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The Problem

In order to quickly illustrate the important topics and notions that we will
study in more depth later, we first consider the following simple problem:

minimize f (x) (1)

subject to x ∈ Rn

We will assume that f is:

I “smooth” (will be made precise later)

I strongly convex
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Introduction to Parallel Coordinate Descent

This NSync algorithm was introduced in a brief 5p paper by R. and
Takáč [11] and was meant to be an entry point to the field of parallel
coordinate descent.

Algorithm (NSync)

Input: initial point x0 ∈ Rn

subset probabilities {pS} for each S ⊆ [n]
def
= {1, 2, . . . , n}

stepsize parameters v1, . . . , vn > 0
for k = 0, 1, 2, . . . do

a) Select a random set of coordinates Sk ⊆ [n] following the law

P(Sk = S) = pS , S ⊆ [n]

b) Update (possibly in parallel) selected coordinates:

xk+1 = xk −
∑
i∈Sk

1

vi
(eT

i ∇f (xk))ei

end for
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Two More Ways of Writing the Update Step

1. Coordinate-by-coordinate:

x
(i)
k+1 =

{
x

(i)
k , i /∈ Sk ,

x
(i)
k −

1
vi

(∇f (xk))(i), i ∈ Sk .

2. Via projection to a subset of blocks: If for h ∈ Rn and S ⊆ [n]
we write

h[S]
def
=
∑
i∈S

h(i)ei ,

then

xk+1 = xk + h[Sk ] for h = −(Diag(v))−1∇f (xk).

We shall interchangeably write:

∇i f (x) = eT
i ∇f (x) = (∇f (x))(i)
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Samplings
Definition 1 (Sampling)
By the name sampling we will refer to a set valued random mapping
with values being subsets of [n] = {1, 2, . . . , n}. For sampling Ŝ we
define p = (p1, . . . , pn)T , where

pi = P(i ∈ Ŝ) (2)

We say that Ŝ is proper, if pi > 0 for all i .

Lemma 2 ([5])

n∑
i=1

pi = E[|Ŝ |]. (3)

Proof.

n∑
i=1

pi
(2)
=

n∑
i=1

∑
S⊆[n]:i∈S

pS =
∑
S⊆[n]

∑
i :i∈S

pS =
∑
S⊆[n]

pS |S | = E[|Ŝ |].
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Assumption: Strong convexity

Assumption 1 (Strong convexity)
f is differentiable and γ-strongly convex with respect to the norm ‖ · ‖s
(weighted Euclidean norm with weights s = (s1, . . . , sn)T > 0). That is,
for all x , h ∈ Rn,

f (x + h) ≥ f (x) + 〈∇f (x), h〉+ γ
2 ‖h‖

2
s . (4)

Notation used above:

‖h‖s
def
=

(
n∑

i=1

si (h(i))2

)1/2

(weighted Euclidean norm)
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Assumption: Expected Separable Overapproximation
Assumption 2 (ESO)
Assume Ŝ is proper and that for some vector of positive weights
v = (v1, . . . , vn) and all x , h ∈ Rn,

E[f (x + h[Ŝ])] ≤ f (x) + 〈∇f (x), h〉p + 1
2‖h‖

2
p•v . (5)

For simplicity, we will often write

(f , Ŝ) ∼ ESO(v).

Note that the ESO parameters v , p depend on both f and Ŝ .

Notation used above:

h[S]
def
=

∑
i∈S

h(i)ei (projection of h ∈ Rn onto coordinates i ∈ S)

〈g , h〉p
def
=

n∑
i=1

pig
(i)h(i) (weighted inner product)

p • v
def
= (p(1)v (1), . . . , p(n)v (n)) (Hadamard product)
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Complexity of NSync

Theorem 3 ([11])
Let x∗ be a minimizer of f . Let Assumptions 1 and 2 be satisfied for a
proper sampling Ŝ (that is, (f , Ŝ) ∼ ESO(v)). Choose

I starting point x0 ∈ Rn,

I error tolerance 0 < ε < f (x0)− f (x∗) and

I confidence level 0 < ρ < 1.

If {xk} are the random iterates generated by NSync where the random
sets Sk are iid following the distribution of Ŝ, then

K ≥ Λ

γ
log

(
f (x0)− f (x∗)

ερ

)
⇒ P(f (xK)− f (x∗) ≤ ε) ≥ 1− ρ, (6)

where

Λ
def
= max

i=1,...,n

vi
pi si

≥
∑n

i=1
vi
si

E[|Ŝ |]
. (7)
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What does this mean?
I Linear convergence. NSync converges linearly (i.e., logarithmic

dependence on ε)

I High confidence is not a problem. ρ appears inside the logarithm,
so it easy to achieve high confidence (by running the method longer;
there is no need to restart)

I Focus on the leading term. The leading term is Λ; and we have
closed from expression for it in terms of

I parameters v1, . . . , vn (which depend on f and Ŝ)
I parameters p1, . . . , pn (which depend on Ŝ)

I Parallelization speedup. The lower bound suggests that if it was
the case that the parameters vi did not grow with increasing

τ
def
= E[|Ŝ |], then we could potentially be getting linear speedup in τ

(average number of updates per iteration).
I So we shall study the dependence of vi on τ ( this will depend on

f and Ŝ)
I As we shall see, speedup does is often guaranteed for sparse

problems.

Question: How to design sampling Ŝ so that Λ is minimized?
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Proof of Theorem 3 - Part I

I If we let µ
def
= γ/Λ, then

f (x + h)
(4)

≥ f (x) + 〈∇f (x), h〉+ γ
2 ‖h‖

2
s

≥ f (x) + 〈∇f (x), h〉+ µ
2 ‖h‖

2
v•p−1 . (8)

Indeed, µ is defined to be the largest number for which
γ‖h‖2

s ≥ µ‖h‖2
v•p−1 holds for all h. Hence, f is µ-strongly convex

with respect to the norm ‖ · ‖v•p−1 .

I Let x∗ be a minimizer of f , i.e., an optimal solution of (1).
Minimizing both sides of (8) in h, we get

f (x∗)− f (x)
(8)

≥ min
h∈Rn
〈∇f (x), h〉+ µ

2 ‖h‖
2
v•p−1

= − 1
2µ‖∇f (x)‖2

p•v−1 . (9)
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Proof of Theorem 3 - Part II
I Let hk

def
= −v−1 • ∇f (xk). Then xk+1 = xk + (hk)[Ŝ], and utilizing

Assumption 2, we get

E[f (xk+1) | xk ] = E
[
f (xk + (hk)[Ŝ]) | xk

]
(5)

≤ f (xk) + 〈∇f (xk), hk〉p + 1
2‖hk‖2

p•v

= f (xk)− 1
2‖∇f (xk)‖2

p•v−1

(9)

≤ f (xk)− µ(f (xk)− f (x∗)).

I Taking expectations in the last inequality,

E[f (xk)− f (x∗)] ≤ (1− µ)k(f (x0)− f (x∗)). (10)

I Using Markov inequality, (10) and the definition of K , we finally get

P(f (xK )− f (x∗) ≥ ε) ≤ E[f (xK )− f (x∗)]/ε

(10)

≤ (1− µ)K (f (x0)− f (x∗))/ε
(6)

≤ ρ.

15 / 116



Proof of Theorem 3 - Part III

I Finally, let us now establish the lower bound on Λ. Letting

∆
def
= {p′ ∈ Rn : p′ ≥ 0,

∑
i p′i = E[|Ŝ |]}, we have

Λ
(7)
= max

i

vi
pi si

(3)

≥ min
p′∈∆

max
i

vi
p′i si

=
1

E[|Ŝ |]

n∑
i=1

vi
si
,

where the last equality follows since optimal p′i is proportional to
vi/si .
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Lecture 2
BLOCKS
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The idea

We now assume the decision vector x has N coordinates

x ∈ RN

which we partition into n “blocks”.

Idea: We let the algorithm operate on “block level” instead ⇒ block
coordinate descent. That is, at iteration k ,

I a random subset Sk of blocks [n] = {1, 2, . . . , n} is chosen

I and updated.
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What do we gain by introducing blocks?

I Flexibility: We can partition the coordinates any way we like for
any reason we might have.

I Sometimes block structure is implied by the problem at hand. In L1
optimization, one often chooses Ni = 1 for all i . In group LASSO
problems, groups correspond to blocks.

I Generality: By allowing for general block structure, we
simultaneously analyze several classes of algorithms:

I coordinate descent (if we choose Ni = 1 for all i)
I block coordinate descent (if we choose Ni > 1 and n > 1)
I gradient descent (if we choose n = 1)
I fast (O(1/k2)) versions of the above. . .

I Efficiency: It is sometimes more efficient to have blocks because:
I this leads to a more “chunky” workload for each processor if we

think that each processor handles one block
I one can design block-norms based on data, which leads to better

approximation and hence faster convergence
I one can try to optimize the partitioning of coordinates to blocks

(say, by trying to optimize complexity bounds, which depend on
block structure)
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Block Decomposition of RN

I Partition. Let H1, . . . ,Hn be a partition of the set of
coordinates/variables {1, 2, . . . ,N} into n nonempty subsets. Let
Ni = |Hi |.

I Projection/lifting matrices. Let Ui ∈ RN×Ni be the column
submatrix of the N ×N identity matrix corresponding to coordinates
in Hi .

I Projection of RN to RNi For x ∈ RN , define

x (i) def
= UT

i x ∈ RNi , i = 1, 2, . . . , n.

Notice that x (i) is the block of coordinates of x belonging to Hi .

