(101)
= Ek [ψ̂k+1 + f (xk+1)]

(100)
= (1− θk)ψ̂k + θkψ(z̃k+1) + Ek [f (xk+1)]

(96)

≤ (1− θk)ψ̂k + (1− θk)(f (yk) + 〈∇f (yk), xk − yk 〉)
+θk

(
ψ(z̃k+1) + f (yk) + 〈∇f (yk), z̃k+1 − yk 〉+ θk

2
‖z̃k+1 − zk‖2

p−1•v
)

(92)

≤ (1− θk)ψ̂k + (1− θk)(f (yk) + 〈∇f (yk), xk − yk 〉)
+θk

(
ψ(y) + f (yk) + 〈∇f (yk), y − yk 〉+ θk

2
‖y − zk‖2

p−1•v
− θk

2
‖y − z̃k+1‖2

p−1•v
)

≤ (1− θk)ψ̂k + (1− θk)f (xk)

+θk
(
ψ(y) + f (y) + θk

2
‖y − zk‖2

p−1•v −
θk
2
‖y − z̃k+1‖2

p−1•v
)

= (1− θk)F̂k + θkF (y) +
θ2
k

2
(‖y − zk‖2

p−1•v − ‖y − z̃k+1‖2
p−1•v)

(??)
= (1− θk)F̂k + θkF (y) +

θ2
k

2
Ek [‖y − zk‖2

p−2•v − ‖y − zk+1‖2
p−2•v].

(102)

112 / 116

Proof of the Main Result (Theorem 37) - Part VI

After rearranging (102), using (87), we obtain the recursion:

1−θk+1

θ2
k+1

Ek [F̂k+1−F (y)] + 1
2

Ek [‖zk+1−y‖2
p−2•v] ≤ 1−θk

θ2
k

(F̂k −F (y)) + 1
2
‖zk −y‖2

p−2•v .

Step 4 (Analyzing the recursion). We now take total expectation in
the above inequality and unroll the recurrence:

1−θk
θ2
k

E[F̂k−F (y)]+ 1
2 E[‖zk−y‖2

p−2•v] ≤ 1−θ0

θ2
0

(F̂0−F (y))+ 1
2‖z0−y‖2

p−2•v .

Hence, for all k ≥ 1,

E[F̂k − F (y)] ≤ θ2
k−1(1−θ0)

θ2
0

(F̂0 − F (y)) +
θ2
k−1

2 ‖x0 − y‖2
p−2•v

(86)

≤ 4
((k−1)θ0+2)2

(
(1− θ0)(F (x0)− F (y)) +

θ2
0

2 ‖x0 − y‖2
p−2•v

)
.

113 / 116

References I

[1] Paul Tseng. On accelerated proximal gradient methods for
convex-concave optimization. Technical Report, 2008.

[2] Yurii Nesterov. Efficiency of coordinate descent methods on
huge-scale optimization problems. SIAM Journal on Optimization,
22(2):341-362, 2012

[3] Peter Richtárik and Martin Takáč. Iteration complexity of
randomized block-coordinate descent methods for minimizing a
composite function. Mathematical Programming, 144(2):1–38, 2014

[4] Peter Richtárik and Martin Takáč. Efficient serial and parallel
coordinate descent methods for huge-scale truss topology design.
Operations Research Proceedings 2011, pp. 27-32, 2012

[5] Peter Richtárik and Martin Takáč. Parallel coordinate descent
methods for big data optimization. arXiv:1212.0873, 12/2012

[6] Martin Takáč, Avleen Bijral, Peter Richtárik and Nathan Srebro.
Mini-batch primal and dual methods for SVMs. ICML, 2013

114 / 116

References II

[7] Rachael Tappenden, Peter Richtárik and Jacek Gondzio. Inexact
coordinate descent: complexity and preconditioning.
arXiv:1304.5530, 04/2013

[8] Rachael Tappenden, Peter Richtárik, Burak Büke. Separable
approximations and decomposition methods for the augmented
Lagrangian. to appear in Optimization Methods and Software,
arXiv:1308.6774

[9] Olivier Fercoq and Peter Richtárik. Smooth minimization of
nonsmooth functions with parallel coordinate descent methods.
arXiv:1309.5885, 09/2013

[10] Peter Richtárik and Martin Takáč. Distributed coordinate descent
method for learning with big data. arXiv:1310.2059, 10/2013

[11] Peter Richtárik and Martin Takáč. On optimal probabilities in
stochastic coordinate descent methods. arXiv:1310.3438, 10/2013

[12] Olivier Fercoq and Peter Richtárik. Accelerated, parallel and
proximal coordinate descent. arXiv:1312.5799, 12/2013

115 / 116

References III

[13] Olivier Fercoq, Zheng Qu, Peter Richtárik, Martin Takáč. Fast
distributed coordinate descent for minimizing non-strongly convex
losses. arXiv:1405.5300, 05/2014

[14] Zheng Qu and Peter Richtárik. Accelerated parallel coordinate
descent with importance sampling. Manuscript, 2014

116 / 116

	1. NSync
	Samplings
	Assumptions
	Complexity
	Proof

	2. Blocks
	Decomposition
	Projection
	Norms

	3. Samplings
	Definition
	Sampling Zoo
	Basic Identity
	Consequences of the Basic Identity
	Identities for Uniform Samplings
	Identities for Doubly Uniform Samplings
	Sampling Identity for a Quadratic
	Distributed Sampling

	4. Functions
	Model 1
	Model 2
	Model 3

	5. ESO
	Model 1
	Model 3
	ESO and Lipschitz Continuity

	6. APPROX
	Algorithm
	Complexity
	4 Lemmas
	Lemmas
	Proof of the Main Theorem

