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Abstract

In the era of big data, one of the key challenges is the development of novel optimization
algorithms that can accommodate vast amounts of data while at the same time satisfying
constraints and limitations of the problem under study. The need to solve optimization problems
is ubiquitous in essentially all quantitative areas of human endeavor, including industry and
science. In the last decade there has been a surge in the demand from practitioners, in fields
such as machine learning, computer vision, artificial intelligence, signal processing and data
science, for new methods able to cope with these new large scale problems.

In this thesis we are focusing on the design, complexity analysis and efficient implementations
of such algorithms. In particular, we are interested in the development of randomized first
order iterative methods for solving large scale linear systems, stochastic quadratic optimization
problems and the distributed average consensus problem.

In Chapter 2, we study several classes of stochastic optimization algorithms enriched with
heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic
Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time
momentum variants of several of these methods are studied. We choose to perform our analysis
in a setting in which all of the above methods are equivalent: convex quadratic problems. We
prove global non-asymptotic linear convergence rates for all methods and various measures of
success, including primal function values, primal iterates, and dual function values. We also
show that the primal iterates converge at an accelerated linear rate in a somewhat weaker sense.
This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic
gradient descent method with momentum). Under somewhat weaker conditions, we establish
a sublinear convergence rate for Cesàro averages of primal iterates. Moreover, we propose a
novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing
the momentum step. We prove linear convergence of several stochastic methods with stochastic
momentum, and show that in some sparse data regimes and for sufficiently small momentum
parameters, these methods enjoy better overall complexity than methods with deterministic
momentum. Finally, we perform extensive numerical testing on artificial and real datasets.

In Chapter 3, we present a convergence rate analysis of inexact variants of stochastic gra-
dient descent, stochastic Newton, stochastic proximal point and stochastic subspace ascent.
A common feature of these methods is that in their update rule a certain sub-problem needs
to be solved exactly. We relax this requirement by allowing for the sub-problem to be solved
inexactly. In particular, we propose and analyze inexact randomized iterative methods for
solving three closely related problems: a convex stochastic quadratic optimization problem, a
best approximation problem and its dual – a concave quadratic maximization problem. We
provide iteration complexity results under several assumptions on the inexactness error. In-
exact variants of many popular and some more exotic methods, including randomized block
Kaczmarz, randomized Gaussian Kaczmarz and randomized block coordinate descent, can be
cast as special cases. Finally, we present numerical experiments which demonstrate the benefits
of allowing inexactness.

When the data describing a given optimization problem is big enough, it becomes impossible
to store it on a single machine. In such situations, it is usually preferable to distribute the data
among the nodes of a cluster or a supercomputer. In one such setting the nodes cooperate
to minimize the sum (or average) of private functions (convex or non-convex) stored at the
nodes. Among the most popular protocols for solving this problem in a decentralized fashion
(communication is allowed only between neighbors) are randomized gossip algorithms.

In Chapter 4 we propose a new approach for the design and analysis of randomized gossip
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algorithms which can be used to solve the distributed average consensus problem, a fundamental
problem in distributed computing, where each node of a network initially holds a number or
vector, and the aim is to calculate the average of these objects by communicating only with
its neighbors (connected nodes). The new approach consists in establishing new connections to
recent literature on randomized iterative methods for solving large-scale linear systems. Our
general framework recovers a comprehensive array of well-known gossip protocols as special
cases and allow for the development of block and arbitrary sampling variants of all of these
methods. In addition, we present novel and provably accelerated randomized gossip protocols
where in each step all nodes of the network update their values using their own information but
only a subset of them exchange messages. The accelerated protocols are the first randomized
gossip algorithms that converge to consensus with a provably accelerated linear rate. The
theoretical results are validated via computational testing on typical wireless sensor network
topologies.

Finally, in Chapter 5, we move towards a different direction and present the first randomized
gossip algorithms for solving the average consensus problem while at the same time protecting
the private values stored at the nodes as these may be sensitive. In particular, we develop
and analyze three privacy preserving variants of the randomized pairwise gossip algorithm
(“randomly pick an edge of the network and then replace the values stored at vertices of this
edge by their average”) first proposed by Boyd et al. [16] for solving the average consensus
problem. The randomized methods we propose are all dual in nature. That is, they are designed
to solve the dual of the best approximation optimization formulation of the average consensus
problem. We call our three privacy preservation techniques “Binary Oracle”, “ε-Gap Oracle”
and “Controlled Noise Insertion”. We give iteration complexity bounds for the proposed privacy
preserving randomized gossip protocols and perform extensive numerical experiments.
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Parpas, Dr. Wolfram Wiesemann, Dr. Lin Xiao, Dr. Kimon Fountoulakis and Dr. Anastasios
Kyrillidis. In addition, I am extremely thankful to Prof. Apostolos Burnetas and Prof. Apos-
tolos Giannopoulos for introducing me to the areas of operational research and convex analysis,
respectively.

This journey would not have been possible without the support of my parents, Christaki
and Agathi. Thank you for encouraging me in all of my pursuits and inspiring me to follow my
dreams. I dedicate this thesis to you.

Finally, I would like to thank the two people that were the most important to me during

7



my time in Edinburgh:
My brother George, thank you for all the funny moments and the joyful experiences. You

have been a constant support throughout my PhD studies and throughout my life. You have
made my time in Edinburgh one of a kind. :)

My girlfriend, Katerina, thank you for your endless patience and for your continuous en-
couragement over the last four years. Thank you for reminding me what is important in life,
for traveling around the world with me, for supporting all of my decisions. Thank you for being
so amazing!!!

8



Contents

Abstract 6

1 Introduction 13
1.1 Thesis’ Philosophy: Place in the Literature . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Bridge across several communities . . . . . . . . . . . . . . . . . . . . . . 14
1.1.2 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Stochastic Optimization Reformulation of Linear Systems . . . . . . . . . . . . . 17
1.3 Stochastic Gradient Descent (SGD) and Equivalent Iterative Methods . . . . . . 20
1.4 Best Approximation and its Dual Problem . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Simple Analysis of Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.1 Technical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.2 Theoretical guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.3 Iteration Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.1 Chapter 2: Randomized Iterative Methods with Momentum and Stochas-

tic Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.2 Chapter 3: Inexact Randomized Iterative Methods . . . . . . . . . . . . . 29
1.6.3 Chapter 4: Revisiting Randomized Gossip Algorithms . . . . . . . . . . . 30
1.6.4 Chapter 5: Privacy Preserving Randomized Gossip Algorithms . . . . . . 30

1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Randomized Iterative Methods with Momentum and Stochastic Momentum 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 The setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.2 Structure of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Momentum Methods and Main Contributions . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Heavy ball method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Stochastic heavy ball method . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Connection to incremental gradient methods . . . . . . . . . . . . . . . . 35
2.2.4 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Primal Methods with Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Convergence of iterates and function values: linear rate . . . . . . . . . . 39
2.3.2 Cesàro average: sublinear rate without exactness assumption . . . . . . . 40
2.3.3 Accelerated linear rate for expected iterates . . . . . . . . . . . . . . . . . 41

2.4 Dual Methods with Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.1 Correspondence between primal and dual methods . . . . . . . . . . . . . 42
2.4.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Methods with Stochastic Momentum . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.1 Primal methods with stochastic momentum . . . . . . . . . . . . . . . . . 43
2.5.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.3 Momentum versus stochastic momentum . . . . . . . . . . . . . . . . . . . 44

2.6 Special Cases: Randomized Kaczmarz with Momentum and Randomized Coor-
dinate Descent with Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6.1 mRK: randomized Kaczmarz with momentum . . . . . . . . . . . . . . . . 45

9



2.6.2 mRCD: randomized coordinate descent with momentum . . . . . . . . . . 47
2.6.3 Visualizing the acceleration mechanism . . . . . . . . . . . . . . . . . . . 48

2.7 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7.1 Evaluation of mSGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.7.2 Comparison of momentum & stochastic momentum . . . . . . . . . . . . 55
2.7.3 Faster method for average consensus . . . . . . . . . . . . . . . . . . . . . 57

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.9 Proofs of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.9.1 Technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.9.2 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.9.3 Proof of Theorem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.9.4 Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.9.5 Proof of Theorem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Inexact Randomized Iterative Methods 69
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.1 The setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.2 Structure of the chapter and main contributions . . . . . . . . . . . . . . 69
3.1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Inexact Update Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.1 Expensive sub-problems in update rules . . . . . . . . . . . . . . . . . . . 71
3.2.2 The inexact basic method . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.3 General framework and further special cases . . . . . . . . . . . . . . . . . 73
3.2.4 Other related work on inexact methods . . . . . . . . . . . . . . . . . . . 74

3.3 Convergence Results Under General Assumptions . . . . . . . . . . . . . . . . . . 74
3.3.1 Assumptions on inexactness error . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.2 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 iBasic with Structured Inexactness Error . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.1 Linear system in the update rule . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.2 Sketch and project interpretation . . . . . . . . . . . . . . . . . . . . . . . 79
3.4.3 Complexity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Inexact Dual Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5.1 Correspondence between the primal and dual methods . . . . . . . . . . . 82
3.5.2 iSDSA with structured inexactness error . . . . . . . . . . . . . . . . . . . 83
3.5.3 Convergence of dual function values . . . . . . . . . . . . . . . . . . . . . 83

3.6 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.6.1 Importance of large block size . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.6.2 Inexactness and block size (iRBCD) . . . . . . . . . . . . . . . . . . . . . 85
3.6.3 Evaluation of iRBK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.8 Proofs of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.8.1 Proof of Theorem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.8.2 Proof of Corollary 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.8.3 Proof of Theorem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.8.4 Proof of Theorem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Revisiting Randomized Gossip Algorithms 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.1.2 Structure of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Background - Technical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.1 Randomized iterative methods for linear systems . . . . . . . . . . . . . . 95
4.2.2 Other related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Sketch and Project Methods as Gossip Algorithms . . . . . . . . . . . . . . . . . 97
4.3.1 Weighted average consensus . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.2 Gossip algorithms through sketch and project framework . . . . . . . . . 98

10



4.3.3 Randomized Kaczmarz method as gossip algorithm . . . . . . . . . . . . . 100
4.3.4 Block gossip algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Faster and Provably Accelerated Randomized Gossip Algorithms . . . . . . . . . 105
4.4.1 Gossip algorithms with heavy ball momentum . . . . . . . . . . . . . . . . 106
4.4.2 Provably accelerated randomized gossip algorithms . . . . . . . . . . . . . 111

4.5 Dual Randomized Gossip Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.5.1 Dual problem and SDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.5.2 Randomized Newton method as a dual gossip algorithm . . . . . . . . . . 116

4.6 Further Connections Between Methods for Solving Linear Systems and Gossip
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.7 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.7.1 Convergence on weighted average consensus . . . . . . . . . . . . . . . . . 120
4.7.2 Benefit of block variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.7.3 Accelerated gossip algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.7.4 Relaxed randomized gossip without momentum . . . . . . . . . . . . . . . 124

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.9 Missing Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.9.1 Proof of Theorem 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.9.2 Proof of Theorem 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Privacy Preserving Randomized Gossip Algorithms 129
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.1.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.1.3 Structure of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2 Dual Analysis of Randomized Pairwise Gossip . . . . . . . . . . . . . . . . . . . . 133
5.2.1 Primal and dual problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2.2 Stochastic dual subspace ascent . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2.3 Randomized gossip setup: choosing A . . . . . . . . . . . . . . . . . . . . 134
5.2.4 Randomized pairwise gossip . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.5 Complexity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 Private Gossip Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.1 Measures of success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.2 Private gossip via binary oracle . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.3 Private gossip via ε-gap oracle . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3.4 Private gossip via controlled noise insertion . . . . . . . . . . . . . . . . . 140

5.4 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.4.1 Private gossip via binary oracle . . . . . . . . . . . . . . . . . . . . . . . . 144
5.4.2 Private gossip via ε-gap oracle . . . . . . . . . . . . . . . . . . . . . . . . 146
5.4.3 Private gossip via controlled noise insertion . . . . . . . . . . . . . . . . . 147

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.6 Proofs of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6.1 Proof of Lemma 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.6.2 Proof of Theorem 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.6.3 Proof of Lemma 43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.6.4 Proof of Theorem 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.6.5 Proof of Theorem 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.6.6 Proof of Lemma 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.6.7 Proof of Theorem 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.6.8 Proof of Lemma 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.6.9 Proof of Theorem 49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.6.10 Proof of Corollary 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6 Conclusion and Future Work 165
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

11



A Notation Glossary 179
A.1 Notation used in Chapters 1, 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.2 Notation used in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.3 Notation used in Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

12



Chapter 1

Introduction

In this thesis we study the design and analysis of new efficient randomized iterative methods
for solving large scale linear systems, stochastic quadratic optimization problems, the best
approximation problem and quadratic optimization problems. A large part of the thesis is also
devoted to the development of efficient methods for obtaining average consensus on large scale
networks. As we will explain later in more detail, some of our proposed algorithms for solving
the average consensus problem are carefully constructed special cases of methods for solving
linear systems. All methods presented in the thesis (except two algorithms in the last chapter
that converge with a sublinear rate) converge with global linear convergence rates, which means
that they achieve an approximate solution of the problem fast.

In this introductory chapter we present the setting shared throughout the thesis and explain
the relationships between the four problems mentioned above. We describe some baseline meth-
ods for solving these problems and present their convergence rates. Finally, we give a summary
of the main contributions of each chapter.

Organization of thesis. The thesis is divided into two main parts. In the first part (Chap-
ters 2 and 3) we present and analyze novel momentum (Chapter 2) and inexact (Chapter 3)
variants of several randomized iterative methods for solving three closely related problems:

(i) stochastic convex quadratic minimization,

(ii) best approximation, and

(iii) (bounded) concave quadratic maximization.

In the second part (Chapters 4 and 5), we focus on the design and analysis of novel ran-
domized gossip algorithms for solving the average consensus problem. This is a fundamental
problem in distributed computing with the following goal: each node of a network initially holds
a number or a vector, and the aim is for every node to calculate the average of these objects
in a decentralized fashion (communicating with neighbors only). The proposed decentralized
algorithms are inspired by recent advances in the area of randomized numerical linear algebra
and optimization. In particular, in Chapter 4 we propose a new framework for the design and
analysis of efficient randomized gossip protocols. We show how randomized iterative methods
for solving linear systems can be interpreted as gossip algorithms when applied to special sys-
tems encoding the underlying network. Using the already developed framework of Chapter 4,
we move towards a different direction and in Chapter 5 we present the first randomized gossip
algorithms for solving the average consensus problem while at the same time protecting the
information about the initial private values stored at the nodes.

Excluding some introductory results presented in this section, each chapter of the thesis is
self-contained, including the objective, contributions, definitions and notation. However, to the
extend that this was possible and meaningful, a unified notation has been adopted throughout
the thesis.
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1.1 Thesis’ Philosophy: Place in the Literature

Here we start by providing a bird’s-eye view of the main concepts and a simple first explanation
of the context and of the problems under study. We present how this thesis is related to
different areas of research and provide important connections that allow readers with different
backgrounds to easily navigate through the main contributions of this work.