I Lifting RNi to RN . Given x (i) ∈ RNi , notice that the vector
s = Uix

(i) ∈ RN has all blocks equal to 0 except for block i , which is
equal to x (i). That is,

s(j) =

{
x (j) j = i

0 otherwise.
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Examples - Part I

Example 4
1. Single block.

n = 1; H1 = {1, 2, . . . ,N}; U1 = I

2. Blocks of size 1. This is the setting already introduced in NSync:

N = n; Hi = {i}; Ui = ei

3. Two blocks of different sizes. Let N = 5 (5 coordinates), n = 2 (2
blocks) and let the partitioning be given by

H1 = {1, 3}, H2 = {2, 4, 5}.

Then

U1 =


1 0
0 0
0 1
0 0
0 0

 U2 =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 1
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Examples - Part II

For x ∈ RN = R5 we have

x(1) = UT
1 x =

(
1 0 0 0 0
0 0 1 0 0

)
x1

x2

x3

x4

x5

 =

(
x1

x3

)
∈ RN1 = R2

x(2) = UT
2 x =

 0 1 0 0 0
0 0 0 1 0
0 0 0 0 1




x1

x2

x3

x4

x5

 =

 x2

x4

x5

 ∈ RN2 = R3

On the other hand, for any x ∈ R5:

U1x
(1) = U1(UT

1 x) =


1 0
0 0
0 1
0 0
0 0


(

x1

x3

)
=


x1

0
x3

0
0

 ∈ R5
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Examples - Part III

and

U2x
(2) = U2(UT

2 x) =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 1


 x2

x4

x5

 =


0
x2

0
x4

x5

 ∈ R5

So, we have the unique decomposition:

x = U1x (1) + U2x (2)

The next simple result will formalize this.

23 / 116



Block Decomposition: Formal Statement
Proposition 1 (Block Decomposition)
Any vector x ∈ RN can be written uniquely as

x =
n∑

i=1

Uix
(i), (11)

where x (i) ∈ RNi . Moreover,

x (i) = UT
i x . (12)

Proof.
Fix any x ∈ RN . Noting that

∑
i UiU

T
i is the N × N identity matrix, we

have x =
∑

i UiU
T
i x , where UT

i x ∈ RNi . Let us now show uniqueness.

Assume that x =
∑

i Uix
(i)
1 =

∑
i Uix

(i)
2 , where x

(i)
1 , x

(i)
2 ∈ RNi . Since

UT
j Ui =

{
Nj × Nj identity matrix, if i = j ,

Nj × Ni zero matrix, otherwise,
(13)

we get 0 = UT
j (x − x) = UT

j

∑
i Ui (x

(i)
1 − x

(i)
2 ) = x

(j)
1 − x

(j)
2 , for all j .
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Projection onto (a subspace spanned by) a set of blocks

For h ∈ RN and ∅ 6= S ⊆ [n]
def
= {1, 2, . . . , n}, we write

h[S] =
∑
i∈S

Uih
(i). (14)

In words, h[S] is a vector in RN obtained from h ∈ RN by zeroing out the
blocks that do not belong to S . Hence:

(h[S])
(i) =

{
h(i), i ∈ S ,

0, i /∈ S .
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Norms in RNi and RN

With each block i ∈ [n] we associate a positive definite matrix
Bi ∈ RNi×Ni and a scalar vi > 0, and equip RNi and RN with the norms

‖x (i)‖(i)
def
= 〈Bix

(i), x (i)〉1/2, ‖x‖v
def
=
(∑n

i=1 vi‖x (i)‖2
(i)

)1/2

. (15)

The corresponding conjugate norms, defined by

‖s‖∗ = max{〈s, x〉 : ‖x‖ ≤ 1}

are given by

‖x (i)‖∗(i)
def
= 〈B−1

i x (i), x (i)〉1/2, ‖x‖∗v =

(∑n
i=1

1
vi

(
‖x (i)‖∗(i)

)2
)1/2

.

(16)

26 / 116



Norms: Examples

Example 5
Consider the following extreme special cases:

1. Single block. Let n = 1, v = 1 and B be a positive definite matrix.
Then

‖x‖(1) = ‖x‖v = 〈Bx , x〉1/2, x ∈ RN .

For instance, if f (x) = 1
2‖Ax − b‖2 we may choose:

I B = ATA (assuming ATA is positive definite)
I B = Diag(ATA) (assuming no column in A is zero, ATA is positive

definite)

2. Blocks of size one. Let Ni = 1 for all i and set Bi = 1. Then

‖t‖(i) = ‖t‖∗(i) = |t|, t ∈ R

and

‖x‖v =

(
n∑

i=1

vi (x (i))2

)1/2

, x ∈ RN .
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Exercises

Exercise 1
Show that ‖ · ‖∗v , as defined above, is indeed the conjugate norm of ‖ · ‖v .

Exercise 2
Generalize NSync to the block setting and provide a complexity analysis.
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Lecture 3
SAMPLINGS
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Samplings: Definition

Definition 6 (Sampling)
Sampling is a random set-valued mapping Ŝ with values in 2[n], the
collection of subsets of [n] = {1, 2, . . . , n}.

I A sampling Ŝ is uniquely characterized by the probability mass
function

P(S)
def
= P(Ŝ = S), S ⊆ [n]; (17)

that is, by assigning probabilities to all subsets of [n].

I Let
pi

def
= P(i ∈ Ŝ). (18)

I Let
pij

def
= P(i ∈ Ŝ , j ∈ Ŝ) =

∑
S:{i,j}⊂S

P(S). (19)
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Sampling Zoo - Part I

Why consider different samplings?

1. Basic Considerations. It is important that each block has a
positive probability of being chosen, otherwise an algorithm will not
be able to update some blocks and hence will not converge to
optimum. For technical/sanity reasons, we define:

I Proper sampling. pi = P(i ∈ Ŝ) > 0 for all blocks i ∈ [n]
I Nil sampling: P(Ŝ = ∅) = 1
I Vacuous sampling: P(Ŝ = ∅) > 0

2. Parallelism. Choice of sampling affects the level of parallelism:
I E[|Ŝ |] is the average number of updates performed in parallel in one

iteration; and is hence closely related to the number of iterations.
I serial sampling: picks one block:

P(|Ŝ | = 1) = 1

We call this sampling serial although nothing prevents us from
computing the actual update to the block, and/or to apply he
update in parallel.
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Sampling Zoo - Part II

I fully parallel sampling: always picks all blocks:

P(Ŝ = {1, 2, . . . , n}) = 1

3. Processor reliability. Sampling may be induced/informed by the
computing environment:

I Reliable/dedicated processors. If one has reliable processors, it is
sensible to choose sampling Ŝ such that P(|Ŝ | = τ) 1 for some τ
related to the number of processors.

I Unreliable processors. If processors given a computing task are busy
or unreliable, they return answer later or not at all - it is then
sensible to ignore such updates and move on. This then means that
Ŝ varies from iteration to iteration.

4. Distributed computing. In a distributed computing environment it
is sensible:

I to allow each node as much autonomy as possible so as to minimize
communication cost,

I to make sure all nodes are busy at all times
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Sampling Zoo - Part III

This suggests a strategy where the set of blocks is partitioned, with
each node owning a partition, and independently picking a “chunky”
subset of blocks at each iteration it will update, ideally from local
information.

5. Uniformity. It may or not may make sense to update some blocks
more often than others:

I uniform samplings:

P(i ∈ Ŝ) = P(j ∈ Ŝ) for all i , j ∈ [n]

I doubly uniform (DU): These are samplings characterized by:

|S ′| = |S ′′| ⇒ P(Ŝ = S ′) = P(Ŝ = S ′′) for all S ′, S ′′ ⊆ [n]

I τ -nice: DU sampling with the additional property that

P(|Ŝ | = τ) = 1

I distributed τ -nice: will define later
I independent sampling: union of independent uniform serial samplings

I nonuniform samplings
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Sampling Zoo - Part IV

6. Complexity of generating a sampling. Some samplings are
computationally more efficient to generate than others: the potential
benefits of a sampling may be completely ruined by the difficulty to
generate sets according to the sampling’s distribution.

I a τ -nice sampling can be well approximated by an independent
sampling, which is easy to generate. . .

I a general sampling, as considered in NSync, will be hard to generate
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Basic Identity

Theorem 7 (Sum over a random index set)
Let ∅ 6= J, J1, J2 ⊂ [n] and Ŝ be any sampling. If θi , i ∈ [n], and θij , for
(i , j) ∈ [n]× [n] are real constants, then1

E

 ∑
i∈J∩Ŝ

θi

 =
∑
i∈J

piθi ,

E

 ∑
i∈J∩Ŝ

θi | |J ∩ Ŝ | = k

 =
∑
i∈J

P(i ∈ Ŝ | |J ∩ Ŝ | = k)θi , (20)

E

 ∑
i∈J1∩Ŝ

∑
j∈J2∩Ŝ

θij

 =
∑
i∈J1

∑
j∈J2

pijθij . (21)

1Sum over an empty index set will, for convenience, be defined to be zero.
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Proof of Theorem 7

We prove the first statement, proof of the remaining statements is
essentially identical:

E

 ∑
i∈J∩Ŝ

θi

 (17)
=
∑
S⊂[n]

( ∑
i∈J∩S

θi

)
P(Ŝ = S)

=
∑
i∈J

∑
S :i∈S

θiP(Ŝ = S)

=
∑
i∈J

θi
∑
S :i∈S

P(Ŝ = S)

=
∑
i∈J

piθi .
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Consequences of Theorem 7

Corollary 8 ([5])
Let ∅ 6= J ⊂ [n] and Ŝ be an arbitrary sampling. Further, let a, h ∈ RN ,
w ∈ Rn

+ and let g be a block separable function, i.e., g(x) =
∑

i gi (x (i)).
Then

E
[
|J ∩ Ŝ |

]
=

∑
i∈J

pi , (22)

E
[
|J ∩ Ŝ |2

]
=

∑
i∈J

∑
j∈J

pij , (23)