1.1.1 Bridge across several communities

This thesis is related to three different areas of research: linear algebra, stochastic optimization
and machine learning.

Figure 1.1: Thesis’ place in the literature. Linear Algebra (through methods for solving linear systems),
Stochastic Optimization (through stochastic reformulations) and Machine Learning (through stochastic
gradient descent) are the three main areas of research related to this thesis.

Linear Algebra
Linear systems form the backbone of most numerical codes used in industry and academia.

Solving large linear systems is a central problem in numerical linear algebra and plays an
important role in computer science, mathematical computing, optimization, signal processing,
engineering and many other fields.

In this thesis we are concerned with the problem of solving a consistent linear system. In
particular, given a matrix A ∈ Rm×n and a vector b ∈ Rm, we are interested to solve the
problem:

Ax = b. (1.1)

Main Assumption: Consistency. Throughout the thesis we assume that the linear sys-
tem (1.1) has a solution x∗ ∈ Rn (not necessarily unique) that satisfies Ax∗ = b. That is, the
linear system is consistent, i.e., L := {x : Ax = b} 6= ∅. We make no extra assumption on the
form, positive definiteness, rank or any other property of matrix A. Thus, all methods proposed
in this thesis converge under virtually no additional assumptions on the system beyond consis-
tency. However, our methods are particularly well suited for the case of large over-determined
linear systems. That is, to the case when the number of linear equations (rows) of the matrix
is much larger than number of columns (variables) (m� n).

14



Stochastic Optimization
This thesis is also related to the stochastic optimization literature, through a recently pro-

posed stochastic optimization reformulation of linear systems [168].
It is well known that the linear system (1.1) can be expressed as an optimization problem

as follows [133]:

min
x∈Rn

1

2
‖Ax− b‖2 =

1

2

m∑
i=1

(
A>i:x− bi

)2
, (1.2)

where Ai: denotes the ith row of matrix A. Note that if we denote with F the solution set of
problem (1.2), then F = L, where L is the solution set of the consistent linear system (1.1).

The above approach of reformulating a linear system to an optimization problem is without
doubt one of the most popular. However as we will later explain in more detail, it is not the
only one. For example, one may instead consider the more general formulation

min
x∈Rn

1

2
‖Ax− b‖2V =

1

2
(Ax− b)>V (Ax− b) , (1.3)

where V ∈ Rm×m is a symmetric and positive definite matrix. In [168], Richtárik and Takáč
proposed a stochastic optimization reformulation of linear systems similar to (1.3). In partic-
ular, they consider (1.3) with V = ES∼D[H] and allow V to be positive semi-definite. The
expectation is over random matrices S (H is matrix expression involving random matrix S)
that depend on an arbitrary user-defined distribution D and the matrix A of the linear system
(1.1). Under a certain assumption on D, for which the term exactness was coined in [168], the
solution set of the stochastic optimization reformulation is identical to the solution set of the
linear system. In [168], the authors provide necessary and sufficient conditions for exactness.
Later in Sections 1.2 and 1.3 we describe exactness and comment on its importance in more
detail.

In this thesis we design and analyze randomized iterative methods (stochastic optimization
algorithms) for solving the stochastic convex quadratic minimization reformulation proposed in
[168].

Machine Learning
Stochastic optimization problems are at the heart of many machine learning and statistical

techniques used in data science. Machine learning practitioners, as part of their data analysis,
are often interested in minimizing function f which in full generality takes the form:

min
x∈Rn

[
f(x) = Ei∼Dfi(x)

]
, (1.4)

where Ei∼D denotes the expectation over an arbitrary distribution D.
If we further assume that the distribution D is uniform over m functions fi, the stochastic

optimization problem is simplified to the finite-sum structure problem:

min
x∈Rn

f(x) =
1

m

m∑
i=1

fi(x). (1.5)

Problem (1.5) is referred to as Empirical Risk Minimization (ERM), and is one of the key
optimization problems arising in large variety of models, ranging from simple linear regressions
to deep learning. For example, note that problem (1.2) is also a special case of ERM (1.5) when

functions fi : Rn → R are chosen to be fi(x) := m
2

(
A>i:x− bi

)2
.

A trivial benchmark for solving problem (1.5) in the case of differentiable function is Gra-
dient Descent (GD). That is,

xk+1 = xk − ωk∇f(xk) = xk − ωk 1

m

m∑
i=1

∇fi(x),

where ωk is the stepsize parameter (learning rate). However in modern machine learning ap-
plications the number m of component functions fi can be very large (m � n). As a result,
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Figure 1.2: Roadmap of the Thesis. Relationships between the four main problems under study: (i)
linear system, (ii) stochastic convex quadratic minimization, (iii) best approximation, (iv) (bounded)
concave quadratic maximization. Connection to the average consensus problem and the main chapters
of the thesis.

computing the full gradient in each iteration is prohibitively expensive and GD becomes im-
practical for most state-of-the-art applications.

To avoid such issues, machine learning practitioners use Stochastic Gradient Descent (SGD),
a randomized variant of GD, first proposed by Robbins and Monro [169] in 1951 and which has
enjoyed a lot of success ever since. For solving (1.5), SGD first uniformly at random samples
function fi (where i ∈ {1, . . . ,m}) and then performs the iteration:

xk+1 = xk − ωk∇fi(xk),

where ωk is the stepsize parameter (learning rate). SGD has become the workhorse for training
supervised machine learning problems which have the generic form (1.5) and many papers
devoted to the understanding of its convergence behavior in different applications and under
different assumptions on the functions fi [137, 136, 81, 177, 170, 141, 68, 194].

This thesis is closely related to machine learning literature and the papers devoted to the
analysis of SGD and its variants. In particular, besides other methods, we focus on analyzing
SGD and two of its most popular variants: SGD with momentum (Chapter 2) and Inexact SGD
(Chapter 3) for solving the stochastic optimization reformulation of linear systems proposed in
[168].

1.1.2 Roadmap

In this subsection, by following the flowchart of Figure 1.2 we present the hierarchy of the main
problems under study, explain the relationships between them and provide a brief summary
of the chapters of the thesis. More details will be provided in the remaining sections of the
Introduction.

In this thesis, we are studying the problem of solving large-dimensional consistent linear
systems of the form Ax = b. In particular, we are adopting the stochastic optimization
reformulation of linear systems first proposed in [168]. As we have already briefly mentioned,
under a certain assumption (exactness) on the randomness of the stochastic reformulation, the
solution set of the stochastic convex quadratic minimization problem is equal to the
solution set of the original linear system. Hence, solving the stochastic optimization problem
ES∼DfS(x) is equivalent to solving the original linear system.
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For solving the stochastic convex quadratic minimization problem one can use stochas-
tic gradient descent (SGD), a popular stochastic optimization algorithm, particularly useful
in machine learning applications (large scale setting). In Section 1.3 we explain how other
stochastic optimization methods, like stochastic Newton (SN) method and stochastic proximal
point (SPP) method, are identical to SGD for solving this particular problem and provide a
simple analysis for their linear (exponential) convergence.

As it turns out, SGD and its equivalent methods converge to one particular minimizer of
the stochastic optimization problem: the projection of their starting point x0 onto the solution
set of the linear system (1.1). This leads to the best approximation problem, which is
the problem of projecting a given vector onto the solution space of the linear system. The
best approximation problem is popular in numerical linear algebra and is normally solved using
sketching techniques. We show how the sketch-and-project method proposed in [73] for solving
the best approximation problem has also identical updates to SGD.

The dual of the best approximation problem is a bounded unconstrained concave
quadratic maximization problem. In this thesis, we are also interested in the develop-
ment and convergence analysis of efficient, dual in nature, algorithms for directly solving the
dual of the best approximation problem. The baseline method for solving the dual of the best
approximation problem is stochastic dual subspace accent (SDSA) [74]. As we will explain later,
the random iterates of SGD, SN and SPP arise as affine images of the random iterates produced
by SDSA.

In Chapters 2 and 3 we study novel momentum and inexact variants of several randomized
iterative methods for solving the above problems. Among the methods studied are: stochastic
gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace
ascent.

As we can also see in Figure 1.2, a large part of the thesis will be devoted to the development
of efficient methods for solving the average consensus (AC) problem. In particular, we will
explain how the AC problem can be expressed as a best approximation problem once we choose
special linear systems encoding the underlying network (average consensus systems). In Chap-
ter 4 we show how classical randomized iterative methods for solving the best approximation
problem can be interpreted as gossip algorithms and explain in detail their decentralized nature.
In Chapter 5, we present the first privacy-preserving randomized gossip algorithms that solve
the AC problem while at the same time protect the private values stored at the nodes as these
may be sensitive.

1.2 Stochastic Optimization Reformulation of Linear Sys-
tems

The starting point of this thesis is a general framework for studying consistent linear systems
via carefully designed stochastic reformulations recently proposed by Richtárik and Takáč [168].
In particular, given the consistent linear system (1.1), the authors provide four reformulations
in the form of a stochastic optimization problem, stochastic linear system, stochastic fixed
point problem and a stochastic feasibility problem. These reformulations are equivalent in the
sense that their solution sets are identical. That is, the set of minimizers of the stochastic
optimization problem is equal to the set of solutions of the stochastic linear system and so on.
Under a certain assumption on the randomness defining these reformulations, for which the
term exactness was coined in [168], the solution sets of these reformulations are equal to the
solution set of the linear system.

For the sake of a simplified narrative, in this thesis we choose to focus mostly on one of
the above reformulations: the stochastic convex quadratic optimization problem, which can be
expressed as follows:

min
x∈Rn

f(x) := ES∼DfS(x). (1.6)

Here the expectation is over random matrices S drawn from an arbitrary, user defined, dis-
tribution D and fS is a stochastic convex quadratic function of a least-squares type, defined
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as

fS(x) :=
1

2
‖Ax− b‖2H =

1

2
(Ax− b)>H(Ax− b). (1.7)

Function fS depends on the matrix A ∈ Rm×n and vector b ∈ Rm of the linear system (1.1)
and on a random symmetric positive semidefinite matrix

H := S(S>AB−1A>S)†S>. (1.8)

The n × n positive definite matrix B, in the expression of matrix H, defines the geometry of
the space and throughout the thesis, gives rise to an inner product

〈x, z〉B := 〈Bx, z〉 (1.9)

and the induced norm ‖x‖B := (x>Bx)1/2 on Rn. By † we denote the Moore-Penrose pseu-
doinverse.

On Moore-Pernose Pseudoinverse: The Moore-Pernose pseudoinverse matrix (or simply
pseudoinverse) M† of a matrix M was first intoduced by Moore [125] and Penrose [154, 153] in
their pioneering work.

A computationally simple and accurate way to compute the matrix M† is by using the sin-
gular value decomposition [67, 38]. That is, if M = UΣV> is the singular value decomposition
of matrix M, then M† = UΣ†V>, where the diagonal matrix Σ† is computed by taking the
reciprocal of each non-zero element on the diagonal of matrix Σ, leaving the zeros in place.
That is Σ†ii = 1

Σii
for all Σii > 0. Note that by its definition Moore-Penrose pseudoinverse

is uniquely defined for all matrices (not necessarily square) whose entries are real or complex
numbers.

It is worth to highlight that in this thesis, we applied the Moore-Pernose pseudoinverse only
on symmetric positive semidefinite matrices. In particular, if M � 0 is a symmetric m × m
matrix then its pseudoinverse will appear as a part of the expression M†b, where b ∈ Rm.
Using properties of pseudoinverse this is equivalent to the least-norm solution of the least-
squares problem minx ‖Mx − b‖2 [67, 74]. Hence, if the system Mx = b has a solution the
following holds:

M†b = argmin‖x‖2 subject to Mx = b. (1.10)

Let us know present some basic properties of the pseudoinverse:

• If matrix M is invertible, its pseudoinverse is its inverse. That is, M† = M−1.

• The pseudoinverse of the pseudoinverse is the original matrix. That is , (M†)† = M

• If M is symmetric positive semidefinite matrix , then M† is also symmetric positive
semidefinite matrix.

• There are several identities that can be used to cancel certain subexpressions or expand
expressions involving pseudoinverses: MM†M = M, M†MM† = M†, (M>M)†M> =
M†, (M>)† = (M†)> and (MM>)† = (M†)>M†. For more useful identities see [67].

As we have already mentioned, problem (1.6) is constructed in such a way that the set
of minimizers of f is identical to the set of solutions of the given (consistent) linear system
(1.1). In this sense, (1.6) can be seen as the reformulation of the linear system (1.1) into
a stochastic optimization problem. As argued in [168], such reformulations provide an ex-
plicit connection between the fields of linear algebra and stochastic optimization, and allow the
transfer of knowledge, techniques, and algorithms from one field to another. For instance, the
randomized Kaczmarz method of Strohmer and Vershynin [182] for solving (1.1) is equivalent
to the stochastic gradient descent method applied to (1.6), with D corresponding to a discrete
distribution over unit coordinate vectors in Rm [133]. However, the flexibility of being able to
choose D arbitrarily allows for numerous generalizations of the randomized Kaczmarz method
[168]. Likewise, provably faster variants of the randomized Kaczmarz method (for instance, by
utilizing importance sampling) can be designed using the connection.
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Since their introduction in [168], stochastic reformulations of otherwise deterministic prob-
lems have found surprising applications in various areas, and are hence an important object
of study in its own right. For instance, using a different stochastic reformulation Gower et al.
[68] performed a tight convergence analysis of stochastic gradient descent in a more general
convex setting, while [70] utilized “controlled” stochastic reformulations to develop a new ap-
proach to variance reduction for finite-sum problems appearing in machine learning. Further,
this approach led to the development of the first accelerated quasi-Newton matrix update rules
in the literature [72] and to the design of efficient randomized projection methods for convex
feasibility problems [130]; all solving open problems in the literature.

Closed form expressions. We shall often refer to matrix expressions involving the random
matrix S and the matrices B and A. In order to keep these expressions brief throughout the
thesis, it will be useful to define the n× n matrix:

Z := A>HA
(1.8)
= A>S(S>AB−1A>S)†S>A. (1.11)

Using matrix Z we can easily express important quantities related to the problems under
study. For example, the stochastic functions fS defined in (1.7) can be also expressed as

fS(x)
(1.7)
=

1

2
(Ax− b)>H(Ax− b) =

1

2
(x− x∗)>Z(x− x∗), (1.12)

where x∗ ∈ L. In addition, the gradient and the Hessian of fS with respect to the B inner
product (1.9) are equal to

∇fS(x)
(1.7)
= B−1A>H(Ax− b) = B−1A>HA(x− x∗) (1.11)

= B−1Z(x− x∗), (1.13)

where x∗ ∈ L and ∇2fS(x) = B−1Z [168].

Using the above expressions, the gradient and the Hessian of the objective function f of
problem (1.6) are given by

∇f(x) = ES∼D[∇fS(x)] = B−1E [Z](x− x∗),

and
∇2f = ES∼D[∇2fS(x)] = B−1E [Z],

respectively.

Projections. Let Υ ⊆ Rn be a closed convex set. Throughout the thesis, with ΠΥ,B we denote
the projection operator onto Υ, in the B-norm. That is, ΠΥ,B(x) := arg minx′∈Υ ‖x′− x‖B. In
particular, we are interested in the projection onto L. An explicit formula for the projection
onto L is given by

ΠL,B(x) := arg min
x′∈L
‖x′ − x‖B = x−B−1A>(AB−1A>)†(Ax− b). (1.14)

A formula for the projection onto the sketched system LS := {x : S>Ax = S>b} is obtained
by simply replacing matrix A and vector b in (1.14) with the matrix S>A and vector S>b,
respectively. In this case we write ΠLS,B(x).

On complexity results. The complexity of the linearly convergent methods presented in
this thesis is described by the spectrum of the following key matrix:

W := B−1/2E [Z]B−1/2. (1.15)

Matrix W has the same spectrum as the Hessian matrix ∇2f = B−1E [Z] and at the same time
is symmetric and positive semidefinite (with respect to the standard inner product). Note that
∇2f is a not symmetric matrix (although it is self-adjoint with respect to the B-inner product).

19



Let W = UΛU> =
∑n
i=1 λiuiu

>
i be the eigenvalue decomposition of W, where U =

[u1, . . . , un] is an orthonormal matrix composed of eigenvectors, and Λ = Diag(λ1, λ2, . . . , λn)
is the diagonal matrix of eigenvalues with λ1 ≥ λ2 ≥ · · · ≥ λn. In this thesis, by λ+

min we will
denote the smallest nonzero eigenvalue, and by λmax = λ1 the largest eigenvalue of matrix W.
It was shown in [168] that 0 ≤ λi ≤ 1 for all i ∈ [n].

Main Assumption: Exactness. Note that in view of (1.12), fS(x) = 0 whenever x ∈ L.
However, fS can be zero also for points x outside of L. Clearly, f is nonnegative, and f(x) = 0
for x ∈ L. However, without further assumptions, the set of minimizers of f can be larger
than L. The exactness assumption mentioned above ensures that this does not happen. For
necessary and sufficient conditions for exactness, we refer the reader to [168]. One of a number
of equivalent characterizations of exactness is the condition:

Null(ES∼D[Z]) = Null(A). (1.16)

For this thesis it suffices to remark that a sufficient condition for exactness is to require E [H]
to be positive definite. This is easy to see by observing that f(x) = E [fS(x)] = 1

2‖Ax− b‖
2
E[H].

In other words, if X = argminf(x) is the solution set of the stochastic optimization problem
(1.6) and L the solution set of the linear system (1.1), then the notion of exactness is captured
by:

X = L

1.3 Stochastic Gradient Descent (SGD) and Equivalent
Iterative Methods

Problem (1.6) has several peculiar characteristics which are of key importance to this thesis.
For instance, the Hessian of fS is a (random) projection matrix, which can be used to show
that fS(x) = 1

2‖∇fS(x)‖2B = 1
2∇fS(x)>B∇fS(x) (see equation (1.38) in Lemma 2). Moreover,

as we have already mentioned the Hessian of f has all eigenvalues bounded by 1, and so on.
These characteristics can be used to show that several otherwise distinct stochastic algorithms
for solving the stochastic optimization problem (1.6) are identical.

In particular, the following optimization methods for solving (1.6) are identical

• Stochastic Gradient Descent (SGD):

xk+1 = xk − ω∇fSk
(xk), (1.17)

• Stochastic Newton Method (SN)1:

xk+1 = xk − ω(∇2fSk
(xk))†B∇fSk

(xk), (1.18)

• Stochastic Proximal Point Method (SPP)2:

xk+1 = arg min
x∈Rn

{
fSk

(x) +
1− ω

2ω
‖x− xk‖2B

}
. (1.19)

In all methods ω > 0, is a fixed stepsize and Sk is sampled afresh in each iteration from
distribution D.

Note that the equivalence of these methods for solving problem (1.6) is useful for the pur-
poses of the thesis as it allows us to study their variants with momentum (Chapter 2) and their
inexact variants (Chapter 3) by studying a single algorithm only.

1In this method we take the B-pseudoinverse of the Hessian of fSk
instead of the classical inverse, as

the inverse does not exist. When B = I, the B pseudoinverse specializes to the standard Moore-Penrose
pseudoinverse.

2In this case, the equivalence only works for 0 < ω ≤ 1.
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Using the closed form expression (1.13) of the gradient of functions fS, the update rules of
the equivalent algorithms (1.17),(1.18) and (1.19) can be also written as:

xk+1 = xk − ωB−1A>Sk(S>k AB−1A>Sk)†S>k (Axk − b) (1.20)

Following [168], we name the algorithmic update of equation (1.20), basic method and we
use this in several parts of this thesis to simultaneously refer to the above equivalent update
rules.

By choosing appropriately the two main parameters of the basic method, the matrix B
and distribution D of the random matrices S, we can recover a comprehensive array of well
known algorithms for solving linear systems as special cases, such as the randomized Kaczmarz
method, randomized Gauss Seidel (randomized coordinate descent) and their block variants.
In addition, it is worth to notice that the basic method allows for a much wider selection of
these two parameters, which means that it is possible to obtain a number of new specific and
possibly more exotic algorithms as special cases. Hence, by having a convergence analysis for
the general method (1.20) we can easily obtain the convergence rates of all these special cases
by choosing carefully the combinations of the two main parameters.

Example 1. As a special case of the general framework, let us choose B = I and Sk = ei, where
i ∈ [m] is chosen in each iteration independently, with probability pi > 0. Here with ei ∈ Rm
we denote the ith unit coordinate vector in Rm. In this setup the update rule (1.20) simplifies
to:

xk+1 = xk − ωAi:x
k − bi

‖Ai:‖2
A>i: . (1.21)

where Ai: indicates the ith row of matrix A. This is a relaxed variant (stepsize not necessarily
ω = 1) of the randomized Kaczmarz method [182].

On Exactness. An important assumption that is required for the convergence analysis of
the randomized iterative methods presented in this thesis is exactness. The exactness property
is of key importance for the setting under study, and should be seen as an assumption on the
distribution D and not on matrix A.

Clearly, an assumption on the distribution D of the random matrices S should be required
for the convergence of (1.20). For an instance, if D in the randomized Kaczmarz method (1.21),
is such that, S = e1 with probability 1, where e1 ∈ Rm be the 1st unit coordinate vector in
Rm, then the algorithm will select the same row of matrix A in each step. For this choice of
distribution it is clear that the algorithm will not converge to a solution of the linear system.
The exactness assumption guarantees that this will not happen.

For necessary and sufficient conditions for exactness, we refer the reader to [168]. For this
thesis, it suffices to remark that the exactness condition is very weak, allowing D to be virtually
any reasonable distribution of random matrices. For instance, as we have already mentioned, a
sufficient condition for exactness is for the matrix E [H] to be positive definite [74].

A much stronger condition than exactness is E [Z] � 0 which has been used for the conver-
gence analysis of (1.20) in [73]. In this case, the matrix A ∈ Rm×n of the linear system requires
to have full column rank and as a result the consistent linear system has a unique solution.

1.4 Best Approximation and its Dual Problem

Best approximation problem. It was shown in [168] that SGD, SN and SPP converge to
a very particular minimizer of f : the projection in the B-norm, of the starting point x0 onto
the solution set of the linear system (1.1). That is, x∗ = ΠL,B(x0). This naturally leads to the
best approximation problem, which is the problem of projecting a given vector onto the solution
space of the linear system (1.1):

min
x∈Rn

P (x) :=
1

2
‖x− x0‖2B subject to Ax = b. (1.22)
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Note that, unlike the linear system (1.1), which is allowed to have multiple solutions, the best
approximation problem has always (from its construction) a unique solution.

For solving problem (1.22), the Sketch and Project Method (SPM):

xk+1 := argminx∈Rn‖x− xk‖2B
subject to S>k Ax = S>k b .

(1.23)

was analyzed in [73, 74]. The name “sketch-and-project” method is justified by the iteration
structure which consists of two steps: (i) draw a random matrix Sk from distribution D and
formulate the sketched system LSk

, (ii) project the last iterate xk onto LSk
. Analysis in [73]

was done under the assumption that A has full column rank. This assumption was lifted in
[74], and a duality theory for the method developed.

Using the closed form expression of projection (1.14), the iterative process of (1.23) can be
equivalently written as [73]:

xk+1 = ΠLSk
,B(xk)

(1.14)
= xk −B−1A>Sk(S>k AB−1A>Sk)†(S>k Axk − S>k b), (1.24)

and for the more general case of ω 6= 1 the update takes the form:

xk+1 = ωΠLSk
,B(xk) + (1− ω)xk. (1.25)

By combining the definition of projection (1.25) and the update rule of equation (1.14) it
can be easily observed that the sketch and project method is identical to the basic method
(1.20). As a result, it is also identical to the previously mentioned algorithms, SGD (1.17), SN
(1.18) and SPP (1.19). Thus, these methods can be also interpreted as randomized projection
algorithms.

On Sketching. In numerical linear algebra, sketching is one of the most popular techniques
used for the evaluation of an approximate solution of large dimensional linear systems Ax = b
where A ∈ Rm×n and b ∈ Rm [197].

Let S ∈ Rm×q be a random matrix with the same number of rows as A but far fewer
columns (n� q). The goal of sketching is to design the distribution of random matrix S such
that the solutions set of the much smaller (and potential much easier to solve) sketched system
S>Ax = S>b to be close to the solution set of the original large dimensional system, with high
probability. That is, ‖S>Ax − S>b‖2 ≤ (1 + ε)‖Ax − b‖2 with high probability. Determining
the random matrix S that satisfy the above constraint can be challenging and often depends on
the properties and form of matrix A. For recent advances in the area of sketching we suggest
[197, 66, 37, 122, 44, 155].

In our setting, as we have already described above, sketching is part of our iterative process.
In each iteration sketching is used in combination with a projection step in order to evaluate
an exact solution of the sketched system.

On Sketch and Project Methods. Variants of the sketch-and-project method have been
recently proposed for solving several other problems. [69, 75] use sketch-and-project ideas for
the development of linearly convergent randomized iterative methods for computing/estimating
the inverse and pseudoinverse of a large matrix, respectively. A limited memory variant of the
stochastic block BFGS method for solving the empirical risk minimization problem arising in
machine learning was proposed by [71]. Tu et al. [192] utilize the sketch-and-project framework
to show that breaking block locality can accelerate block Gauss-Seidel methods. In addition,
they develop an accelerated variant of the method for a specific distribution D. An accelerated
(in the sense of Nesterov) variant of the sketch and prokect method proposed in [72] for the
more general Euclidean setting and applied to matrix inversion and quasi-Newton updates. As
we have already mentioned, in [168], through the development of stochastic reformulations, a
stochastic gradient descent interpretation of the sketch and project method have been proposed.
Similar stochastic reformulations that have the sketch and project method as special case were
also proposed in the more general setting of convex optimization [68] and in the context of
variance-reduced methods [70].
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The dual problem. Duality is an important tool in optimization literature and plays a
major role in the development and understanding of many popular randomized optimization
algorithms. In this thesis, we are also interested in the development of efficient, dual in nature,
algorithms for directly solving the dual of the best approximation problem.

In particular, the Lagrangian dual of (1.22) is the (bounded) unconstrained concave quadratic
maximization problem3

max
y∈Rm

D(y) := (b−Ax0)>y − 1

2
‖A>y‖2B−1 . (1.26)

Boundedness follows from consistency. It turns out that by varying A,B and b (but keeping
consistency of the linear system), the dual problem in fact captures all bounded unconstrained
concave quadratic maximization problems.

Let us define an affine mapping from Rm to Rn as follows:

φ(y) := x0 + B−1A>y. (1.27)

It turns out, from Fenchel duality4, that for any dual optimal y∗, the vector φ(y∗) must be
primal optimal [74]. That is:

x∗ = φ(y∗) = x0 + B−1A>y∗. (1.28)

A dual variant of the basic method for solving problem (1.26) was first proposed in [74].
The dual method—Stochastic Dual Subspace Ascent (SDSA)—updates the dual vectors yk as
follows:

yk+1 = yk + ωSkλ
k, (1.29)

where the random matrix Sk is sampled afresh in each iteration from distribution D, and λk is
chosen to maximize the dual objective D: λk ∈ arg maxλD(yk+Skλ). More specifically, SDSA
is defined by picking the maximizer with the smallest (standard Euclidean) norm. This leads
to the formula:

λk =
(
S>k AB−1A>Sk

)†
S>k
(
b−A(x0 + B−1A>yk)

)
. (1.30)

Note that, SDSA proceeds by moving in random subspaces spanned by the random columns
of Sk. In the special case when ω = 1 and y0 = 0, Gower and Richtárik [74] established the
following relationship (affine mapping φ : Rm 7→ Rn) between the iterates {xk}k≥0 produced
by the primal methods (1.17), (1.18), (1.19), (1.25) (which are equivalent), and the iterates
{yk}k≥0 produced by the dual method (1.29):

xk = φ(yk)
(1.27)

= x0 + B−1A>yk. (1.31)

In Section 1.5 we show with a simple proof how this equivalence extends beyond the ω = 1
case, specifically for 0 < ω < 2 (see Proposition 4). Later, a similar approach will be used in
the derivation of the momentum and inexact variant of SDSA in Chapters 2 and 3 respectively.

An interesting property that holds between the suboptimalities of the primal methods and
SDSA is that the dual suboptimality of y in terms of the dual function values is equal to the
primal suboptimality of φ(y) in terms of distance [74]. That is,

D(y∗)−D(y) =
1

2
‖φ(y∗)− φ(y)‖2B. (1.32)

This simple-to-derive result (by combining the expression of the dual function D(y) (1.26)
and the equation (1.27)) gives for free the convergence analysis of SDSA, in terms of dual
function suboptimality once the analysis of the primal methods is available (see Proposition 5
in Section 1.5).

Note that SDSA update (1.29)+(1.30) depends on the same two parameters, matrix B and
distribution D, of the basic method (SGD, SN and SPP). Therefore, similar to the previous sub-

3Technically problem (1.26) is both the Lagrangian and the Fenchel dual of (1.22) [74].
4For more details on Fenchel duality, see [15].
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section, by choosing appropriately the two parameters we can recover many known algorithms
as special cases of SDSA.

Example 2. Let B = I and Sk = ei, where i ∈ [m] is chosen in each iteration independently,
with probability pi > 0. Here with ei ∈ Rm we denote the ith unit coordinate vector in Rm. In
this setup the update rule (1.29) simplifies to:

yk+1 = yk + ω
bi −Ai:x

0 −Ai:A
>yk

‖Ai:‖2
ei. (1.33)

where Ai: indicates the ith row of matrix A. This is the randomized coordinate ascent method
[139] applied to the dual problem. Having said that, the analysis provided in [139] does not
apply because the objective of the dual problem is not strongly concave function.

1.5 Simple Analysis of Baseline Methods

Having presented the problems that we are interested in this thesis and explained the relation-
ships between them, let us know present some interesting properties of our setting and a simple
convergence analysis of the baseline methods for solving them.