E
[
〈a, h[Ŝ]〉w

]
= 〈a, h〉p•w , (24)

E
[
‖h[Ŝ]‖

2
w

]
= ‖h‖2

p•w , (25)

E
[
g(x + h[Ŝ])

]
=

n∑
i=1

[
pigi (x (i) + h(i)) + (1− pi )gi (x (i))

]
. (26)

Moreover, the matrix P
def
= (pij) is positive semidefinite.
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Proof of Corollary 8
All 5 identities follow by applying Lemma 7 and observing that:

I |J ∩ Ŝ | =
∑

i∈J∩Ŝ 1

I |J ∩ Ŝ |2 = (
∑

i∈J∩Ŝ 1)2 =
∑

i∈J∩Ŝ
∑

j∈J∩Ŝ 1

I 〈a, h[Ŝ]〉w =
∑

i∈Ŝ wi 〈a(i), h(i)〉
I ‖h[Ŝ]‖2

w =
∑

i∈Ŝ wi‖h(i)‖2
(i) and

I

g(x + h[Ŝ]) =
∑
i∈Ŝ

gi (x (i) + h(i)) +
∑
i /∈Ŝ

gi (x (i))

=
∑
i∈Ŝ

gi (x (i) + h(i)) +
n∑

i=1

gi (x (i))−
∑
i∈Ŝ

gi (x (i)),

Finally, for any θ = (θ1, . . . , θn)T ∈ Rn,

θTPθ =
∑n

i=1

∑n
j=1 pijθiθj

(21)
= E

[(∑
i∈Ŝ θi

)2
]
≥ 0.

Remark: The above results hold for arbitrary samplings. Let us specialize
them, in order of decreasing generality, to uniform, doubly uniform and
nice samplings.
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Identities: uniform samplings

If Ŝ is uniform, then from (22) using J = [n] we get

pi =
E[|Ŝ |]

n
, i ∈ [n]. (27)

Plugging (27) into (22), (24), (25) and (26) yields

E
[
|J ∩ Ŝ |

]
=
|J|
n

E[|Ŝ |], (28)

E
[
〈a, h[Ŝ]〉w

]
=

E
[
|Ŝ |
]

n
〈a, h〉w , (29)

E
[
‖h[Ŝ]‖

2
w

]
=

E
[
|Ŝ |
]

n
‖h‖2

w , (30)

E
[
g(x + h[Ŝ])

]
=

E[|Ŝ |]
n

g(x + h) +

(
1− E[|Ŝ |]

n

)
g(x). (31)
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Identities: doubly uniform samplings

Consider the case n > 1; the case n = 1 is trivial. For doubly uniform Ŝ ,
pij is constant for i 6= j :

pij =
E[|Ŝ |2 − |Ŝ |]

n(n − 1)
. (32)

Indeed, this follows from

pij =
n∑

k=1

P({i , j} ⊆ Ŝ | |Ŝ | = k)P(|Ŝ | = k) =
n∑

k=1

k(k − 1)

n(n − 1)
P(|Ŝ | = k).

Substituting (32) and (27) into (23) then gives

E[|J ∩ Ŝ |2] = (|J|2 − |J|) E[|Ŝ |2 − |Ŝ |]
n max{1, n − 1}

+ |J| |Ŝ |
n
. (33)
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Identities: τ -nice sampling

Finally, if Ŝ is τ -nice (and τ 6= 0), then E[|Ŝ |] = τ and E[|Ŝ |2] = τ 2,
which used in (33) gives

E[|J ∩ Ŝ |2] =
|J|τ

n

(
1 +

(|J| − 1)(τ − 1)

max{1, n − 1}

)
. (34)

Moreover, assume that P(|J ∩ Ŝ | = k) 6= 0 (this happens precisely when
0 ≤ k ≤ |J| and k ≤ τ ≤ n − |J|+ k). Then for all i ∈ J,

P(i ∈ Ŝ | |J ∩ Ŝ | = k) =

(|J|−1
k−1

)(
n−|J|
τ−k

)(|J|
k

)(
n−|J|
τ−k

) =
k

|J|
.

Substituting this into (20) yields

E

 ∑
i∈J∩Ŝ

θi | |J ∩ Ŝ | = k

 =
k

|J|
∑
i∈J

θi . (35)
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Elementary Samplings, Intersection and Restriction

Definition 9 (Elementary samplings)
Elementary sampling associated with J ⊆ [n] is sampling ÊJ for which

P(ÊJ = J) = 1.

Definition 10 (Intersection of samplings)
For two samplings Ŝ1 and Ŝ2 we define the intersection Ŝ

def
= Ŝ1 ∩ Ŝ2 as

the sampling for which:

P(Ŝ = S) = P(Ŝ1 ∩ Ŝ2 = S), S ⊆ [n].

Definition 11 (Restriction of a sampling to a subset)
Let Ŝ be a sampling and J ⊆ [n]. By restriction of Ŝ to J we mean the
sampling

ÊJ ∩ Ŝ .
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Probability matrices associated with samplings - Part I

Definition 12 (Probability matrix)
With arbitrary sampling Ŝ we associate an n-by-n matrix P = P(Ŝ) with
entries

[P(Ŝ)]ij = P(i ∈ Ŝ , j ∈ Ŝ).

Lemma 13 (Intersection of independent samplings; [14])
Let Ŝ1, Ŝ2 be independent samplings. Then

P(Ŝ1 ∩ Ŝ2) = P(Ŝ1) • P(Ŝ2).

That is, the probability matrix of an intersection of independent
samplings is the Hadamard product of their probability matrices.

Proof.
[P(Ŝ1 ∩ Ŝ2)]ij = P({i , j} ∈ Ŝ1 ∩ Ŝ2) = P({i , j} ∈ Ŝ1)P({i , j} ∈ Ŝ2) =

[P(Ŝ1)]ij [P(Ŝ2)]ij .
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Probability matrices associated with samplings - Part II
Example 14 (Probability Matrix of an Elementary Sampling)
Note that the probability matrix of the elementary sampling ÊJ is the
matrix

P(ÊJ)
def
= eJeT

J , (36)

where eJ we denote the binary vector in Rn with ones in places
corresponding to set J. That is,

[P(ÊJ)]ij =

{
1 i , j ∈ J,

0 otherwise.

Hence, for arbitrary sampling Ŝ , the probability matrix of J ∩ Ŝ is the
submatrix of P(Ŝ) corresponding to the rows and columns indexed by J:

[P(J ∩ Ŝ)]ij = [P(ÊJ) • P(Ŝ)]ij =

{
[P(Ŝ)]ij , i , j ∈ J,

0, otherwise.
(37)
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Probability matrices associated with samplings - Part III
Lemma 15 (Decomposition of a Probability Matrix; [14])
Let Ŝ be any sampling. Then

P(Ŝ) =
∑
S⊆[n]

P(Ŝ = S)P(ÊS). (38)

That is, the probability matrix of arbitrary sampling is a convex
combination of elementary probability matrices.

Proof.
Fix any i , j ∈ [n]. Since (P(ÊS))ij = 1 iff {i , j} ⊆ S , from definition we
have

(P(Ŝ))ij =
∑

S:{i,j}⊆S P(Ŝ = S)

=
∑

S:{i,j}⊆S P(Ŝ = S)(P(ÊS))ij

=
(∑

S:{i,j}⊆S P(Ŝ = S)P(ÊS)
)
ij
.
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Sampling Identity for a Quadratic

Lemma 16
Let G be any real n × n matrix and Ŝ an arbitrary sampling. Then for
any h ∈ Rn we have

E
[
hT

[Ŝ]
Gh[Ŝ]

]
= hT

(
P(Ŝ) • G

)
h, (39)

where • denotes the Hadamard (elementwise) product of matrices.

Proof.

E
[
hT

[Ŝ]
Gh[Ŝ]

]
(14)
= E

∑
i∈Ŝ

∑
j∈Ŝ

Gijh
(i)h(j)


(21)
=

n∑
i=1

n∑
j=1

pijGijh
(i)h(j) = hT

(
P(Ŝ) • G

)
h.
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Distributed sampling

The following sampling is useful in the design of a distributed
coordinate descent method.

Definition 17 (Distributed τ -nice sampling; [10, 13])
Let P1, . . . ,Pc be a partition of {1, 2, . . . , n} such that |Pl | = s for all l .
That is, sc = n. Now let Ŝ1, . . . , Ŝc be independent τ -nice samplings
from P1, . . . ,Pc , respectively. Then the sampling

Ŝ
def
= ∪cl=1Ŝl , (40)

is called distributed τ -nice sampling.

Idea: Blocks in Pl , and all associated data, will be handled/stored by
computer/node l only. Node l picks blocks in Ŝl , computes the updates
fro local information, and applies the updates to locally stored x (i) for
i ∈ Pl .
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Probability Matrix of Distributed τ -nice Sampling

Consider the distributed τ -nice sampling and define:

I E = P(Ê[n]): the n × n matrix of all ones

I I be the n × n identity matrix

I B =
∑c

l=1 P(ÊPl
) : the 0-1 matrix with Bij = 1 iff i , j belong to the

same partition

Lemma 18 ([10]; presented in a different form)
Consider the distributed τ -nice sampling Ŝ. Its probability matrix can be
written as

P(Ŝ) =
τ

s
[α1I + α2E + α3(E − B)] , (41)

where

α1 = 1− τ − 1

ss1
, α2 =

τ − 1

s1
, α3 =

τ

s
− τ − 1

s1
,

and s1 = max{1, s − 1}.
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Proof of Lemma 18

Let P = P(Ŝ). It is easy to see that

I Pij = τ
s

def
= β3 if i = j ,

I Pij = τ(τ−1)
ss1

def
= β2 if i 6= j and i , j belong to the same partition,

I Pij = τ 2

s2

def
= β3 if i 6= j belong to different partitions.