In Sections 1.3 and 1.4 we have introduced these baseline methods. As a reminder, these are
the stochastic gradient descent (SGD) (1.17), stochastic Newton method (SN) (1.18), stochastic
proximal point method (SPP) (1.19), sketch and project method (SPM) (1.25), and stochastic
dual subspace ascent (SDSA)(1.29).

To simplify the presentation, in the remaining sections of the introduction we focus on two
of these algorithms: SGD and SDSA. Recall at this point that SGD, SN, SPP and SPM have
identical updates for the problems under study. This means that the analysis presented here
for SGD holds for all of these methods.

We start by presenting some interesting properties of the stochastic quadratic optimiza-
tion problem (1.6) and discussing connections with existing literature. Then we focus on the
convergence analysis results.

1.5.1 Technical preliminaries

Recently, linear convergence of opimization methods has been established under several condi-
tions that are satisfied in many realistic scenarios. We refer the interested reader to [92] and
[129] for more details on these conditions and how they are related to each other.

In this thesis, we are particularly interested in the Quadratic Growth condition (QG). We
say that a function f satisfies the QG inequality if the following holds for some µ > 0:

µ

2
‖x− x∗‖2 ≤ f(x)− f(x∗). (1.34)

Here x∗ is the projection of vector x onto the solution set X of the optimization problem
minx∈Rn f(x) and f(x∗) denotes the optimal function value.

Under this condition it can be shown that SGD with constant stepsize ω converges with a
linear rate up to a neighborhoud around the optimal point that is proportional to the value of
ω [92]. For general convex function the convergence of SGD is sublinear [169, 136].

In [168] it was shown the the function of the stochastic quadratic optimization problem (1.6)
satisfies the QG condition as well. In particular the following lemma was proved.

Lemma 1 (Quadratic bounds, [168]). For all x ∈ Rn and x∗ ∈ L the objective function of the
stochastic optimization problem (1.6) satisfies:

λ+
minf(x) ≤ 1

2
‖∇f(x)‖2B ≤ λmaxf(x) (1.35)

and

f(x) ≤ λmax

2
‖x− x∗‖2B. (1.36)
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Moreover, if exactness is satisfied, and we let x∗ = ΠL,B(x), we have

λ+
min

2
‖x− x∗‖2B ≤ f(x). (1.37)

Note that inequality (1.37) is precisely the quadratic growth condition (1.34) with µ = λ+
min

and f(x∗) = 0.

The following identities were also established in [168]. For completeness, we include different
(and somewhat simpler) proofs here.

Lemma 2. For all x ∈ Rn and any S ∼ D we have

fS(x) =
1

2
‖∇fS(x)‖2B. (1.38)

Moreover, if x∗ ∈ L (i.e., if x∗ satisfies Ax∗ = b), then for all x ∈ Rn we have

fS(x) =
1

2
〈∇fS(x), x− x∗〉B, (1.39)

and

f(x) =
1

2
〈∇f(x), x− x∗〉B. (1.40)

Proof. In view of (1.13), and since ZB−1Z = Z (see [168]), we have

‖∇fS(x)‖2B
(1.13)

= ‖B−1Z(x− x∗)‖2B = (x− x∗)>ZB−1Z(x− x∗) = (x− x∗)>Z(x− x∗)
(1.11)

= (x− x∗)>A>HA(x− x∗) = (Ax− b)>H(Ax− b) (1.7)
= 2fS(x).

Moreover,

〈∇fS(x), x− x∗〉B
(1.13)

= 〈B−1Z(x− x∗), x− x∗〉B

= (x− x∗)>ZB−1B(x− x∗) (1.12)
= 2fS(x).

By taking expectations in the last identity with respect to the random matrix S, we get
〈∇f(x), x− x∗〉B = 2f(x).

No need for variance reduction SGD is arguably one of the most popular algorithms in
machine learning. Unfortunately, SGD suffers from slow convergence, which is due to the fact
that the variance of the stochastic gradient as an estimator of the gradient does not naturally
diminish. For this reason, SGD is typically used with a decreasing stepsize rule, which ensures
that the variance converges to zero. However, this has an adverse effect on the convergence
rate. For instance, SGD has a sublinear rate even if the function to be minimized is strongly
convex (conergence to the optimum point, not to a neighborhoud around it). To overcome this
problem, a new class of so-called variance-reduced methods was developed over the last 8 years,
including SAG [173], SDCA [178, 166], SVRG/S2GD [89, 97], minibatch SVRG/S2GD [96],
and SAGA [34, 33].

In our setting, we assume that the linear system (1.1) is feasible. Thus, it follows that
the stochastic gradient vanishes at the optimal point (i.e., ∇fS(x∗) = 0 for any S). This
suggests that additional variance reduction techniques are not necessary since the variance of
the stochastic gradient drops to zero as we approach the optimal point x∗. In particular, in
our context, SGD with fixed stepsize enjoys linear rate without any variance reduction strategy
(see Theorem 3). Hence, in this thesis we can bypass the development of variance reduction
techniques, which allows us to focus on the momentum term in Chapter 2 on the inexact
computations in Chapter 3 and on gossip protocols that converge to consensus in Chapters 4
and 5.
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1.5.2 Theoretical guarantees

The following convergence rates of SGD and SDSA are easy to establish, having the bounds
and identities of Lemmas 1 and 2. Nevertheless we present the statements of the theorems
and proofs for completeness and because we use similar ideas and approaches in the rest of the
thesis. For the benefit of the reader, we also include the derivations of the two equations (1.31)
and (1.32) presented in the previous section which connect the primal and the dual iterates.

Theorem 3 ([168]). Let assume exactness and let {xk}∞k=0 be the iterates produced by SGD
with constant stepsize ω ∈ (0, 2). Set x∗ = ΠL,B(x0). Then,

E[‖xk − x∗‖2B] ≤
[
1− ω(2− ω)λ+

min

]k ‖x0 − x∗‖2B. (1.41)

Proof.

‖xk+1 − x∗‖2B
(1.17)

= ‖xk − ω∇fSk
(xk)− x∗‖2B

= ‖xk − x∗‖2B − 2ω〈xk − x∗,∇fSk
(xk)〉B + ω2‖∇fSk

(xk)‖2B
(1.38),(1.39)

= ‖xk − x∗‖2B − 4ωfSk
(xk) + 2ω2fSk

(xk)

= ‖xk − x∗‖2B − 2ω(2− ω)fSk
(xk). (1.42)

By taking expectation with respect to Sk and using quadratic growth inequality (1.37):

ESk
[‖xk+1 − x∗‖2B] = ‖xk − x∗‖2B − 2ω(2− ω)f(xk)

ω∈(0,2), (1.37)

≤ ‖xk − x∗‖2B − ω(2− ω)λ+
min‖x

k − x∗‖2B
=

[
1− ω(2− ω)λ+

min

]
‖xk − x∗‖2B. (1.43)

Taking expectation again and by unrolling the recurrence we obtain (1.41).

Proposition 4. Let {xk}∞k=0 be the iterates produced by SGD(1.17) with ω ∈ (0, 2). Let y0 = 0,
and let {yk}∞k=0 be the iterates of SDSA (1.29). Assume that the methods use the same stepsize
ω ∈ (0, 2) and the same sequence of random matrices Sk. Then xk = φ(yk) = x0 + B−1A>yk

holds for all k. That is, the primal iterates arise as affine images of the dual iterates.

Proof. First note that

∇fSk
(φ(yk))

(1.13)
= B−1A>Sk(S>k AB−1A>Sk)†S>k (Aφ(yk)− b) (1.30)

= −B−1A>Skλ
k. (1.44)

We now use this to show that

φ(yk+1)
(1.31)

= x0 + B−1A>yk+1 (1.29)
= x0 + B−1A>

[
yk + ωSkλ

k
]

= x0 + B−1A>yk + ωB−1A>Skλ
k

(1.31),(1.44)
= φ(yk)− ω∇fSk

(φ(yk)).

So, the sequence of vectors {φ(yk)} satisfies the same recursion to the sequence {xk} defined
by SGD. It remains to check that the starting vectors of both recursions coincide. Indeed, since
y0 = 0, we have x0 = φ(0) = φ(y0).

Proposition 5 ([74]). Let y∗ be a solution of the dual problem (1.26). Then,

D(y∗)−D(yk) =
1

2
‖xk − x∗‖2B.
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Proof.

D(y∗)−D(yk)
(1.26)

= (b−Ax0)>y∗ − 1

2
‖A>y∗‖2B−1 − (b−Ax0)>yk +

1

2
‖A>yk‖2B−1

= (b−Ax0)>(y∗ − yk)− 1

2
(A>y∗)>B−1A>y∗

+
1

2
(A>yk)>B−1A>yk

(∗)
= (AB−1A>y∗)>(y∗ − yk)− 1

2
(A>y∗)>B−1A>y∗

+
1

2
(A>yk)>B−1A>yk

=
1

2
(y∗ − yk)AB−1A>(y∗ − yk)

=
1

2
‖B−1A>(y∗ − yk)‖2B

(1.28)+(1.31)
=

1

2
‖xk − x∗‖2B. (1.45)

In the (∗) equality above we use (1.28) for the optimal primal and dual values. In particular,
x0 = x∗ −B−1A>y∗ ⇒ Ax0 = Ax∗ −AB−1A>y∗ = b−AB−1A>y∗.

The next theorem has been proved in [74] for the case of ω = 1. Here we extend this
convergence to the more general case of 0 < ω < 2.

Theorem 6. Let us assume exactness. Choose y0 = 0 ∈ Rm. Let {yk}∞k=0 be the sequence of
random iterates produced by SDSA with stepsize 0 ≤ ω ≤ 2. Then,

E[D(y∗)−D(yk)] ≤
[
1− ω(2− ω)λ+

min

]k (
D(y∗)−D(y0)

)
. (1.46)

Proof. This follows by applying Theorem 3 together with Proposition 5.

1.5.3 Iteration Complexity

In several parts of this thesis we compare the performance of linearly convergent algorithms
using their iteration complexity bounds. That is, we derive a lower bound on the number of
iterations that are sufficient to achieve a prescribed accuracy. The following lemma shows the
derivation of this bound for the sequence {Ak}∞k=0.

Lemma 7. Consider a non-negative sequence {Ak}∞k=0 satisfying

Ak ≤ ρkA0, (1.47)

where ρ ∈ (0, 1). Then, for a given ε ∈ (0, 1) and for:

k ≥ 1

1− ρ
log

(
1

ε

)
(1.48)

it holds that:
Ak ≤ εA0 (1.49)

Proof. Note that since ρ ∈ (0, 1), we have:

1

1− ρ
log

(
1

ρ

)
> 1. (1.50)

Therefore,

log

(
A0

Ak

)
(1.47)

≥ k log

(
1

ρ

)
(1.48)

≥ 1

1− ρ
log

(
1

ε

)
log

(
1

ρ

)
(1.50)

≥ log

(
1

ε

)
. (1.51)
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Applying exponentials to the above inequality completes the proof.

As an instance, of how the above lemma can be used, recall the convergence result of
Theorem 3, where we have proved that SGD with constant stepsize ω ∈ (0, 2) converges as
follows:

E[‖xk − x∗‖2B] ≤
[
1− ω(2− ω)λ+

min

]k ‖x0 − x∗‖2B.

In this setting, Lemma 7 can be utilized with Ak = E[‖xk − x∗‖2B] and ρ = 1−ω(2−ω)λ+
min to

obtain:

k ≥ 1

ω(2− ω)λ+
min

log

(
1

ε

)
⇒ E[‖xk − x∗‖2B] ≤ ε‖x0 − x∗‖2B.

In this case we say that SGD converges with iteration complexity

O
(

1

ω(2− ω)λ+
min

log

(
1

ε

))
.

1.6 Structure of the Thesis

In the remainder of this section we give a summary of each chapter of this thesis. The detailed
proofs and careful deductions of any claims made here are left to the chapters.

1.6.1 Chapter 2: Randomized Iterative Methods with Momentum
and Stochastic Momentum

The baseline first-order method for minimizing a differentiable function f is the gradient descent
(GD) method,

xk+1 = xk − ωk∇f(xk),

where ωk > 0 is a stepsize [21]. For convex functions with L-Lipschitz gradient, GD con-
verges at at the rate of O(L/ε). When, in addition, f is µ-strongly convex, the rate is linear:
O((L/µ) log(1/ε)) [140]. To improve the convergence behavior of the method, Polyak proposed
to modify GD by the introduction of a (heavy ball) momentum term5, β(xk−xk−1) [156, 157].
This leads to the gradient descent method with momentum (mGD), popularly known as the
heavy ball method:

xk+1 = xk − ωk∇f(xk) + β(xk − xk−1).

More specifically, Polyak proved that with the correct choice of the stepsize parameters ωk

and momentum parameter β, a local accelerated linear convergence rate of O(
√
L/µ log(1/ε))

can be achieved in the case of twice continuously differentiable, µ-strongly convex objective
functions with L-Lipschitz gradient [156, 157].

The theoretical behavior of the above deterministic heavy ball method is now well under-
stood in different settings. In contrast to this, there has been less progress in understanding
the convergence behavior of stochastic variants of the heavy ball method. The key method
in this category is stochastic gradient descent with momentum (mSGD; stochastic heavy ball
method): xk+1 = xk − ωkg(xk) + β(xk − xk−1), where g is an unbiased estimator of the true
gradient ∇f(xk). In our setting, where our goal is to solve the stochastic optimization problem
(1.6), mSGD takes the following form:

xk+1 = xk − ω∇fSk
(xk) + β(xk − xk−1),

5A more popular, and certainly theoretically much better understood alternative to Polyak’s momentum is
the momentum introduced by Nesterov [138, 140], leading to the famous accelerated gradient descent (AGD)

method. This method converges non-asymptotically and globally; with optimal sublinear rate O(
√
L/ε) [137]

when applied to minimizing a smooth convex objective function (class F1,1
0,L), and with the optimal linear

rate O(
√
L/µ log(1/ε)) when minimizing smooth strongly convex functions (class F1,1

µ,L). Recently, variants of

Nesterov’s momentum have also been introduced for the acceleration of stochastic gradient descent. We refer
the interested reader to [65, 1, 88, 87, 214, 215, 98] and the references therein. Both Nesterov’s and Polyak’s
update rules are known in the literature as “momentum” methods. In Chapter 2, however, we focus exclusively
on Polyak’s heavy ball momentum.
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where ω > 0 denotes a fixed stepsize and matrix Sk is sampled afresh in each iteration from
distribution D.

In Chapter 2, we study several classes of stochastic optimization algorithms enriched with
the heavy ball momentum for solving the three closely related problems already described in
the introduction. These are the stochastic quadratic optimization problem (1.6), the best ap-
proximation problem (1.22) and the dual quadratic optimization problem (1.26). Among the
methods studied are: stochastic gradient descent (1.17), stochastic Newton (1.18), stochastic
proximal point (1.19) and stochastic dual subspace ascent (1.29). This is the first time momen-
tum variants of several of these methods are studied. We prove global non-asymptotic linear
convergence rates for all methods and various measures of success, including primal function
values, primal iterates, and dual function values. We also show that the primal iterates con-
verge at an accelerated linear rate in a somewhat weaker sense. This is the first time a linear
rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method
with momentum). Under somewhat weaker conditions, we establish a sublinear convergence
rate for Cesàro averages of primal iterates. Moreover, we propose a novel concept, which we
call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We
prove linear convergence of several stochastic methods with stochastic momentum, and show
that in some sparse data regimes and for sufficiently small momentum parameters, these meth-
ods enjoy better overall complexity than methods with deterministic momentum. Finally, we
perform extensive numerical testing on artificial and real datasets.

1.6.2 Chapter 3: Inexact Randomized Iterative Methods

A common feature of existing randomized iterative methods is that in their update rule a
particular subproblem needs to be solved exactly. In the large scale setting, often this step can
be computationally very expensive. The purpose of the work in Chapter 3 is to reduce the cost
of this step by incorporating inexact updates in the stochastic methods under study.

From a stochastic optimization viewpoint, we analyze the performance of inexact SGD
(iSGD):

xk+1 = xk − ω∇fSk
(xk) + εk,

where ω > 0 denotes a fixed stepsize, matrix Sk is sampled afresh in each iteration from
distribution D and εk represents a (possibly random) error coming from inexact computations.

In Chapter 3, we propose and analyze inexact variants of the exact algorithms presented in
previous sections for solving the stochastic optimization problem (1.6), the best approximation
problem (1.22) and the dual problem (1.26). Among the methods studied are: stochastic
gradient descent (SGD), stochastic Newton (SN), stochastic proximal point (SPP), sketch and
project method (SPM) and stochastic subspace ascent (SDSA). In all of these methods, a
certain potentially expensive calculation/operation needs to be performed in each step; it is
this operation that we propose to be performed inexactly. For instance, in the case of SGD, it
is the computation of the stochastic gradient ∇fSk

(xk), in the case of SPM is the computation
of the projection ΠLS,B(xk), and in the case of SDSA it is the computation of the dual update
Skλ

k.

We perform an iteration complexity analysis under an abstract notion of inexactness and
also under a more structured form of inexactness appearing in practical scenarios. Typically,
an inexact solution of these subproblems can be obtained much more quickly than the exact
solution. Since in practical applications the savings thus obtained are larger than the increase
in the number of iterations needed for convergence, our inexact methods can be dramatically
faster.

Inexact variants of many popular and some more exotic methods, including randomized
block Kaczmarz, randomized Gaussian Kaczmarz and randomized block coordinate descent,
can be cast as special cases of our analysis. Finally, we present numerical experiments which
demonstrate the benefits of allowing inexactness.
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1.6.3 Chapter 4: Revisiting Randomized Gossip Algorithms

In Chapter 4 we present a new framework for the analysis and design of randomized gossip algo-
rithms for solving the average consensus (AC) problem, a fundamental problem in distributed
computing and multi-agent systems.

In the AC problem we are given an undirected connected network G = (V, E) with node
set V = {1, 2, . . . , n} and edges E . Each node i ∈ V “knows” a private value ci ∈ R. The
goal of AC is for every node to compute the average of these private values, c̄ := 1

n

∑
i ci, in a

decentralized fashion. That is, the exchange of information can only occur between connected
nodes (neighbors).

In an attempt to connect the AC problem to optimization, consider the simple optimization
problem:

min
x=(x1,...,xn)∈Rn

1

2
‖x− c‖2 subject to x1 = x2 = · · · = xn, (1.52)

where c = (c1, . . . , cn)> is the vector of the initial private values ci. Observe that its optimal
solution x∗ must necessarily satisfy x∗i = c̄ for all i ∈ [n], where c̄ is the value that each
node needs to compute in the AC problem. Note also that, if we represent the constraint
x1 = x2 = · · · = xn of (1.52) as a linear system then the optimization problem (1.52) is an
instance of the best approximation problem (1.22) with B = I (identity matrix). Perhaps,
there is a deeper link here? Indeed, it turns out that properly chosen randomized algorithms
for solving (1.52) can be interpreted as decentralized protocols for solving the AC problem.

A simple way to express the constraint of problem (1.52) as linear system Ax = b is by
selecting A to be the incidence matrix of the network and the right hand side to be the zero
vector (b = 0 ∈ Rm). By using this system the most basic randomized gossip algorithm
(“randomly pick an edge e = (i, j) ∈ E and then replace the values stored at vertices i and j
by their average”) is an instance of the randomized Kaczmarz (RK) method (1.21) for solving
consistent linear systems, applied to this system.

Using this observation as a starting point, in Chapter 4 we show how classical randomized
iterative methods for solving linear systems can be interpreted as gossip algorithms when applied
to special systems encoding the underlying network and explain in detail their decentralized
nature. Our general framework recovers a comprehensive array of well-known gossip algorithms
as special cases, including the pairwise randomized gossip algorithm and path averaging gossip,
and allows for the development of provably faster variants. The flexibility of the new approach
enables the design of a number of new specific gossip methods. For instance, we propose and
analyze novel block and the first provably accelerated randomized gossip protocols, and dual
randomized gossip algorithms.

From a numerical analysis viewpoint, our work is the first that explores in depth the de-
centralized nature of randomized iterative methods for linear systems and proposes them as
methods for solving the average consensus problem.

We evaluate the performance of the proposed gossip protocols by performing extensive
experimental testing on typical wireless network topologies.

1.6.4 Chapter 5: Privacy Preserving Randomized Gossip Algorithms

In Chapter 5, we present three different approaches to solving the Average Consensus problem
while at the same time protecting the information about the initial values of the nodes. To
the best of our knowledge, this work is the first which combines the gossip framework with the
privacy concept of protection of the initial values.

The randomized methods we propose are all dual in nature. That is, they solve directly the
dual problem (1.26). In particular, the three different techniques that we use for preserving the
privacy are “Binary Oracle”, “ε-Gap Oracle” and “Controlled Noise Insertion”.

Binary Oracle: We propose to reduce the amount of information transmitted in each
iteration to a single bit. More precisely, when an edge is selected, each corresponding node will
only receive information whether the value on the other node is smaller or larger. Instead of
setting the value on the selected nodes to their average, each node increases or decreases its
value by a pre-specified amount.
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ε-Gap Oracle: In this case, we have an oracle that returns one of three options and is
parametrized by ε. If the difference in values of sampled nodes is larger than ε, an update
similar to the one in Binary Oracle is taken. Otherwise, the values remain unchanged. An
advantage compared to the Binary Oracle is that this approach will converge to a certain
accuracy and stop there, determined by ε (Binary Oracle will oscillate around optimum for a
fixed stepsize). However, in general, it will disclose more information about the initial values.

Controlled Noise Insertion: This approach protects the initial values by inserting noise
in the process. Broadly speaking, in each iteration, each of the sampled nodes first adds a noise
to its current value, and an average is computed afterwards. Convergence is guaranteed due to
the correlation in the noise across iterations. Each node remembers the noise it added last time
it was sampled, and in the following iteration, the previously added noise is first subtracted,
and a fresh noise of smaller magnitude is added. Empirically, the protection of initial values is
provided by first injecting noise into the system, which propagates across the network, but is
gradually withdrawn to ensure convergence to the true average.

We give iteration complexity bounds for all proposed privacy preserving randomized gossip
algorithms and perform extensive numerical experiments.

1.7 Summary

The content of this thesis is based on the following publications and preprints:

Chapter 2

• Nicolas Loizou and Peter Richtárik.“Momentum and Stochastic Momentum for Stochas-
tic Gradient, Newton, Proximal Point and Subspace Descent Methods”, arXiv preprint
arXiv:1712.09677 (2017). [115]

• Nicolas Loizou and Peter Richtárik. “Linearly Convergent Stochastic Heavy Ball Method
for Minimizing Generalization Error”, Workshop on Optimization for Machine Learning,
NIPS 2017. [114]

Chapter 3

• Nicolas Loizou and Peter Richtárik. “Convergence Analysis of Inexact Randomized Iter-
ative Methods”, arXiv preprint arXiv:1903.07971 (2019). [117]

Chapter 4

• Nicolas Loizou and Peter Richtárik. “A New Perspective on Randomized Gossip Al-
gorithms”, IEEE Global Conference on Signal and Information Processing (GlobalSIP),
pp.440-444, 2016 [113]

• Nicolas Loizou and Peter Richtárik. “Accelerated Gossip via Stochastic Heavy Ball
Method.” 56th Annual Allerton Conference on Communication, Control, and Computing
(Allerton) (pp. 927-934), 2018. [116]

• Nicolas Loizou, Mike Rabbat and Peter Richtárik. “Provably Accelerated Randomized
Gossip Algorithms” 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 7505-7509 [112]

• Nicolas Loizou and Peter Richtárik. “Revisiting Randomized Gossip Algorithms: Gen-
eral Framework, Convergence Rates and Novel Block and Accelerated Protocols”, arXiv
preprint arXiv:1905.08645, [118].

31



Chapter 5

• Filip Hanzely, Jakub Konečný, Nicolas Loizou, Peter Richtárik and Dmitry Grishchenko.
“A Privacy Preserving Randomized Gossip Algorithm via Controlled Noise Insertion”,
NeurIPS 2018 - Privacy Preserving Machine Learning Workshop, [80]

• Filip Hanzely, Jakub Konečný, Nicolas Loizou, Peter Richtárik and Dmitry Grishchenko.
“Privacy Preserving Randomized Gossip Algorithms”, arXiv preprint arXiv:1706.07636,
2017 [79]

During the course of my study, I also co-authored the following works which were not used
in the formation of this thesis:

• Mahmoud Assran, Nicolas Loizou, Nicolas Ballas and Mike Rabbat. “Stochastic Gradient
Push for Distributed Deep Learning”, Proceedings of the 36th International Conference
on Machine Learning (ICML), 2019 [4]

• Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin and
Peter Richtárik. “SGD: General Analysis and Improved Rates” Proceedings of the 36th
International Conference on Machine Learning (ICML), 2019 [68]

• Nicolas Loizou. “Distributionally Robust Games with Risk-Averse Players”, In Proceed-
ings of 5th International Conference on Operations Research and Enterprise Systems
(ICORES), 186-196, 2016 [111]

In [68], we propose a general theory describing the convergence of Stochastic Gradient
Descent (SGD) under the “arbitrary sampling paradigm”. Our theory describes the convergence
of an infinite array of variants of SGD, each of which is associated with a specific probability
law governing the data selection rule used to form minibatches. This is the first time such an
analysis is performed, and most of our variants of SGD were never explicitly considered in the
literature before.

In [4], we study Stochastic Gradient Push (SGP), an algorithm which combines PushSum
gossip protocol with stochastic gradient updates for distributed deep learning. We prove that
SGP converges to a stationary point of smooth, non-convex objectives at the same sub-linear
rate as SGD, that all nodes achieve consensus, and that SGP achieves a linear speedup with
respect to the number of compute nodes. Furthermore, we empirically validate the performance
of SGP on image classification (ResNet-50, ImageNet) and machine translation (Transformer,
WMT16 En- De) workloads.

In [111] we present a new model of incomplete information games without private informa-
tion in which the players use a distributionally robust optimization approach to cope with the
payoff uncertainty.
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Chapter 2

Randomized Iterative Methods
with Momentum and Stochastic
Momentum

2.1 Introduction

Two of the most popular algorithmic ideas for solving optimization problems involving big
volumes of data are stochastic approximation and momentum. By stochastic approximation
we refer to the practice pioneered by Robins and Monro [169] of replacement of costly-to-
compute quantities (e.g., gradient of the objective function) by cheaply-to-compute stochastic
approximations thereof (e.g., unbiased estimate of the gradient). By momentum we refer to the
heavy ball technique originally developed by Polyak [156] to accelerate the convergence rate of
gradient-type methods.

While much is known about the effects of stochastic approximation and momentum in iso-
lation, surprisingly little is known about the combined effect of these two popular algorithmic
techniques. For instance, to the best of our knowledge, there is no context in which a method
combining stochastic approximation with momentum is known to have a linear convergence rate.
One of the contributions of this work is to show that there are important problem classes for
which a linear rate can indeed be established for a range of stepsize and momentum parameters.

2.1.1 The setting

In this chapter we study the three closely related problems described in the introduction of this
thesis. These are:

(i) stochastic quadratic optimization (1.6),

(ii) best approximation (1.22), and

(iii) (bounded) concave quadratic maximization (1.26).

In particular we are interested in the complexity analysis and efficient implementation of
momentum variants of the baseline algorithms presented in the introduction. As a reminder,
these methods are the following: stochastic gradient descent (SGD), stochastic Newton method
(SN), stochastic proximal point methods (SPP), sketch and project method (SPM) and stochas-
tic dual subspace ascent (SDSA).

We are not aware of any successful attempts to analyze momentum variants of SN and SPP,
SPM and SDSA and to the best of our knowledge there are no linearly convergent variants of
SGD with momentum in any setting.

In addition, we propose and analyze a novel momentum strategy for SGD, SN, SPP and
SPM, which we call stochastic momentum. It is a stochastic approximation of the popular
deterministic heavy ball momentum which in some situations could be particularly beneficial
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in terms of overall complexity. Similar to the classical momentum, we prove linear convergence
rates for this momentum strategy.

2.1.2 Structure of the chapter

This chapter is organized as follows. In Section 2.2 we summarize our contributions in the
context of existing literature. In Section 2.3 we describe and analyze primal methods with
momentum (mSGD, mSN and mSPP), and in Section 2.4 we describe and analyze the dual
method with momentum (mSDSA). In Section 2.5 we describe and analyze primal methods
with stochastic momentum (smSGD, smSN and smSPP). Numerical experiments are presented
in Section 2.7. Proofs of all key results can be found in Section 2.9.

2.1.3 Notation

The following notational conventions are used in this chapter. Boldface upper-case letters
denote matrices; I is the identity matrix. By L we denote the solution set of the linear system
Ax = b. By LS, where S is a random matrix, we denote the solution set of the sketched linear
system S>Ax = S>b. By Ai: and A:j we indicate the ith row and the jth column of matrix A,
respectively. Unless stated otherwise, throughout the chapter, x∗ is the projection of x0 onto
L in the B-norm: x∗ = ΠL,B(x0). We also write [n] := {1, 2, . . . , n}. Finally, we say that a

function f : Rn → R belongs to the class F1,1
0,L if it is convex, continuously differentiable, and

its gradient is Lipschitz continuous with constant L. If in addition the function f is µ-strongly
convex with strong convexity constant µ > 0, then we say that it belongs to the class F1,1

µ,L.

When it is also twice continuously differentiable, it belongs to the function class F2,1
µ,L.

2.2 Momentum Methods and Main Contributions

In this section we give a brief review of the relevant literature, and provide a summary of our
contributions.

2.2.1 Heavy ball method

As we have already mentioned in Section 1.6, Polyak’s seminal work [156, 157] showed that
deterministic heavy ball method:

xk+1 = xk − ωk∇f(xk) + β(xk − xk−1),

converges with a local accelerated linear convergence rate of O(
√
L/µ log(1/ε)) in the case of

twice continuously differentiable, µ-strongly convex objective functions with L-Lipschitz gradi-
ent (function class F2,1

µ,L).