So, we can write

P = β1I + β2(B − I ) + β3(E − B)

= (β1 − β2)I + β2E + (β3 − β2)(E − B).
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Exercises

Exercise 3
Find an expression for the probability matrix of

I the τ -nice sampling,

I arbitrary doubly uniform sampling.

Exercise 4
Let Ŝ be any sampling. Show that

I λmax(P) ≤ E[|Ŝ |] and that the bound is tight,

I P � ppT .
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Lecture 4
FUNCTIONS
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Introduction

I In this part we describe three models for f .

I These models can be thought of as function classes described by a
list of properties.

I However, a single function may belong to more function classes.

In big data setting, some information is computationally difficult to
extract from data.

Consider f (x) = 1
2‖Ax − b‖2.

I It is difficult to compute the largest eigenvalue of ATA if A is large
(this is the Lipschitz constant of ∇f with respect to the standard
Euclidean norm)

I It is easier to compute the squared norm of each column (these
correspond to coordinate-wise Lipschitz constants).

Important point: The models differ in the amount of information they
reveal about f .
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Model: Quadratic

Model 1 ([10, 13])
We assume that

1. Structure and Smoothness: f : RN → R is differentiable and for
all x , h ∈ RN satisfies

f (x + h) ≤ f (x) + (∇f (x))Th + 1
2 hTATAh, (42)

where A ∈ Rm×N .

2. Sparsity: Row j of A depends on blocks i ∈ Cj only. Formally,

Cj
def
= {i : Aji 6= 0},

where Aji
def
= eT

j AUi ∈ R1×Ni . Let ωj
def
= |Cj |.

3. Convexity: f is convex.

Remark: Information about f is contained in the matrix A.
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Examples
Example 19
In machine learning (ML), functions f of the following form are common:

f (x) =
∑m

j=1 fj(x) =
∑m

j=1 `(x ; aj , y
j),

where N is the number of features, m number of examples, aj ∈ RN

corresponds to jth example and y j is a label associated with jth example.

Here are some convex loss functions ` often used in ML for which the
total loss f satisfies (42):

Loss function ` fj (x) (42) satisfied for A given by

square loss (SL) 1
2

(y j − aTj x)2 Aj : = aTj

logistic loss (LL) log(1 + exp(−y jaTj x)) Aj : = 1
2
aTj

square hinge loss (HL) 1
2

max{0, 1− y jaTj x}
2 Aj : = aTj

Interpretation of ωj (point 2 in Model 1) : # features in example j
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Block gradients

Definition 20 (Block Gradients)
The ith block gradient of f : RN → R at x is defined to be the ith
block of the gradient of f at x :

∇i f (x)
def
= (∇f (x))(i) = UT

i ∇f (x) ∈ RNi . (43)

In other words, ∇i f (x) is the vector of partial derivatives with respect to
coordinates belonging to block i .
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Model: Classical

Model 2 ([2, 5, 9])
We assume that

1. Structure: Function f : RN → R is of the form

f (x) =
m∑
j=1

fj(x).

2. Sparsity: fj depends on x via blocks i ∈ Cj only.

3. Convexity: Functions {fj} are convex.

4. Smoothness: Function f has block-Lipschitz gradient with
constants L1, . . . , Ln > 0. That is, for all i = 1, 2, . . . , n,

‖∇i f (x + Ui t)−∇i f (x)‖∗(i) ≤ Li‖t‖(i), x ∈ RN , t ∈ RNi . (44)

Remark: Information about f is contained in the constants L1, . . . , Ln.
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Examples

Example 21 (Least squares)
Consider the quadratic function f (x) = 1

2
‖Ax − b‖2.

(i) Consider the block setup with Ni = 1 (all blocks are of size 1) and Bi = 1 for all
i ∈ [n] (standard Eucl. norms for each block: ‖t‖(i) = |t|). Then Ui = ei and

‖∇i f (x + Ui t)−∇i f (x)‖∗(i) = |eTi AT (A(x + tei )− b)− eTi AT (Ax − b)|

= |eTi ATAei ||t| = ‖A:i‖2|t|,

whence Li = ‖A:i‖2.

(ii) Choose nontrivial block sizes (Ni > 1) and define data-driven block norms with
Bi = AT

i Ai , where Ai = AUi , assuming that Bi � 0. Then

‖∇i f (x + Ui t)−∇i f (x)‖∗(i) = ‖UT
i AT (A(x + Ui t)− b)− UT

i AT (Ax − b)‖∗(i)
= ‖UT

i ATAUi t‖∗(i)
(16)
= 〈(AiA

T
i )−1UT

i ATAUi t,U
T
i ATAUi t〉1/2

= 〈Bi t, t〉1/2 (15)
= ‖t‖(i),

whence Li = 1.
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Model: Newest

Model 3 ([12])
We assume that

1. Structure: f : RN → R is of the form

f (x) =
m∑
j=1

fj(x). (45)

2. Sparsity: fj depends on x via blocks i ∈ Cj only. Let ωj = |Cj |.
(Note that i /∈ Cj ⇒ Lji = 0)

3. Convexity: Functions {fj} are convex.

4. Smoothness: Functions {fj} have block-Lipschitz gradient with
constants Lji ≥ 0. That is, for all j = 1, 2, . . . ,m and i = 1, 2, . . . , n,

‖∇i fj(x + Ui t)−∇i fj(x)‖∗(i) ≤ Lji‖t‖(i), x ∈ RN , t ∈ RNi . (46)

Remark: Information about f is contained in the constants {Lji}
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Computation of Lji

We now give a formula for the constants Lji in the case when fj arises as
a composition of a scalar function φj whose derivative has a known
Lipschitz constant (this is often easy to compute), and a linear functional.

Proposition 2 ([12])
Let fj(x) = φj(eT

j Ax), where φj : R→ R is a function with Lφj -Lipschitz
derivative:

|φj(s)− φj(s ′)| ≤ Lφj |s − s ′|, s, s ′ ∈ R. (47)

Then fj has a block Lipshitz gradient (i.e., satisfies (46)) with constants

Lji = Lφj

(
‖AT

ji ‖∗(i)
)2

, i = 1, 2, . . . , n, (48)

where
Aji = eT

j AUi (49)

(i.e., Aji is the ith block of j-th row of A).
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Proof of Proposition 2

For any x ∈ RN , t ∈ RNi and i we have

‖∇i fj(x + Ui t)−∇i fj(x)‖∗(i)
(43)
= ‖UT

i (eT
j A)Tφ′j(eT

j A(x + Ui t))− UT
i (eT

j A)Tφ′j(eT
j Ax)‖∗(i)

= ‖AT
ji φ
′
j(eT

j A(x + Ui t))− AT
ji φ
′
j(eT

j Ax)‖∗(i)
≤ ‖AT

ji ‖∗(i)|φ
′
j(eT

j A(x + Ui t))− φ′j(eT
j Ax)|

(47)

≤ ‖AT
ji ‖∗(i)Lφj |Aji t| ≤ ‖AT

ji ‖∗(i)Lφj‖AT
ji ‖∗(i)‖t‖(i),

where the last step follows by applying the Cauchy-Schwartz inequality.
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Examples

Example 22 (Least squares)
Consider the quadratic function

f (x) = 1
2
‖Ax − b‖2 = 1

2

∑m
j=1(eTj Ax − bj )

2.

Then fj (x) = φj (e
T
j Ax), where φj (s) = 1

2
(s − bj )

2 and Lφj
= 1.

(i) Consider the block setup with Ni = 1 (all blocks are of size 1) and Bi = 1 for all
i ∈ [n] (standard Euclidean norms for each block). Then by Proposition 2,

Lji
(48)
= Lφj

(‖AT
ji ‖
∗
(i))2 = A2

ji .

(ii) Choose nontrivial block sizes (Ni > 1) and define data-driven block norms with
Bi = AT

i Ai , where Ai = AUi , assuming that the matrices AT
i Ai are positive

definite. Then by Proposition 2,

Lji
(48)
= Lφj

(‖AT
ji ‖
∗
(i))2 (16)

= 〈(AT
i Ai )

−1AT
ji ,A

T
ji 〉

(49)
= eTj Ai (A

T
i Ai )

−1AT
i ej .
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Lecture 5
Expected Separable
Overapproximation
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Introduction

In this part we shall look at the three models of f (Lecture 3) and various
types of samplings Ŝ (Lecture 4) and compute paramters
v = (v1, . . . , vn) such

(f , Ŝ) ∼ ESO(v).

These parameters are important since:

I They are stepsize parameters needed in the algorithm (in NSync,
but also in other randomized block coordinate descent methods).

I Their size as a function of τ = E[|Ŝ |] describes achievable
parallelization speedup.

I By computing v we get one step closer to ultimate goal of designing
sampling Ŝ optimizing the complexity bound.
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ESO(f ∼ Model 1, Ŝ ∼ arbitrary)

Theorem 23 ([14])
Let f satisfy assumptions in Model 1, assume all blocks are of size 1
(Ni = 1) and Ŝ be any sampling. Then for all x , h ∈ RN ,

E
[
f (x + h[Ŝ])

]
≤ f (x) + 〈∇f (x), h〉p +

1

2
‖h‖2

p•v , (50)

where v is any vector such that

P • ATA � Diag(p • v), (51)

where P = P(Ŝ) is the probability matrix associated with Ŝ.