Recently, Ghadimi et al. [62] performed a global convergence analysis for the heavy ball
method. In particular, the authors showed that for a certain combination of the stepsize and
momentum parameter, the method converges sublinearly to the optimum when the objective
function is convex and has Lipschitz gradient (f ∈ F1,1

0,L), and linearly when the function is also

strongly convex (f ∈ F1,1
µ,L). A particular selection of the parameters ω and β that gives the

desired accelerated linear rate was not provided.

To the best of our knowledge, despite considerable amount of work on the heavy ball method,
there is still no global convergence analysis which would guarantee an accelerated linear rate
for f ∈ F1,1

µ,L. However, in the special case of a strongly convex quadratic, an elegant proof
was recently proposed in [103]. Using the notion of integral quadratic constraints from robust
control theory, the authors proved that by choosing ωk = ω = 4/(

√
L+
√
µ)2 and β = (

√
L/µ−

1)2/(
√
L/µ + 1)2, the heavy ball method enjoys a global asymptotic accelerated convergence

rate of O(
√
L/µ log(1/ε)). The aforementioned results are summarized in the first part of

Table 2.1.
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Extensions of the heavy ball method have been recently proposed in the proximal setting
[145], non-convex setting [146, 210] and for distributed optimization [63]. For more recent
analysis under several combinations of assumptions we suggest [184, 183, 100].

2.2.2 Stochastic heavy ball method

In contrast to the recent advances in our theoretical understanding of the (classical) heavy ball
method, there has been less progress in understanding the convergence behavior of stochastic
variants of the heavy ball method. The key method in this category is stochastic gradient
descent with momentum (mSGD; aka: stochastic heavy ball method):

xk+1 = xk − ωkg(xk) + β(xk − xk−1),

where g is an unbiased estimator of the true gradient ∇f(xk). While mSGD is used extensively
in practice, especially in deep learning [185, 186, 99, 196], its convergence behavior is not very
well understood.

In fact, we are aware of only two papers, both recent, which set out to study the complexity
of mSGD: the work of Yang et al. [206], and the work of Gadat et al. [60]. In the former
paper, a unified convergence analysis for stochastic gradient methods with momentum (heavy
ball and Nesterov’s momentum) was proposed; and an analysis for both convex and non convex
functions was performed. For a general Lipschitz continuous convex objective function with
bounded variance, a rate of O(1/

√
k) was proved. For this, the authors employed a decreasing

stepsize strategy: ωk = ω0/
√
k + 1, where ω0 is a positive constant. In [60], the authors first

describe several almost sure convergence results in the case of general non-convex coercive
functions, and then provide a complexity analysis for the case of quadratic strongly convex
function. However, the established rate is slow. More precisely, for strongly convex quadratic
and coercive functions, mSGD with diminishing stepsizes ωk = ω0/kβ was shown to convergence
as O(1/kβ) when the momentum parameter is β < 1, and with the rate O(1/ log k) when β = 1.
The convergence rates established in both of these papers are sublinear. In particular, no insight
is provided into whether the inclusion of the momentum term provides what it was aimed to
provide: acceleration.

The above results are summarized in the second part of Table 2.1. From this perspective,
our contribution lies in providing an in-depth analysis of mSGD (and, additionally, of SGD
with stochastic momentum).

Many recent papers have built upon our analysis [115, 114] and have already extended our
results in several settings. For more details see [18, 121, 40, 3, 41].

On definitions of convergence presented in Table 2.1. In Table 2.1 we present two main
notions to characterize the convergence guarantees presented in the literature for the analysis
of deterministic and stochastic heavy ball methods. These are, (i) Local/ Global convergence
and (ii) Asymptotic/ Non-asymptotic convergence. For clarity, in this paragraph, we present
these definitions of convergence.

Local convergence we have only if the convergence guarantees depend on the starting point
of the method. That is, if we can guarantee convergence only if x0 is in a neighborhood of
the optimal point x∗. If the method convergence for any starting point then we have global
convergence.

We have asymptotic convergence when the provided rate can be shown to hold only after
specific number of iterations. For example, we say that a deterministic method converges with
asymptotic linear rate if there is K > 0 such that for k > K we have ‖xk−x∗‖2 < ρk‖x0−x∗‖,
where ρ ∈ (0, 1). We have a non-asymptotic convergence if the rate satisfy the above definition
for K = 0.

2.2.3 Connection to incremental gradient methods

Assuming D is discrete distribution (i.e., we sample from M matrices, S1, . . . ,SM , where Si

is chosen with probability pi > 0. Here, 0 < M ∈ R is fixed.), we can write the stochastic
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Method Paper Rate Assumptions on f Convergence

Heavy Ball
(mGD)

Polyak, 1964 [156] accelerated linear F2,1
µ,L local

Ghadimi et al, 2014 [62] sublinear F1,1
0,L global

Ghadimi et al, 2014 [62] linear F1,1
µ,L global

Lessard et al, 2016 [103] accelerated linear F1,1
µ,L + quadratic global, asymptotic

Stochastic
Heavy Ball
(mSGD)

Yang et al. 2016 [206] sublinear F1,1
0,L + bounded variance global, non-asymptotic

Gadat et al, 2016 [60] sublinear F1,1
µ,L + other assumptions global, non-asymptotic

THIS CHAPTER see Table 2.3 F1,1
0,L + quadratic global, non-asymptotic

Table 2.1: Known complexity results for gradient descent with momentum (mGD, aka: heavy
ball method), and stochastic gradient descent with momentum (mSGD, aka: stochastic heavy
ball method). We give the first linear and accelerated rates for mSGD. For full details on
iteration complexity results we obtain, refer to Table 2.3.

optimization problem (1.6) in the finite-sum form

min
x∈Rn

f(x) =

M∑
i=1

pifSi(x). (2.1)

Choosing x0 = x1, mSGD with fixed stepsize ωk = ω applied to (2.1) can be written in the
form

xk+1 = xk − ω
k∑
t=1

βk−t∇fSt
(xt) + βk(x1 − x0)

x0=x1

= xk − ω
k∑
t=1

βk−t∇fSt
(xt), (2.2)

where St = Si with probability pi. Problem (2.1) can be also solved using incremental aver-
age/aggregate gradient methods, such as the IAG method of Blatt et al. [13]. These methods
have a similar form to (2.2); however the past gradients are aggregated somewhat differ-
ently. While (2.2) uses a geometric weighting of the gradients, the incremental average gradient
methods use a uniform/arithmetic weighting. The stochastic average gradient (SAG) method
of Schmidt et al. [173] can be also written in a similar form. Note that mSGD uses a geomet-
ric weighting of previous gradients, while the the incremental and stochastic average gradient
methods use an arithmetic weighting. Incremental and incremental average gradient methods
are widely studied algorithms for minimizing objective functions which can expressed as a sum
of finite convex functions. For a review of key works on incremental methods and a detailed
presentation of the connections with stochastic gradient descent, we refer the interested reader
to the excellent survey of Bertsekas [11]; see also the work of Tseng [188].

In [77], an incremental average gradient method with momentum was proposed for mini-
mizing strongly convex functions. It was proved that the method converges to the optimum
with linear rate. The rate is always worse than that of the no-momentum variant. However,
it was shown experimentally that in practice the method is faster, especially in problems with
high condition number. In our setting, the objective function has a very specifc structure (1.6).
It is not a finite sum problem as the distribution D could be continous; and we also do not
assume strong convexity. Thus, the convergence analysis of [77] can not be directly applied to
our problem.

2.2.4 Summary of contributions

We now summarize the contributions of this chapter.
New momentum methods. We study several classes of stochastic optimization algo-

rithms (SGD, SN, SPP and SDSA) with momentum, which we call mSGD, mSN, mSPP and
mSDSA, respectively (see the first and second columns of Table 2.2). We do this in a simplified
setting with quadratic objectives where all of these algorithms are equivalent. These methods
can be seen as solving three related optimization problems: the stochastic optimization prob-
lem (1.6), the best approximation problem (1.22) and its dual. To the best of our knowledge,
momentum variants of SN, SPP and SDSA were not analyzed before.
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no momentum
(β = 0)

momentum
(β ≥ 0)

stochastic momentum
(β ≥ 0)

SGD [73, ω = 1], [168, ω > 0]

xk+1 = xk − ω∇fSk
(xk)

mSGD [Sec 2.3]

+β(xk − xk−1)

smSGD [Sec 2.5]

+nβe>ik(xk − xk−1)eik

SN [168]

xk+1 = xk − ω(∇2fSk
(xk))†B∇fSk

(xk)

mSN [Sec 2.3]

+β(xk − xk−1)

smSN [Sec 2.5]

+nβe>ik(xk − xk−1)eik

SPP [168]

xk+1 = arg minx
{
fSk

(x) + 1−ω
2ω ‖x− x

k‖2B
} mSPP [Sec 2.3]

+β(xk − xk−1)

smSPP [Sec 2.5]

+nβe>ik(xk − xk−1)eik

SDSA [74, ω = 1]

yk+1 = yk + Skλ
k

mSDSA [Sec 2.4]

+β(yk − yk−1)

Table 2.2: All methods analyzed in this chapter. The methods highlighted in bold (with
momentum and stochastic momentum) are new. SGD = Stochastic Gradient Descent, SN
= Stochastic Newton, SPP = Stochastic Proximal Point, SDSA = Stochastic Dual Subspace
Ascent. At iteration k, matrix Sk is drawn in an i.i.d. fashion from distribution D, and a
stochastic step is performed.

Algorithm ω
momentum

β
Quantity

converging to 0
Rate

(all: global, non-asymptotic)
Theorem

mSGD/mSN/mSPP (0, 2) ≥ 0 E
[
‖xk − x∗‖2B

]
linear 8

mSGD/mSN/mSPP (0, 2) ≥ 0 E[f(xk)− f(x∗)] linear 8

mSGD/mSN/mSPP (0, 2) ≥ 0 E
[
f(x̂k)− f(x∗)

]
sublinear: O(1/k) 10

mSGD/mSN/mSPP 1

(
1−

√
0.99λ+

min

)2

‖E[xk − x∗]‖2B accelerated linear 11

mSGD/mSN/mSPP 1
λmax

1−

√
0.99

λ+
min

λmax

2

‖E[xk − x∗]‖2B
accelerated linear

(better than for ω = 1)
11

mSDSA (0, 2) ≥ 0 E
[
D(y∗)−D(yk)

]
linear 13

smSGD/smSN/smSPP (0, 2) ≥ 0 E[‖xk − x∗‖2B] linear 14
smSGD/smSN/smSPP (0, 2) ≥ 0 E[f(xk)− f(x∗)] linear 14

Table 2.3: Summary of the iteration complexity results obtained in this chapter. Parameters of
the methods: ω (stepsize) and β (momentum term). In all cases, x∗ = ΠL,B(x0) is the solution

of the best approximation problem. Theorem 10 refers to Cesàro averages: x̂k = 1
k

∑k−1
t=0 x

t.
Theorem 13 refers to suboptimality in dual function values (D is the dual function).

Linear rate. We prove several (global and non-asymptotic) linear convergence results for
our primal momentum methods mSGD/mSN/mSPP. First, we establish a linear rate for the
decay of E

[
‖xk − x∗‖2B

]
to zero, for a range of stepsizes ω > 0 and momentum parameters

β ≥ 0. We show that the same rate holds for the decay of the expected function values
E
[
f(xk)− f(x∗)

]
of (1.6) to zero. Further, the same rate holds for mSDSA, in particular, this

is for the convergence of the dual objective to the optimum. For a summary of these results,
and pointers to the relevant theorems, refer to lines 1, 2 and 6 of Table 2.3. Unfortunately, the
theoretical rate for all our momentum methods is optimized for β = 0, and gets worse as the
momentum parameter increases. However, no prior linear rate for any of these methods with
momentum are known. We give the first linear convergence rate for SGD with momentum (i.e.,
for the stochastic heavy ball method).
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Accelerated linear rate. We then study the decay of the larger quantity ‖E
[
xk − x∗

]
‖2B

to zero. In this case, we establish an accelerated linear rate, which depends on the square root
of the condition number (of the Hessian of f). This is a quadratic speedup when compared
to the no-momentum methods as these depend on the condition number. See lines 4 and
5 of Table 2.3. To the best of our knowledge, this is the first time an accelerated rate is
obtained for the stochastic heavy ball method (mSGD). Note that there are no global non-
asymptotic accelerated linear rates proved even in the non-stochastic setting (i.e., for the heavy
ball method). Moreover, we are not aware of any accelerated linear convergence results for the
stochastic proximal point method.

Sublinear rate for Cesàro averages. We show that the Cesàro averages, x̂k = 1
k

∑k−1
t=0 x

t,
of all primal momentum methods enjoy a sublinear O(1/k) rate (see line 3 of Table 2.3). This
holds under weaker assumptions than those which lead to the linear convergence rate.

Primal-dual correspondence. We show that SGD, SN and SPP with momentum arise
as affine images of SDSA with momentum (see Theorem 12). This extends the result of [74]
where this was shown for the no-momentum methods (β = 0) and in the special case of the
unit stepsize (ω = 1).

Stochastic momentum. We propose a new momentum strategy, which we call stochas-
tic momentum. Stochastic momentum is a stochastic (coordinate-wise) approximation of the
deterministic momentum, and hence is much less costly, which in some situations leads to com-
putational savings in each iteration. On the other hand, the additional noise introduced this
way increases the number of iterations needed for convergence. We analyze the SGD, SN and
SPP methods with stochastic momentum, and prove linear convergence rates. We prove that
in some settings the overall complexity of SGD with stochastic momentum is better than the
overall complexity of SGD with momentum. For instance, this is the case if we consider the
randomized Kaczmarz (RK) method as a special case of SGD, and if A is sparse.

Space for generalizations. We hope that the present work can serve as a starting point
for the development of SN, SPP and SDSA methods with momentum for more general classes
(beyond special quadratics) of convex and perhaps also nonconvex optimization problems. In
such more general settings, however, the symmetry which implies equivalence of these algorithms
will break, and hence a different analysis will be needed for each method.

2.3 Primal Methods with Momentum

Applied to problem (1.6), i.e., minx∈Rn f(x) = E [fS(x)], the gradient descent method with
momentum (also known as the heavy ball method) of Polyak [156, 157] takes the form

xk+1 = xk − ω∇f(xk) + β(xk − xk−1), (2.3)

where ω > 0 is a stepsize and β ≥ 0 is a momentum parameter. Instead of marrying the
momentum term with gradient descent, we can marry it with SGD. This leads to SGD with
momentum (mSGD), also known as the stochastic heavy ball method:

xk+1 = xk − ω∇fSk
(xk) + β(xk − xk−1). (2.4)

Since SGD is equivalent to SN and SPP, this way we obtain momentum variants of the
stochastic Newton (mSN) and stochastic proximal point (mSPP) methods. The method is
formally described below:
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Algorithm 1 mSGD / mSN / mSPP

Input: Distribution D from which method samples matrices; positive definite matrix B ∈
Rn×n; stepsize/relaxation parameter ω ∈ R; the heavy ball/momentum parameter β.