Remark: The Hadamard product of two PSD matrices is PSD (P is PSD
by Corollary 8).
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Proof of Theorem 23

We have

E
[
f (x + h[Ŝ])

] (42)

≤ E
[
f (x) + 〈∇f (x), h[Ŝ]〉+ 1

2 〈A
TAh[Ŝ], h[Ŝ]〉

]
(24)
= f (x) + 〈∇f (x), h〉p + 1

2 E
[
hT

[Ŝ]
ATAh[Ŝ]

]
(∗)
= f (x) + 〈∇f (x), h〉p + 1

2 hT
(
P • ATA

)
h

≤ f (x) + 〈∇f (x), h〉p + 1
2 hT Diag(p • v)h︸ ︷︷ ︸

=‖h‖2
p•v

,

where (*) comes from Lemma 16.
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Ways of satisfying (51)

Let us fix a sampling Ŝ (and hence P) and data A. We can find v for
which P • ATA � Diag(p • v) in several ways:

1. vi = λ1‖A:i‖2 and

λ1 = max
θ∈Rn
{θT (P • ATA)θ : θT Diag(P • ATA)θ ≤ 1}.

2. vi = λmax (P•ATA)
pi

.

3. vi = λmax(ATA)
(maxj pj )

pi
(using Lemma 24 with X = P)

4. vi = λmax (P)
pi

maxi ‖A:i‖2 (using Lemma 24 with X = ATA)

Lemma 24
For any two PSD matrices X ,Y with nonnegative elements,

λmax(X • Y ) ≤ λmax(X ) max
j

Yjj .
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Eigenvalues of Probability Matrices

Definition 25 (Eigenvalues)
For arbitrary sampling Ŝ we define

λ(Ŝ)
def
= max

θ∈Rn
{θTP(Ŝ)θ : θT Diag(P(Ŝ))θ ≤ 1}. (52)

and
λ′(Ŝ)

def
= max

θ∈Rn
{θTP(Ŝ)θ : θT θ ≤ 1}. (53)

Example 26 (Elementary Sampling)
Fix S ⊆ [n] and consider the elementary sampling ÊS . Note that

λ(ÊS) = λmax(P(ÊS)) = λmax(eSeT
S ) = ‖eS‖2 = |S |. (54)

Since J ∩ ÊS = ÊJ∩S , we get

λ(J ∩ ÊS) = λ(ÊJ∩S)
(54)
= |J ∩ S |. (55)
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Insightful and Easily Computable Bound

Issues with Theorem 23:

I It does not provide insightful nor easily computable expressions for
vi (which are needed to run the algorithm).

I It does not answer the following inverse problem: given data matrix
A and/or its sparsity pattern {Cj}, design a “good” sampling.

The following two results go a good way to overcoming these issues.

Theorem 27 (Useful ESO; [14])
Let the assumptions of Theorem 23 be satisfied. Then (51) holds (i.e.,
(f , Ŝ) ∼ ESO(v)) with v given by:

vi =
m∑
j=1

λ(Cj ∩ Ŝ)A2
ji , i = 1, 2, . . . , n. (56)
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Proof of Theorem 27
Note that it follows from (21) that for any vector θ ∈ Rn and any j the following
identity holds:

E

( ∑
i∈Cj∩Ŝ

θi

)2

 =
n∑

i=1

[P(Cj ∩ Ŝ)]ijθiθj = θTP(Cj ∩ Ŝ)θ. (57)

Fix h ∈ Rn. Let zj = (z
(1)
j , . . . , z

(n)
j )T ∈ Rn be defined as follows: z

(i)
j = h(i)Aji . We

then have

E
[
hT

[Ŝ]
ATAh[Ŝ]

]
=

m∑
j=1

E
[
hT

[Ŝ]
AT
j : Aj :h[Ŝ]

]
=

m∑
j=1

E

( ∑
i∈Cj∩Ŝ

h(i)Aji

)2


(57)
=

m∑
j=1

zTj P(Cj ∩ Ŝ)zj
(52)

≤
m∑
j=1

λ(Cj ∩ Ŝ)
(
zTj Diag(P(Cj ∩ Ŝ))zj

)
(37)
=

m∑
j=1

λ(Cj ∩ Ŝ)
∑
i∈Cj

pi (h
(i)Aji )

2 =
m∑
j=1

λ(Cj ∩ Ŝ)
n∑

i=1

pi (h
(i)Aji )

2

=
n∑

i=1

pi (h
(i))2

m∑
j=1

λ(Cj ∩ Ŝ)A2
ji =

n∑
i=1

pi (h
(i))2vi .
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Useful bounds on λ(Ŝ)
Theorem 28 ([14])
Let Ŝ be an arbitrary sampling.

1. Lower bound. If Ŝ is not nill, then E[|Ŝ|2]

E[|Ŝ|] ≤ λ(Ŝ).

2. Upper bound. If |Ŝ | ≤ τ with probability 1, then λ(Ŝ) ≤ τ.
3. Identity. If |Ŝ | = τ with probability 1, then λ(Ŝ) = τ .

Let us apply the 2nd part of the above theorem to the sampling J ∩ Ŝ :

Corollary 29
Let Ŝ be an arbitrary sampling, J ⊆ [n] and c a constant such that
|J ∩ Ŝ | ≤ c with probability 1. Then

λ(J ∩ Ŝ) ≤ c .

In particular, if |Ŝ | ≤ τ with probability 1, then |J ∩ Ŝ | ≤ min{|J|, τ}
with probability 1, and hence λ(J ∩ Ŝ) ≤ min{|J|, τ}.

Remark: The above corollary is useful as we can apply it in connection
with Theorem 27 with J = Cj for j = 1, 2, . . . ,m.
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Computing λ(J ∩ Ŝ): Product Sampling

Example 30 (Product Sampling)
Assume that the sets {Cj} in Model 1 form a partition of [n]. The

consider the sampling Ŝ defined as follows:

P(Ŝ = S) =

{
(
∏m

j=1 |Cj |)−1, S ∈ C1 × C2 × · · · × Cm,

0, otherwise.

Note that |Cj ∩ Ŝ | = 1 with probability 1, and hence by Corollary 29,

λ(Cj ∩ Ŝ) ≤ 1.

On the other hand, by the first part of Theorem 28, λ(Cj ∩ Ŝ) ≥ 1, and
hence this sampling achieves the smallest possible value of the “λ
parameters” in (56) (which is “good” as other things equal, ESO with
small {vi} is better). Let us remark that E[|Ŝ |] = m.
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Computing λ(J ∩ Ŝ): τ -Nice Sampling

Exercise 5 (τ -Nice Sampling)
Show by direct computation that if Ŝ is a τ -nice sampling, then the lower
bound in part 1 of Theorem 28 is attained for Cj ∩ Ŝ for all j :

λ(Cj ∩ Ŝ) =
E[|Cj ∩ Ŝ |2]

E[|Cj ∩ Ŝ |]
(34)+(28)

= 1 +
(ωj − 1)(τ − 1)

max{n − 1, 1}
, (58)

where ωj = |Cj |.
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Computing λ(J ∩ Ŝ): Distributed τ -Nice Sampling - Part I

Exercise 6 (Distributed τ -Nice Sampling; [14])
Show that if Ŝ is the distributed τ -nice sampling, then

λ(Cj ∩ Ŝ) ≤ 1 +
(τ − 1)(ωj − 1)

s1︸ ︷︷ ︸
λ1,j

+

(
τ

s
− τ − 1

s1

)
ω′j − 1

ω′j
ωj︸ ︷︷ ︸

λ2,j

, (59)

where s1 = max{1, s − 1}, ωj = |Cj |, and ω′j is the number of partitions
“active” at row j of A:

ω′j
def
= |{l : Aji 6= 0 for some i ∈ Pl}|.

Exercise 7
Show that if the number of partitions is 1 (c = 1), bound (59) for the
distributed τ -nice sampling specializes to the bound (58) for the τ -nice
sampling.
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Computing λ(J ∩ Ŝ): Distributed τ -Nice Sampling - Part II

Lemma 31 ([14])
Consider the distributed τ -nice sampling. Suppose τ ≥ 2. For any
1 ≤ η ≤ s the following holds:(

τ

s
− τ − 1

s − 1

)
η ≤ 1

τ − 1

(
1 +

(τ − 1)(η − 1)

s − 1

)
.

Note that Lemma 31 implies that

λ1,j + λ2,j ≤
(

1 +
1

τ − 1

)
λ1,j . (60)
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Distributed NSync: Cost of Distribution
Assume f is 1-strongly convex, and consider running NSync with the

distributed τ -nice sampling. Then pi = E[Ŝ]
n = τc

sc = τ
s and hence the

leading term in the complexity bound is

Λ = max
i

vi
pi

(56)
= max

i

s
∑m

j=1 λ(Cj ∩ Ŝ)

τ

(60)

≤ max
i

s
∑m

j=1(λ1,j + λ2,j)A2
ji

τ

def
= Λ′.

I Notice that the effect of partitioning on complexity comes only
through λ2,j .

I Define a new quantity that does not depend on partitioning:

Λ′′ = max
i

s
∑m

j=1 λ1,jA
2
ji

τ

and notice that (60) implies that

Λ′′ ≤ Λ′ ≤ (1 + 1
τ−1 )Λ′′

This means that:

Theorem 32 (Cost of Distribution: compare with [10, 14])
If τ ≥ 2, the worst-case partitioning is at most (1 + 1

τ ) times worse than
the optimal partitioning, in terms of the number of iterations of NSync.
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Proof of Theorem 28 - Part I

Point 1. For simplicity of notation, put P = P(Ŝ). If we choose θ ∈ Rn

with θi = (Tr(P))−1/2 for all i , we get θTDPθ =
∑

i Piiθ
2
i = 1 and hence

λ(Ŝ)
(52)

≥ θTPθ
(57)
= E

[(∑
i∈Ŝ

θi

)2]
=

E
[(∑

i∈Ŝ 1
)2]

Tr(P)

(22)
=

E[|Ŝ |2]

E[|Ŝ |]
.