Initialize: Choose initial points x0, x1 ∈ Rn
1: for k = 1, 2, · · · do
2: Generate a fresh sample Sk ∼ D
3: Set xk+1 = xk − ω∇fSk

(xk) + β(xk − xk−1)
4: end for
5: Output: The last iterate xk

To the best of our knowledge, momentum variants of SN and SPP were not considered in
the literature before. Moreover, as far as we know, there are no momentum variants of even
deterministic variants of (1.18), (1.19) and (1.25), such as incremental or batch Newton method,
incremental or batch proximal point method and incremental or batch projection method; not
even for a problem formulated differently.

In the rest of this section we state our convergence results for mSGD/mSN/mSPP.

2.3.1 Convergence of iterates and function values: linear rate

In this section we study the convergence rate of the quantity E[‖xk − x∗‖2B] to zero for
mSGD/mSN/mSPP. We show that for a range of stepsize parameters ω > 0 and momen-
tum terms β ≥ 0, the method enjoys global linear convergence rate; see (2.5). To the best of
our knowledge, these results are the first of their kind for the stochastic heavy ball method. As
a corollary of this result, we obtain convergence of the expected function values; see (2.6).

Theorem 8. Choose x0 = x1 ∈ Rn. Assume exactness. Let {xk}∞k=0 be the sequence of random
iterates produced by mSGD/mSN/mSPP. Assume 0 < ω < 2 and β ≥ 0 and that the expressions

a1 := 1 + 3β + 2β2 − (ω(2− ω) + ωβ)λ+
min, and a2 := β + 2β2 + ωβλmax

satisfy a1 + a2 < 1. Let x∗ = ΠL,B(x0). Then

E
[
‖xk − x∗‖2B

]
≤ qk(1 + δ)‖x0 − x∗‖2B (2.5)

and

E
[
f(xk)

]
≤ qk λmax

2
(1 + δ)‖x0 − x∗‖2B, (2.6)

where q =
a1+
√
a21+4a2
2 and δ = q − a1. Moreover, a1 + a2 ≤ q < 1.

Proof. See Section 2.9.2.

In the above theorem we obtain a global linear rate. To the best of our knowledge, this is
the first time that linear rate is established for a stochastic variant of the heavy ball method
(mSGD) in any setting. All existing results are sublinear. These seem to be the first momentum
variants of SN and SPP methods.

If we choose ω ∈ (0, 2), then the condition a1 + a2 < 1 is satisfied for all

0 ≤ β < 1

8

(
−4 + ωλ+

min − ωλmax +
√

(4− ωλ+
min + ωλmax)2 + 16ω(2− ω)λ+

min

)
. (2.7)

If β = 0, mSGD reduces to SGD analyzed in [168]. In this special case, q = 1−ω(2−ω)λ+
min,

which is the rate established in [168]. Hence, our result is more general.
Let q(β) be the rate as a function of β. Note that since β ≥ 0, we have

q(β) ≥ a1 + a2

= 1 + 4β + 4β2 + ωβ(λmax − λ+
min)− ω(2− ω)λ+

min

≥ 1− ω(2− ω)λ+
min = q(0). (2.8)
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Clearly, the lower bound on q is an increasing function of β. Also, for any β the rate is always
inferior to that of SGD (β = 0). It is an open problem whether one can prove a strictly better
rate for mSGD than for SGD.

Our next proposition states that ΠL,B(xk) = x∗ (recall that x∗ := ΠL,B(x0)) for all
iterations k of mSGD. This invariance property plays an important role in our convergence
analysis, and “explains” why the algorithm to converges to x∗.

Proposition 9. Let x0 = x1 ∈ Rn be the starting points of the mSGD method and let {xk} be
the random iterates generated by mSGD. Then ΠL,B(xk) = ΠL,B(x0) for all k ≥ 0.

Proof. Note that in view of (1.7), ∇fS(x) = B−1A>H(Ax− b) ∈ Range(B−1A>). Since

xk+1 = xk − ω∇fSk
(xk) + β(xk − xk−1),

and since x0 = x1, it can shown by induction that xk ∈ x0 +Range(B−1A>) for all k. However,
Range(B−1A>) is the orthogonal complement to Null(A) in the B-inner product. Since L is
parallel to Null(A), vectors xk must have the same B-projection onto L for all k: ΠL,B(x0) =
x∗.

This property also intuitively explains why mSGD converges to the projection of the starting
point onto L. Indeed, one may ask: why is the starting point special? After all, each iterate
depends on the previous two iterates only, and all older iterates, including the starting point
x0, seem to be eventually “forgotten”. Still, the iterative process has the property that all
iterates live in the affine space passing through x0 and orthogonal to L, which means that the
projection of all iterates onto L is identical.

2.3.2 Cesàro average: sublinear rate without exactness assumption

In this section we present the convergence analysis of the function values computed on the
Cesàro average. Again our results are global in nature. To the best of our knowledge these are
the first results that show O(1/k) convergence of the stochastic heavy ball method. Existing
results apply in more general settings at the expense of slower rates. In particular, [206] and
[60] get O(1/

√
k) and O(1/kβ) convergence when β ∈ (0, 1), respectively. When β = 1, [60]

gets O(1/ log(k)) rate.

Theorem 10. Choose x0 = x1 and let {xk}∞k=0 be the random iterates produced by mSGD/mSN/
mSPP, where the momentum parameter 0 ≤ β < 1 and relaxation parameter (stepsize) ω > 0

satisfy ω + 2β < 2. Let x∗ be any vector satisfying f(x∗) = 0. If we let x̂k = 1
k

∑k
t=1 x

t, then

E
[
f(x̂k)

]
≤ (1− β)2‖x0 − x∗‖2B + 2ωβf(x0)

2ω(2− 2β − ω)k
.

Proof. See Section 2.9.3.

In the special case of β = 0, the above theorem gives the rate

E
[
f(x̂k)

]
≤ ‖x

0 − x∗‖2B
2ω(2− ω)k

.

This is the convergence rate for Cesàro averages of the “basic method” (i.e., SGD) established
in [168].

Our proof strategy is similar to [62] in which the first global convergence analysis of the
(deterministic) heavy ball method was presented. There it was shown that when the objective
function has a Lipschitz continuous gradient, the Cesàro averages of the iterates converge to
the optimum at a rate of O(1/k). To the best of our knowledge, there are no results in the
literature that prove the same rate of convergence in the stochastic case for any class of objective
functions.

In [206] the authors analyzed mSGD for general Lipshitz continuous convex objective func-
tions (with bounded variance) and proved the sublinear rate O(1/

√
k). In [60], a complexity
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analysis is provided for the case of quadratic strongly convex smooth coercive functions. A
sublinear convergence rate of O(1/kβ), where β ∈ (0, 1), was proved. In contrast to our results,
where we assume fixed stepsize ω, both papers analyze mSGD with diminishing stepsizes.

2.3.3 Accelerated linear rate for expected iterates

In this section we show that by a proper combination of the relaxation (stepsize) parameter ω
and the momentum parameter β, mSGD/mSN/mSPP enjoy an accelerated linear convergence
rate in mean. That is, while SGD needs O(θ log(1/ε)) iterations to find xk such that ‖E

[
xk
]
−

x∗‖2B ≤ ε [168], mSGD only needs O(
√
θ log(1/ε)) iterations (see Theorem 11(ii)), where θ =

λmax/λ
+
min. The word acceleration typically refers to improvement from a leading factor of θ to√

θ, which is significant in the ill-conditioned case, i.e., when θ is very large. In other words,
the linear rate (1 −

√
0.99/θ)k of mSGD is much better than linear rate (1 − 1/θ)k of SGD,

which in view of (2.8) is better than the linear rate of mSGD established in (2.5) (for a different
quantity converging to zero) .

Theorem 11. Assume exactness. Let {xk}∞k=0 be the sequence of random iterates produced by
mSGD / mSN / mSPP, started with x0, x1 ∈ Rn satisfying the relation x0−x1 ∈ Range(B−1A>),

with relaxation parameter (stepsize) 0 < ω ≤ 1/λmax and momentum parameter (1−
√
ωλ+

min)2 <

β < 1. Let x∗ = ΠL,B(x0). Then there exists constant C > 0 such that for all k ≥ 0 we have∥∥E [xk − x∗]∥∥2

B
≤ βkC.

(i) If we choose ω = 1 and β =

(
1−

√
0.99λ+

min

)2

then
∥∥E [xk − x∗]∥∥2

B
≤ βkC and the

iteration complexity becomes O
(√

1/λ+
min log(1/ε)

)
.

(ii) If we choose ω = 1/λmax and β =

(
1−

√
0.99λ+

min

λmax

)2

then
∥∥E [xk − x∗]∥∥2

B
≤ βkC and

the iteration complexity becomes O
(√

λmax/λ
+
min log(1/ε)

)
.

Proof. See Section 2.9.4.

Note that the convergence factor is precisely equal to the value of the momentum parameter
β. Let x be any random vector in Rn with finite mean E[x], and x∗ ∈ Rn is any reference vector
(for instance, any solution of Ax = b). Then we have the identity (see, for instance [73])

E
[
‖x− x∗‖2B

]
= ‖E [x− x∗]‖2B + E

[
‖x− E[x]‖2B

]
. (2.9)

This means that the quantity E
[
‖x− x∗‖2B

]
appearing in the convergence result of Theorem 8

is larger than ‖E [x− x∗]‖2B appearing in the the convergence result of Theorem 11, and hence
harder to push to zero. As a corollary, the convergence rate of E

[
‖x− x∗‖2B

]
to zero established

in Theorem 8) implies the same rate for the convergence of ‖E [x− x∗]‖2B to zero. However,
note that in Theorem 11 we have established an accelerated rate for ‖E [x− x∗]‖2B. A similar
theorem, also obtaining an accelerated rate for ‖E [x− x∗]‖2B, was established in [168] for an
accelerated variant of SGD in the sense of Nesterov.

2.4 Dual Methods with Momentum

In the previous sections we focused on methods for solving the stochastic optimization problem
(1.6) and the best approximation problem (1.22). In this section we focus on the dual of the best
approximation problem, and propose a momentum variant of SDSA, which we call mSDSA.
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Algorithm 2 Stochastic Dual Subspace Ascent with Momentum (mSDSA)

Input: Distribution D from which method samples matrices; positive definite matrix B ∈
Rn×n; stepsize/relaxation parameter ω ∈ R the heavy ball/momentum parameter β.

Initialize: Choose initial points y0 = y1 = 0 ∈ Rm
1: for k = 1, 2, · · · do
2: Draw a fresh Sk ∼ D
3: Set λk =

(
S>k AB−1A>Sk

)†
S>k
(
b−A(x0 + B−1A>yk)

)
4: Set yk+1 = yk + ωSkλ

k + β(yk − yk−1)
5: end for
6: Output: last iterate yk

2.4.1 Correspondence between primal and dual methods

In our first result we show that the random iterates of the mSGD/mSN/mSPP methods arise
as an affine image of mSDSA under the mapping φ defined in (1.27).

Theorem 12 (Correspondence Between Primal and Dual Methods). Let x0 = x1 and let {xk}
be the iterates of mSGD/mSN/mSPP. Let y0 = y1 = 0, and let {yk} be the iterates of mSDSA.
Assume that the methods use the same stepsize ω > 0, momentum parameter β ≥ 0, and the
same sequence of random matrices Sk. Then

xk = φ(yk) = x0 + B−1A>yk

for all k. That is, the primal iterates arise as affine images of the dual iterates.

Proof. First note that

∇fSk
(φ(yk))

(1.13)
= B−1A>Sk(S>k AB−1A>Sk)†S>k (Aφ(yk)− b) = −B−1A>Skλ

k.

We now use this to show that

φ(yk+1)
(1.31)

= x0 + B−1A>yk+1

= x0 + B−1A>
[
yk + ωSkλ

k + β(yk − yk−1)
]

= x0 + B−1A>yk︸ ︷︷ ︸
φ(yk)

+ωB−1A>Skλ
k︸ ︷︷ ︸

−∇fSk
(φ(yk))

+βB−1A>(yk − yk−1)

= φ(yk)− ω∇fSk
(φ(yk)) + β(B−1A>yk −B−1A>yk−1)

(1.31)
= φ(yk)− ω∇fSk

(φ(yk)) + β(φ(yk)− φ(yk−1)).

So, the sequence of vectors {φ(yk)}mSDSA satisfies the same recursion of degree as the sequence
{xk} defined by mSGD. It remains to check that the first two elements of both recursions
coincide. Indeed, since y0 = y1 = 0 and x0 = x1, we have x0 = φ(0) = φ(y0), and x1 = x0 =
φ(0) = φ(y1).

2.4.2 Convergence

We are now ready to state a linear convergence convergence result describing the behavior of
mSDSA in terms of the dual function values D(yk).

Theorem 13 (Convergence of dual objective). Choose y0 = y1 ∈ Rn. Assume exactness. Let
{yk}∞k=0 be the sequence of random iterates produced by mSDSA. Assume 0 ≤ ω ≤ 2 and β ≥ 0
and that the expressions

a1 := 1 + 3β + 2β2 − (ω(2− ω) + ωβ)λ+
min, and a2 := β + 2β2 + ωβλmax

satisfy a1 + a2 < 1. Let x∗ = ΠL,B(x0) and let y∗ be any dual optimal solution. Then

E[D(y∗)−D(yk)] ≤ qk(1 + δ)
[
D(y∗)−D(y0)

]
(2.10)
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where q =
a1+
√
a21+4a2
2 and δ = q − a1. Moreover, a1 + a2 ≤ q < 1.

Proof. This follows by applying Theorem 8 together with Theorem 12 and the identity 1
2‖x

k −
x0‖2B = D(y∗)−D(yk).

Note that for β = 0, mSDSA simplifies to SDSA. Also recall that for unit stepsize (ω = 1),
SDSA was analyzed in [73]. In the ω = 1 and β = 0 case, our result specializes to that
established in [73]. Following similar arguments to those in [73], the same rate of convergence
can be proved for the duality gap E[P (xk)−D(yk)].

2.5 Methods with Stochastic Momentum

To motivate stochastic momentum, for simplicity fix B = I, and assume that Sk is chosen
as the jth random unit coordinate vector of Rm with probability pj > 0. In this case, SGD
(1.17) reduces to the randomized Kaczmarz method for solving the linear system Ax = b, first
analyzed for pj ∼ ‖Aj:‖2 by Strohmer and Vershynin [182].

In this case, mSGD becomes the randomized Kaczmarz method with momentum (mRK),
and the iteration (2.4) takes the explicit form

xk+1 = xk − ωAj:x
k − bj

‖Aj:‖2
A>j: + β(xk − xk−1).

Note that the cost of one iteration of this method is O(‖Aj:‖0 +n), where the cardinality term
‖Aj:‖0 comes from the stochastic gradient part, and n comes from the momentum part. When
A is sparse, the second term will dominate. Similar considerations apply for many other (but
clearly not all) distributions D.