Point 2. Let us represent Ŝ as a convex combination of elementary
samplings: Ŝ =

∑
S⊆[n] qS ÊS , where qS = P(Ŝ = S). Note that then we

also have

P(Ŝ) =
∑
S⊆[n]

qSP(ÊS)
(52)
=
∑
S⊆[n]

qSeSeT
S . (61)
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Proof of Theorem 28 - Part II
Since |Ŝ | ≤ τ with probability 1, we have |S | ≤ τ whenever qS > 0. For
any θ ∈ Rn we can now estimate:

θTP(Ŝ)θ
(61)
=

∑
S :qS>0

qS(eT
S θ)2 ≤

∑
S:qS>0

qS‖eS‖2
∑
i∈S

θ2
i

(54)
=

∑
S:qS>0

qS |S |
∑
i∈S

θ2
i

≤ τ
∑

S:qS>0

qSθ
T Diag(eSeT

S )θ

= τθT

 ∑
S:qS>0

qS Diag(eSeT
S )

 θ

(61)
= τ

(
θT Diag(P(Ŝ))θ

)
.

We thus see that λ(Ŝ) ≤ τ .
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Proof of Theorem 28 - Part III

Point 3. The result follows by combining the upper and lower bounds.
Alternatively, we can see this by inspecting the derivation in part 2.
Indeed, if |Ŝ | = τ with probability 1, then |S | = τ whenever qS > 0, and
hence the second inequality in point 2 above is an equality. By choosing
θi = α for any constant α, the first inequality turns into an equality (this
is because we then have equality in the Cauchy-Schwartz inequality
eT
S θ ≤ ‖eS‖2

∑
i∈S θ

2
i for all S).
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ESO(f ∼ Model 3, Ŝ ∼ τ -nice)

Theorem 33
Let f satisfy assumptions in Model 3 and Ŝ be a τ -nice sampling. Then
for all x , h ∈ RN ,

E
[
f (x + h[Ŝ])

]
≤ f (x) +

τ

n

(
〈∇f (x), h〉+

1

2
‖h‖2

v

)
, (62)

where

vi
def
=

m∑
j=1

βjLji =
∑
j :i∈Cj

βjLji , i = 1, 2, . . . , n, (63)

βj
def
= 1 +

(ωj − 1)(τ − 1)

max{1, n − 1}
, j = 1, 2, . . . ,m.

That is, (f , Ŝ) ∼ ESO(v).
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Proof of Theorem 33 - Part I

I We first claim that for all j ,

E
[
fj(x + h[Ŝ])

]
≤ fj(x) +

τ

n

(
〈∇fj(x), h〉+

βj
2
‖h‖2

Lj :

)
, (64)

where Lj : = (Lj1, . . . , Ljn) ∈ Rn. That is, (fj , Ŝ) ∼ ESO(βjLj :).
Equation (62) then follows by adding up the inequalities (64) for all
j . In the rest we prove the claim.

I A well known consequence of (46) is that for all x ∈ RN , t ∈ RNi ,

fj(x + Ui t) ≤ fj(x) + 〈∇i fj(x), t〉+
Lji

2
‖t‖2

(i). (65)
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Proof of Theorem 33 - Part II
I We fix x and define

f̂j(h)
def
= fj(x + h)− fj(x)− 〈∇fj(x), h〉. (66)

Since

E
[
f̂j(h[Ŝ])

]
(66)
= E

[
fj(x + h[Ŝ])− fj(x)− 〈∇fj(x), h[Ŝ]〉

]
(29)
= E

[
fj(x + h[Ŝ])

]
− fj(x)− τ

n 〈∇fj(x), h〉,

it now only remains to show that

E
[
f̂j(h[Ŝ])

]
≤ τβj

2n ‖h‖
2
Lj :
. (67)

I We now adopt the convention that expectation conditional on an
event which happens with probability 0 is equal to 0. Let

ηj
def
= |Cj ∩ Ŝ |, and using this convention, we can write

E
[
f̂j(h[Ŝ])

]
=

n∑
k=0

P(ηj = k)E
[
f̂j(h[Ŝ]) | ηj = k

]
. (68)
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Proof of Theorem 33 - Part III

I For any k ≥ 1 for which P(ηj = k) > 0, we now use use convexity of

f̂j to write

E
[
f̂j(h[Ŝ]) | ηj = k

]
= E

 f̂j

 1
k

∑
i∈Cj∩Ŝ

kUih
(i)

 | ηj = k


≤ E

 1
k

∑
i∈Cj∩Ŝ

f̂j
(

kUih
(i)
)
| ηj = k


(35)
= 1

ωj

∑
i∈Cj

f̂j
(

kUih
(i)
)

(65)+(66)

≤ 1
ωj

∑
i∈Cj

Lji

2 ‖kh(i)‖2
(i) = k2

2ωj
‖h‖2

Lj :
. (69)

82 / 116



Proof of Theorem 33 - Part IV

I Finally,

E
[
f̂j(h[Ŝ])

] (68)+(69)

≤
∑
k

P(ηj = k) k2

2ωj
‖h‖2

Lj :

= 1
2ωj
‖h‖2

Lj :
E[|Cj ∩ Ŝ |2]

(34)
=

τβj

2n ‖h‖
2
Lj :
,

and hence (67) is proved.
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DSO(f ∼ Model 3)

Corollary 34
Let f satisfy assumptions in Model 3 and Ŝ be a τ -nice sampling. Then
for all x , h ∈ RN we have

f (x + h) ≤ f (x) + 〈∇f (x), h〉+
ω̄L̄

2
‖h‖2

w , (70)

where

ω̄
def
=
∑
j

ωj

∑
i Lji∑

k,i Lki
, L̄

def
=

∑
ji Lji

n
, wi

def
=

n∑
j,i ωjLji

∑
j

ωjLji . (71)

Note that ω̄ is a data-weighted average of the values {ωj} and that∑
wi = n.

Proof.
This follows from Theorem 33 used with τ = n (notice that
ω̄L̄w = v).
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ESO and Lipschitz Continuity I

We will now study the collection of functions φ̂x : RN → R for x ∈ RN

defined by

φ̂x(h)
def
= E

[
φ(x + h[Ŝ])

]
. (72)

Let us first establish some basic connections between φ and φ̂x .

Lemma 35 ([9])
Let Ŝ be any sampling and φ : RN → R any function and x ∈ RN . Then

(i) if φ is convex, so is φ̂x ,

(ii) φ̂x(0) = φ(x),

(iii) If Ŝ is proper and uniform, and φ : RN → R is continuously
differentiable, then

∇φ̂x(0) =
E[|Ŝ |]

n
∇φ(x).
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Proof of Lemma 35

Fix x ∈ RN . Notice that

φ̂x(h) = E[φ(x + h[Ŝ])] =
∑
S⊆[n]

P(Ŝ = S)φ(x + USh),

where
US

def
=
∑
i∈S

UiU
T
i .

As φ̂x is a convex combination of convex functions, it is convex,
establishing (i). Property (ii) is trivial. Finally,

∇φ̂x (0) = E
[
∇ φ(x + h[Ŝ])

∣∣∣
h=0

]
= E

[
UŜ∇φ(x)

]
= E

[
UŜ

]
∇φ(x) =

E[|Ŝ |]
n
∇φ(x).

The last equality follows from the observation that UŜ is an N × N binary diagonal

matrix with ones in positions (v , v) for coordinates v ∈ {1, 2, . . . ,N} belonging to

blocks i ∈ Ŝ only, coupled with the fact that for uniform samplings, pi = E[|Ŝ |]/n.
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ESO and Lipschitz Continuity II

We now establish a connection between ESO and a uniform bound in x
on the Lipschitz constants of the gradient “at the origin” of the functions
{φ̂x , x ∈ RN}.

Theorem 36
Let Ŝ be proper and uniform, and φ : RN → R be continuously
differentiable. Then the following statements are equivalent:

(i) (φ, Ŝ) ∼ ESO(v),

(ii) φ̂x(h) ≤ φ̂x(0) + 〈∇φ̂x(0), h〉+ 1
2

E[|Ŝ|]
n ‖h‖

2
v , x , h ∈ RN .

Proof.
We only need to substitute (72) and Lemma 35(ii-iii) into inequality (ii)
and compare the result with the definition of ESO (5).
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Lecture 6
APPROX
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The Problem

We are interested in solving the following optimization problem:

min
x∈RN

f (x) + ψ(x), (73)

where

I f is a “smooth” convex function (to be made precise later),

I ψ is block separable:

ψ(x) =
n∑

i=1

ψi (x (i)), (74)

where ψi : RNi → R ∪ {+∞} are convex and closed.
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Examples of Regularizers

I Smooth optimization:
ψ(x) ≡ 0

I Box constraints: Let Xi ⊆ RNi be closed convex sets and

ψ(x) =

{
0, x (i) ∈ Xi for all i ∈ [n]

+∞, otherwise.

I L2/Ridge:
ψ(x) = λ‖x‖2

2

I L1/LASSO:
ψ(x) = λ‖x‖1

I Group LASSO:

ψ(x) =
n∑

i=1

‖x (i)‖2

All are block separable and convex.
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APPROX algorithm – Version 1

1: Choose x0 ∈ domψ and set z0 = x0 and θ0 > 0
2: for k ≥ 0 do
3: yk = (1− θk)xk + θkzk
4: Generate a random set of blocks Sk ∼ Ŝ
5: zk+1 = zk
6: for i ∈ Sk do

7: z
(i)
k+1 = arg minz∈RNi

{
〈∇i f (yk), z〉+ θkvi

2pi
‖z − z

(i)
k ‖2

(i) + ψi (z)
}

8: end for
9: xk+1 = yk + θk(zk+1 − zk) • p−1

10: θk+1 =

√
θ4
k+4θ2

k−θ
2
k

2 (fast) or θk+1 = θk (normal)
11: end for

Remark 1: Our analysis will follow this version.

Remark 2: The • product is to be applied block-wise, i.e., for a ∈ RN :

a • p−1 =
n∑

i=1

1
pi

Uia
(i).
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Reformulation: Change of Variables - Part I

Focusing on the iterates xk , yk , zk only, the algorithm can schematically
be written as follows:

APPROX Schema: Version 1

yk ← (1− θk)xk + θkzk (75)

zk+1 ← Procedure(yk ; zk ; Sk) (76)

xk+1 ← yk + θk(zk+1 − zk) • p−1 (77)

Consider the change of variables from {xk , yk , zk , } to {zk , gk} where

gk = yk − zk (78)

Inverse change of variables: From {zk , gk} we can recover {xk , yk , zk}
as follows:

xk+1
(77)+(78)

= (zk + gk) + θk(zk+1 − zk) • p−1, yk
(78)
= zk + gk (79)
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Reformulation: Change of Variables - Part II

It remains to show that gk+1 can be computed (from g and z):

gk+1
(78)
= yk+1 − zk+1

(75)
= (1− θk+1)(xk+1 − zk+1)

(79)
= (1− θk+1)(gk − (e − θkp−1) • (zk+1 − zk)),

where e ∈ Rn is the vector of all ones.

Method (75)–(77) can thus be written in the form:

APPROX Schema: Version 2

zk+1 ← Procedure(zk + gk ; zk ; Sk) (80)

gk+1 ← (1− θk+1)
(
gk − (e − θkp−1) • (zk+1 − zk)

)
(81)
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Historical Notes

1. “Normal” & uniform. Choose θ0 = E[|Ŝ|]
n and θk = θ0 for all k and

let Ŝ be uniform, i.e., pi = E[|Ŝ|]
n . Then gk = 0 for all k and the

method simplifies to:

zk+1 ← Procedure(zk ; zk ; Sk) (82)

This is the PCDM method of R. and Takáč [5].

2. Fast & uniform. For uniform Ŝ , “fast” option in Step 10 and

θ0 = E[|Ŝ|]
n , this method reduces to the original APPROX method of

Fercoq & R. [12].

3. Fast & non-uniform. For non-uniform Ŝ presented here,
θ0 ≤ mini pi (and θ0 ≤ 1 if ψ ≡ 0) and for the “fast” option in Step
10, it was analyzed by Qu & R. [14].
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APPROX algorithm – Version 2 (variables gk , zk)

In detail, version 2 has the following form:

1: Choose x0 ∈ domψ and θ0 > 0, g0 = 0 and z0 = x0

2: for k ≥ 0 do
3: Generate a random set of blocks Sk ∼ Ŝ
4: zk+1 ← zk
5: for i ∈ Sk do
6: t

(i)
k =

arg mint∈RNi

{
〈∇i f (gk + zk), t〉+ θkvi

2pi
‖t‖2

(i) + ψi (z
(i)
k + t)

}
7: z

(i)
k+1 ← z

(i)
k + t

(i)
k

8: end for
9: gk+1 ← (1− θk+1)(gk − (e − θkp−1) • tk)

10: θk+1 =

√
θ4
k+4θ2

k−θ
2
k

2 (fast) or θk+1 = θk (normal)
11: end for
12: OUTPUT: xk+1 = (zk + gk) + θk(zk+1 − zk) • p−1
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Complexity

Theorem 37 ([12, 14])
Assume:

I {Sk}k≥1 are iid following the distribution of a proper sampling Ŝ,

I f is convex and (f , Ŝ) ∼ ESO(v),

I ψ is block separable, where ψi are convex and closed.

Let x0 ∈ dom F and choose θ0 ∈ (0,mini pi ] (if ψ = 0, choose
θ0 ∈ (0, 1]). Then for any point y such that F (y) ≤ F (x0) (and hence
also for the optimal point x∗ if such a point exists), the iterates {xk} of
APPROX satisfy

E[F (xk)− F (y)] ≤ 4

((k − 1)θ0 + 2)2
C , k ≥ 1 (83)

where

C
def
= (1− θ0) (F (x0)− F (y)) +

θ2
0

2
‖x0 − y‖2

p−2•v . (84)
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Comments: Smooth Case (ψ ≡ 0)
I In the smooth case (ψ ≡ 0) we may choose θ0 = 1 and get

E[F (xk)−F (x∗)] ≤
2‖x0 − x∗‖2

p−2•v

(k + 1)2
=

2

(k + 1)2

n∑
i=1

vi
p2
i

‖x (i)
0 −x

(i)
∗ ‖2

(i).

I If, moreover, we choose uniform sampling Ŝ and let τ = E[|Ŝ |], then
since pi = τ

n for all i , we get

E[F (xk)− F (x∗)] ≤ 2n2‖x0 − x∗‖2
v

τ 2(k + 1)2
.

In other words, the number of iterations for obtaining an ε-solution
(in expectation) does not exceed

k =

⌈√
2n‖x0 − x∗‖v

τ
√
ε

− 1

⌉
. (85)

I Note that the bound gets better as the average number of
processors (τ) increases (with the caveat that v will generally also
grow in τ , but less so for sparse problems; as ESO predicts).
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Analysis

We shall now prove the Theorem. We first need to establish 4 lemmas.
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Lemma: Properties of the sequence θk

In the first lemma we summarize well-known properties of the sequence
θk used in APPROX.

Lemma 38
The sequence {θk}k≥0 defined APPROX, under the FAST option, is
decreasing and satisfies

0 < θk ≤
2

k + 2/θ0
≤ 1 (86)

and
1− θk+1

θ2
k+1

=
1

θ2
k

. (87)
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Lemma: xk is in the convex hull of z0, . . . , zk

Lemma 39
Let {xk , zk}k≥0 be the iterates of APPROX; and assume
0 < θ0 ≤ mini pi . Then for all k ≥ 0 we have

x
(i)
k =

∑k
l=0 γ

(i)
kl z

(i)
l , i = 1, 2, . . . , n (88)

where for each i , the coefficients γ
(i)
k0 , . . . , γ

(i)
kk are non-negative and sum

to 1. Moreover, the coefficients are defined recursively by setting

γ
(i)
00 = 1, γ

(i)
10 = 1− θ0

pi
, γ

(i)
11 = θ0

pi
and for k ≥ 1,

γ
(i)
k+1,l =


(1− θk)γ

(i)
kl , l = 0, . . . , k − 1,

(1− θk)γ
(i)
kk + θk − θk

pi
, l = k ,

θk
pi
, l = k + 1.

(89)

Moreover, for all k ≥ 0 and i ∈ [n], the following identity holds

γ
(i)
k+1,k + γ

(i)
k+1,k+1 = (1− θk)γ

(i)
kk + θk . (90)
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Remarks about Lemma 39

I Note that if pi = pj for all i , j ∈ [n] (i.e., if Ŝ is a uniform sampling),

then γ
(i)
kl = γ

(j)
kl for all i , j , and hence the lemma says that xk is a

convex combination of the vectors z0, z1, . . . , zk .

I The lemma is only needed in the nonsmooth case (ψ 6= 0).

I The proof is straightforward of a “follow-your-nose” style.
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Proof of Lemma 39 - Part I
We proceed by induction in k . Fix any i ∈ [n].

Step 1 (Base case).

I Since x0 = z0, we have γ
(i)
00 = 1.

I Since x1 = y0 + θ0(z1 − z0) • p−1 and y0 = x0, we get

x
(i)
1 = (1− θ0

pi
)z

(i)
0 + θ0

pi
z

(i)
1 , whence γ

(i)
10 = 1− θ0

pi
, γ

(i)
11 = θ0

pi
.

Note that for each k, the coefficients are nonnegative and sum to one.

Step 2 (Recursive relation). If the recursive relation (89) holds for
some k ≥ 1, then it holds for k + 1:

x
(i)
k+1

(Step 9)
= y

(i)
k + θk

pi
(z

(i)
k+1 − z

(i)
k )

(Step 3)
= (1− θk )x

(i)
k + θkz

(i)
k + θk

pi
(z

(i)
k+1 − z

(i)
k )

(88)
= (1− θk )

k∑
l=0

γ
(i)
kl z

(i)
l + θkz

(i)
k + θk

pi
(z

(i)
k+1 − z

(i)
k )

=

k−1∑
l=0

(1− θk )γ
(i)
kl︸ ︷︷ ︸

γ
(i)
k+1,l

z
(i)
l + ((1− θk )γ

(i)
kk + θk − θk

pi
)︸ ︷︷ ︸

γ
(i)
k+1,k

z
(i)
k + θk

pi︸︷︷︸
γ

(i)
k+1,k+1

z
(i)
k+1.
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Proof of Lemma 39 - Part II

Step 3 (Nonnegativity).

I Since 0 < θk ≤ 1 (because θ0 ≤ mini pi ≤ 1 and {θk} is a decreasing
sequence of positive numbers), we deduce from (89) and, using the

inductive non-negativity assumption, that γ
(i)
k+1,l ≥ 0 for

l = 0, . . . , k − 1.

I Moreover,

γ
(i)
k+1,k

(89)
= (1− θk)γ

(i)
kk + θk − θk

pi

= θk(1− γ(i)
kk ) + γ

(i)
kk −

θk
pi

(89)
= θk(1− γ(i)

kk ) + θk−1−θk
pi

> θk(1− γ(i)
kk ) ≥ 0.

where the first inequality follows since {θk} is a decreasing sequence,

and the last inequality by the inductive hypothesis that γ
(i)
kl ,

l = 0, 1, . . . , k are nonnegative and sum to 1.

I Finally, γ
(i)
k+1,k+1 = θk

pi
> 0.
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Proof of Lemma 39 - Part III

Step 4 (Unit sum). Finally, we can write

k+1∑
l=0

γ
(i)
k+1,l =

k−1∑
l=0

γ
(i)
k+1,l + γ

(i)
k+1,k + γ

(i)
k+1,k+1

(89)
= (1− θk)

k−1∑
l=0

γ
(i)
kl +

(
(1− θk)γ

(i)
kk + θk − θk

pi

)
+ θk

pi

= (1− θk)
k∑

l=0

γ
(i)
kl + θk

= 1,

where the last step follows from the inductive hypothesis that {γ(i)
kl } for

l = 0, 1, . . . , k sum to one.
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Lemma: Tseng
Define

z̃k+1
def
= arg min

z∈RN

{
ψ(z) + 〈∇f (yk ), z − yk 〉+

nθk

2τ
‖z − zk‖2

v

}
(15)+(74)

= arg min
z(i)∈RNi

i∈[n]

n∑
i=1

{
ψi (z

(i)) + 〈∇i f (yk ), z(i) − y
(i)
k 〉+

nθkvi

2τ
‖z(i) − z

(i)
k ‖

2
(i)

}
.

From this and the definition of zk+1 in APPROX, we see that

z
(i)
k+1 =

{
z̃

(i)
k+1, i ∈ Sk

z
(i)
k , i 6∈ Sk .

(91)

Lemma 40 (Property 1 in [1])
Let ξ(u)

def
= f (yk) + 〈∇f (yk), u − yk〉+ θk

2 ‖u − zk‖2
p−1•v . Then for any

y ∈ domψ,

ψ(z̃k+1) + ξ(z̃k+1) ≤ ψ(y) + ξ(y)− θk
2
‖y − z̃k+1‖2

p−1•v . (92)
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Lemma: Gradient vs Stochastic Gradient Mapping

We now connect the gradient mapping (producing z̃k+1) and the
stochastic block gradient mapping (producing the random vector zk+1).

From now on, by Ek we denote the expectation with respect to Sk ,
conditioned on all history.

Lemma 41 ([12])
For any y ∈ RN and k ≥ 0,

Ek

[
‖zk+1 − y‖2

v − ‖zk − y‖2
v

]
= ‖z̃k+1 − y‖2

p•v − ‖zk − y‖2
p•v . (93)

106 / 116



Proof of Lemma 41

Let Ŝ be any proper sampling and a, h ∈ RN . Recall the following
sampling identities:

E[‖h[Ŝ]‖
2
v ]

(25)
= ‖h‖2

p•v , E[〈a, h[Ŝ]〉v ]
(24)
= 〈a, h〉p•v . (94)

Let h = z̃k+1 − zk . In view of (14) and (91), we can write
h[Sk ] = zk+1 − zk . Now,

Ek

[
‖zk+1 − y‖2

v − ‖zk − y‖2
v

]
= Ek

[
‖h[Sk ]‖2

v + 2〈zk − y , h[Sk ]〉v
]

(94)
= ‖h‖2

p•v + 2〈zk − y , h〉p•v
=

(
‖z̃k+1 − y‖2

p•v − ‖zk − y‖2
p•v
)
.
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Proof of the Main Result (Theorem 37) - Part I

Step 1 (Bounding f ). From the definition of yk in the algorithm:

θk(yk − zk) = (1− θk)(xk − yk). (95)

Since xk+1 = yk + h[Sk ] with h = θk(z̃k+1 − zk) • σ, we use ESO and
obtain the following bound:

Ek [f (xk+1)] = Ek [f (yk + h[Sk ])]

≤ f (yk ) + 〈∇f (yk ), h〉p + 1
2
‖h‖2

p•w

= f (yk ) + θk 〈∇f (yk ), z̃k+1 − zk 〉+
θ2
k

2
‖z̃k+1 − zk‖2

σ•v

= (1− θk )f (yk )− θk 〈∇f (yk ), zk − yk 〉

+θk
(
f (yk ) + 〈∇f (yk ), z̃k+1 − yk 〉+ θk

2
‖z̃k+1 − zk‖2

σ•v
)

(95)
= (1− θk )(f (yk ) + 〈∇f (yk ), xk − yk 〉)

+θk
(
f (yk ) + 〈∇f (yk ), z̃k+1 − yk 〉+ θk

2
‖z̃k+1 − zk‖2

σ•v
)
.(96)
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Proof of the Main Result (Theorem 37) - Part II

Step 2 (Bounding ψ for “fast θk”). By Lemma 39, each block of the
vector xk is a convex combination of the corresponding blocks of the
vectors z0, . . . , zk . By the convexity of each function ψi , for all k ≥ 0 we
have

ψi (x
(i)
k )

(88)
= ψi

(
k∑

l=0

γ
(i)
kl z

(i)
l

)
≤

k∑
l=0

γ
(i)
kl ψi (z

(i)
l )

def
= αi

k . (97)

Moreover,

ψ(xk) =
n∑

i=1

ψi (x
(i)
k )

(97)

≤
n∑

i=1

αi
k

def
= ψ̂k . (98)
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Proof of the Main Result (Theorem 37) - Part III
Then, for all k ≥ 0 and i ∈ {1, . . . , n}, we have:

Ek [αi
k+1]

(97)+(89)
= Ek

[
k∑

l=0

γ
(i)
k+1,lψi (z

(i)
l ) + θk

pi
ψi (z

(i)
k+1)

]

=
k∑

l=0

γ
(i)
k+1,lψi (z

(i)
l ) + θk

pi
Ek [ψi (z

(i)
k+1)]

(91)
=

k∑
l=0

γ
(i)
k+1,lψi (z

(i)
l ) + θk

pi

(
piψi (z̃

(i)
k+1) + (1− pi )ψi (z

(i)
k )
)

=
k∑

l=0

γ
(i)
k+1,lψi (z

(i)
l ) + ( 1

pi
− 1)θkψi (z

(i)
k ) + θkψi (z̃

(i)
k+1)

(89)
= (1− θk )

k−1∑
l=0

γ
(i)
kl ψi (z

(i)
l ) +

(
γ

(i)
k+1,k + ( 1

pi
− 1)θk

)
ψi (z

(i)
k ) + θkψi (z̃

(i)
k+1)

(89)
= (1− θk )

k−1∑
l=0

γ
(i)
kl ψi (z

(i)
l ) +

(
γ

(i)
k+1,k + γ

(i)
k+1,k+1 − θk

)
ψi (z

(i)
k ) + θkψi (z̃

(i)
k+1)

(90)
= (1− θk )

k∑
l=0

γ
(i)
kl ψi (z

(i)
l ) + θkψi (z̃

(i)
k+1)

(97)
= (1− θk )αi

k + θkψi (z̃
(i)
k+1).

(99)
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Proof of the Main Result (Theorem 37) - Part IV

Finally,

Ek [ψ̂k+1]
(98)
= Ek

[
n∑

i=1

αi
k+1

]

=
n∑

i=1

Ek [αi
k+1]

(99)
=

n∑
i=1

(1− θk)αi
k + θkψi (z̃

(i)
k+1)

(98)
= (1− θk)ψ̂k + θkψ(z̃k+1). (100)
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Proof of the Main Result (Theorem 37) - Part V
Step 3 (Recursion). For all k ≥ 0 define:

F̂k
def
= ψ̂k + f (xk), (101)

and bound the expectation of F̂k+1 as follows:

Ek [F̂k+1]
(101)
= Ek [ψ̂k+1 + f (xk+1)]

(100)
= (1− θk )ψ̂k + θkψ(z̃k+1) + Ek [f (xk+1)]

(96)

≤ (1− θk )ψ̂k + (1− θk )(f (yk ) + 〈∇f (yk ), xk − yk 〉)
+θk

(
ψ(z̃k+1) + f (yk ) + 〈∇f (yk ), z̃k+1 − yk 〉+ θk

2
‖z̃k+1 − zk‖2

p−1•v
)

(92)

≤ (1− θk )ψ̂k + (1− θk )(f (yk ) + 〈∇f (yk ), xk − yk 〉)
+θk

(
ψ(y) + f (yk ) + 〈∇f (yk ), y − yk 〉+ θk

2
‖y − zk‖2

p−1•v
− θk

2
‖y − z̃k+1‖2

p−1•v
)

≤ (1− θk )ψ̂k + (1− θk )f (xk )

+θk
(
ψ(y) + f (y) + θk

2
‖y − zk‖2

p−1•v −
θk
2
‖y − z̃k+1‖2

p−1•v
)

= (1− θk )F̂k + θkF (y) +
θ2
k

2
(‖y − zk‖2

p−1•v − ‖y − z̃k+1‖2
p−1•v )

(??)
= (1− θk )F̂k + θkF (y) +

θ2
k

2
Ek [‖y − zk‖2

p−2•v − ‖y − zk+1‖2
p−2•v ].

(102)
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Proof of the Main Result (Theorem 37) - Part VI

After rearranging (102), using (87), we obtain the recursion:

1−θk+1

θ2
k+1

Ek [F̂k+1−F (y)] + 1
2

Ek [‖zk+1−y‖2
p−2•v ] ≤ 1−θk

θ2
k

(F̂k −F (y)) + 1
2
‖zk −y‖2

p−2•v .

Step 4 (Analyzing the recursion). We now take total expectation in
the above inequality and unroll the recurrence:

1−θk
θ2
k

E[F̂k−F (y)]+ 1
2 E[‖zk−y‖2

p−2•v ] ≤ 1−θ0

θ2
0

(F̂0−F (y))+ 1
2‖z0−y‖2

p−2•v .

Hence, for all k ≥ 1,

E[F̂k − F (y)] ≤ θ2
k−1(1−θ0)

θ2
0

(F̂0 − F (y)) +
θ2
k−1

2 ‖x0 − y‖2
p−2•v

(86)

≤ 4
((k−1)θ0+2)2

(
(1− θ0)(F (x0)− F (y)) +

θ2
0

2 ‖x0 − y‖2
p−2•v

)
.
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