In such circumstances, we propose to replace the expensive-to-compute momentum term by
a cheap-to-compute stochastic approximation term. In particular, we let ik be chosen from [n]
uniformly at random, and replace xk − xk−1 with vik := e>ik(xk − xk−1)eik , where eik ∈ Rn is
the ik-th unit basis vector in Rn, and β with γ := nβ. Note that vik can be computed in O(1)
time. Moreover,

Eik [γvik ] = β(xk − xk−1). (2.11)

Hence, we replace the momentum term by an unbiased estimator, which allows us to cut the
cost to O(‖Aj:‖0).

2.5.1 Primal methods with stochastic momentum

We now propose a variant of the SGD/SN/SPP methods employing stochastic momentum
(smSGD/smSN/smSPP). Since SGD, SN and SPP are equivalent, we will describe the devel-
opment from the perspective of SGD. In particular, we propose the following method:

xk+1 = xk − ω∇fSk
(xk) + γe>ik(xk − xk−1)eik . (2.12)

The method is formalized below:

Algorithm 3 smSGD/smSN/smSPP

Input: Distribution D from which the method samples matrices; stepsize/relaxation parameter
ω ∈ R the heavy ball/momentum parameter β.

Initialize: Choose initial points x1 = x0 ∈ Rn; set B = I ∈ Rn×n
1: for k = 1, 2, · · · do
2: Generate a fresh sample Sk ∼ D.
3: Pick ik ∈ [n] uniformly at random
4: Set xk+1 = xk − ω∇fSk

(xk) + γe>ik(xk − xk−1)eik
5: end for
6: Output: The last iterate xk
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2.5.2 Convergence

In the next result we establish linear convergence of smSGD/smSN/smSPP. For this we will
require the matrix B to be equal to the identity matrix.

Theorem 14. Choose x0 = x1 ∈ Rn. Assume exactness. Let B = I. Let {xk}∞k=0 be the
sequence of random iterates produced by smSGD/smSN/smSPP. Assume 0 < ω < 2 and γ ≥ 0
and that the expressions

a1 := 1 + 3
γ

n
+ 2

γ2

n
−
(
ω(2− ω) + ω

γ

n

)
λ+

min, and a2 :=
1

n
(γ + 2γ2 + ωγλmax) (2.13)

satisfy a1 + a2 < 1. Let x∗ = ΠL,I(x
0). Then

E
[
‖xk − x∗‖2

]
≤ qk(1 + δ)‖x0 − x∗‖2 (2.14)

and E
[
f(xk)

]
≤ qk λmax

2 (1 + δ)‖x0 − x∗‖2, where q :=
a1+
√
a21+4a2
2 and δ := q − a1. Moreover,

a1 + a2 ≤ q < 1.

Proof. See Section 2.9.5.

It is straightforward to see that if we choose ω ∈ (0, 2), then the condition a1 + a2 < 1 is
satisfied for all γ belonging to the interval

0 ≤ γ < 1

8

(
−4 + ωλ+

min − ωλmax +
√

(4− ωλ+
min + ωλmax)2 + 16nω(2− ω)λ+

min

)
.

The upper bound is similar to that for mSGD/mSN/mSPP; the only difference is an extra
factor of n next to the constant 16.

2.5.3 Momentum versus stochastic momentum

As indicated above, if we wish to compare mSGD with momentum parameter β to smSGD
with momentum parameter γ, it makes sense to set γ = βn. Indeed, this is because in view of
(2.11), the momentum term in smSGD will then be an unbiased estimator of the deterministic
momentum term used in mSGD.

Let q(β) be the convergence constant for mSGD with stepsize ω = 1 and an admissible
momentum parameter β ≥ 0. Further, let ā1(γ), ā2(γ), q̄(γ) be the convergence constants for
smSGD with stepsize ω = 1 and momentum parameter γ. We have

q̄(βn) ≥ ā1(βn) + ā2(βn)
(2.13)

= 1 + 4β + 4β2n+ β(λmax − λ+
min)− λ+

min

(2.8)
= a1(β) + a2(β) + 4β2(n− 1)

≥ a1(β) + a2(β).

Hence, the lower bound on the rate for smSGD is worse than the lower bound for mSGD.
The same conclusion holds for the convergence rates themselves. Indeed, note that since

ā1(βn)− a1(β) = 2β2(n− 1) ≥ 0 and ā2(βn)− a2(β) = 2β2(n− 1) ≥ 0, we have

q̄(βn) =
ā1(βn) +

√
ā2

1(βn) + 4ā2(βn)

2
≥ a1(β) +

√
a2

1(β) + 4a2(β)

2
= q(β),

and hence the rate of mSGD is always better than that of smSGD.
However, the expected cost of a single iteration of mSGD may be significantly larger than

that of smSGD. Indeed, let g be the expected cost of evaluating a stochastic gradient. Then
we need to compare O(g + n) (mSGD) against O(g) (smSGD). If g � n, then one iteration
of smSGD is significantly cheaper than one iteration of mSGD. Let us now compare the total
complexity to investigate the trade-off between the rate and cost of stochastic gradient evalua-
tion. Ignoring constants, the total cost of the two methods (cost of a single iteration multiplied
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by the number of iterations) is:

CmSGD(β) :=
g + n

1− q(β)
=

g + n

1− a1(β)+
√
a21(β)+4a2(β)

2

, (2.15)

and
CsmSGD(βn) :=

g

1− q̄(βn)
=

g

1− ā1(βn)+
√
ā21(βn)+4ā2(βn)

2

. (2.16)

Since
q(0) = q̄(0n), (2.17)

and since q(β) and q̄(βn) are continuous functions of β, then because g+n > g, for small enough
β we will have CmSGD(β) > CsmSGD(βn). In particular, the speedup of smSGD compared to
mSGD for β ≈ 0 will be close to

CmSGD(β)

CsmSGD(βn)
≈ lim
β′→+0

CmSGD(β′)

CsmSGD(β′n)

(2.15)+(2.16)+(2.17)
=

g + n

g
= 1 +

n

g
.

Thus, we have shown the following statement.

Theorem 15. For small momentum parameters satisfying γ = βn, the total complexity of
smSGD is approximately 1 + n/g times smaller than the total complexity of mSGD, where n
is the number of columns of A, and g is the expected cost of evaluating a stochastic gradient
∇fS(x).

2.6 Special Cases: Randomized Kaczmarz with Momen-
tum and Randomized Coordinate Descent with Mo-
mentum

In Table 2.4 we specify several special instances of mSGD by choosing distinct combinations of
the parameters D and B. We use ei to denote the ith unit coordinate vector in Rm, and I:C

for the column submatrix of the m×m identity matrix indexed by (a random) set C.
The updates for smSGD can be derived by substituting the momentum term β(xk − xk−1)

with its stochastic variant nβe>ik(xk −xk−1)eik . We do not aim to be comprehensive. For more
details on the possible combinations of the parameters S and B we refer the interested reader
to Section 3 of [73].

In the rest of this section we present in detail two special cases: the randomized Kaczmarz
method with momentum (mRK) and the randomized coordinate descent method with momen-
tum (mRCD). Further, we compare the convergence rates obtained in Theorem 11 (i.e., bounds
on ‖E

[
xk
]
− x∗‖2B) with rates that can be inferred from known results for their no-momentum

variants.

2.6.1 mRK: randomized Kaczmarz with momentum

We now provide a discussion on mRK (the method in the first row of Table 2.4). Let B = I
and let pick in each iteration the random matrix S = ei with probability pi = ‖Ai:‖2/‖A‖2F .
In this setup the update rule of the mSGD simplifies to

xk+1 = xk − ωAi:x
k − bi

‖Ai:‖2
A>i: + β(xk − xk−1)

and

W
(1.15)

= B−1/2A>ES∼D[H]AB−1/2 = E[A>HA]

=

m∑
i=1

pi
A>i: Ai:

‖Ai:‖2
=

1

‖A‖2F

m∑
i=1

A>i: Ai: =
A>A

‖A‖2F
. (2.18)
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Variants of mSGD

Variant of mSGD S B xk+1

mRK: randomized
Kaczmarz with momentum

ei I
xk − ωAi:x

k − bi
‖Ai:‖2

A>i: + β(xk − xk−1)

mRCD = mSDSA:
randomized coordinate
desc. with momentum

ei A � 0
xk − ω (Ai:)

>xk − bi
Aii

ei + β(xk − xk−1)

mRBK: randomized block
Kaczmarz with momentum

I:C I xk − ωA>C:(AC:A
>
C:)
†(AC:x

k − bC) + β(xk − xk−1)

mRCN = mSDSA:
randomized coordinate
Newton descent with

momentum

I:C A � 0 xk − ωI:C(I>:CAI:C)†I>:C(Axk − b) + β(xk − xk−1)

mRGK: randomized
Gaussian Kaczmarz

N(0, I) I
xk − ωS>(Axk − b)

‖A>S‖2
A>S + β(xk − xk−1)

mRCD: randomized coord.
descent (least squares)

A:i A>A
xk − ω (A:i)

>(Axk − b)
‖A:i‖2

ei + β(xk − xk−1)

Table 2.4: Selected special cases of mSGD. In the special case of B = A, mSDSA is directly
equivalent to mSGD (this is due to the primal-dual relationship (1.31); see also Theorem 12).
Randomized coordinate Newton (RCN) method was first proposed in [162]; mRCN is its mo-
mentum variant. Randomized Gaussian Kaczmarz (RGK) method was first proposed in [73];
mRGK is its momentum variant.

The objective function takes the following form:

f(x) = ES∼D[fS(x)] =

m∑
i=1

pifSi
(x) =

‖Ax− b‖2

2‖A‖2F
. (2.19)

For β = 0, this method reduces to the randomized Kaczmarz method with relaxation, first
analyzed in [168]. If we also have ω = 1, this is equivalent with the randomized Kaczmarz method
of Strohmer and Vershynin [182]. RK without momentum (β = 0) and without relaxation
(ω = 1) converges with iteration complexity [182, 73, 74] of

O
(

1

λ+
min(W)

log(1/ε)

)
= O

(
‖A‖2F

λ+
min(A>A)

log(1/ε)

)
. (2.20)

In contrast, based on Theorem 11 we have

• For ω = 1 and β =

(
1−

√
0.99λ+

min

)2

=
(

1−
√

0.99
‖A‖2F

λ+
min(A>A)

)2

, the iteration com-

plexity of the mRK is:

O

(√
‖A‖2F

λ+
min(A>A)

log(1/ε)

)
.
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• For ω = ‖A‖2F /λmax(A>A) and β =

(
1−

√
0.99λ+

min(A>A)

λmax(A>A)

)2

the iteration complexity

becomes:

O

(√
λmax(A>A)

λ+
min(A>A)

log(1/ε)

)
.

This is quadratic improvement on the previous best result (2.20).

Related Work. The Kaczmarz method for solving consistent linear systems was originally
introduced by Kaczmarz in 1937 [91]. This classical method selects the rows to project onto in
a cyclic manner. In practice, many different selection rules can be adopted. For non-random
selection rules (cyclic, greedy, etc) we refer the interested reader to [158, 17, 144, 159, 27].
In this work we are interested in randomized variants of the Kaczmarz method, first analyzed
by Strohmer and Vershynin [182]. In [182] it was shown that RK converges with a linear
convergence rate to the unique solution of a full-rank consistent linear system. This result
sparked renewed interest in design of randomized methods for solving linear systems [132, 134,
49, 120, 216, 135, 175, 114]. All existing results on accelerated variants of RK use the Nesterov’s
approach of acceleration [102, 107, 192, 168]. To the best of our knowledge, no convergence
analysis of mRK exists in the literature (Polyak’s momentum). Our work fills this gap.

2.6.2 mRCD: randomized coordinate descent with momentum

We now provide a discussion on the mRCD method (the method in the second row of Table 2.4).
If the matrix A is positive definite, then we can choose B = A and S = ei with probability
pi = Aii

Trace(A) . It is easy to see that W = A
Trace(A) . In this case, W is positive definite and as a

result, λ+
min(W) = λmin(W). Moreover, we have

f(x) = ES∼D[fS(x)] =

m∑
i=1

pifSi
(x) =

‖Ax− b‖2

2Trace(A)
. (2.21)

For β = 0 and ω = 1 the method is equivalent with randomized coordinate descent of
Leventhal and Lewis [104], which was shown to converge with iteration complexity

Previous best result: O
(

Trace(A)

λmin(A)
log(1/ε)

)
. (2.22)

In contrast, following Theorem 11, we can obtain the following iteration complexity results
for mRCD:

• For ω = 1 and β =
(

1−
√

0.99
Trace(A)λmin(A)

)2

, the iteration complexity is

O

(√
Trace(A)

λmin(A)
log(1/ε)

)
.

• For ω = Trace(A)/λmax(A) and β =
(

1−
√

0.99λmin(A)
λmax(A)

)2

the iteration complexity be-
comes

O

(√
λmax(A)

λmin(A)
log(1/ε)

)
.

This is quadratic improvement on the previous best result (2.22).

Related Work. It is known that if A is positive definite, the popular randomized Gauss-Seidel
method can be interpreted as randomized coordinate descent (RCD). RCD methods were first
analyzed by Lewis and Leventhal in the context of linear systems and least-squares problems
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[104], and later extended by several authors to more general settings, including smooth convex
optimization [139], composite convex optimization [166], and parallel/subspace descent variants
[167]. These results were later further extended to handle arbitrary sampling distributions
[160, 161, 163, 22] . Accelerated variants of RCD were studied in [102, 51, 2]. For other non-
randomized coordinate descent variants and their convergence analysis, we refer the reader to
[199, 143, 27]. To the best of our knowledge, mRCD and smRCD have never been analyzed
before in any setting.

2.6.3 Visualizing the acceleration mechanism

We devote this section to the graphical illustration of the acceleration mechanism behind mo-
mentum. Our goal is to shed more light on how the proposed algorithm works in practice. For
simplicity, we illustrate this by comparing RK and mRK.

(a) Randomized Kaczmarz Method [182] (b) Randomized Kaczmarz Method with Momentum

Figure 2.1: Graphical interpretation of the randomized Kaczmarz method and the randomized
Kaczmarz method with momentum in a simple example with only two hyperplanes Hi = {x :
Ai:x = bi} where i = 1, 2 and a unique solution x∗.

In Figure 2.1 we present in a simple R2 illustration of the difference between the workings
of RK and mRK. Our goal is to show graphically how the addition of momentum leads to
acceleration. Given iterate xk, one can think of the update rule of the mRK (2.4) in two steps:

1. The Projection: The projection step corresponds to the first part xk − ω∇fSk
(xk) of the

mRK update (2.4) and it means that the current iterate xk is projected onto a randomly
chosen hyperplane Hi

1. The value of the stepsize ω ∈ (0, 2) defines whether the projection
is exact or not. When ω = 1 (no relaxation) the projection is exact, that is the point
ΠHi

(xk) belongs in the hyperplane Hi. In Figure 2.1 all projections are exact.

2. Addition of the momentum term: The momentum term (right part of the update rule)
β(xk − xk−1) forces the next iterate xk+1 to be closer to the solution x∗ than the corre-
sponding point ΠHi

(xk). Note also that the vector xk+1 − ΠHi
(xk) is always parallel to

xk − xk−1 for all k ≥ 0.

Remark 1. In the example of Figure 2.1, the performance of mRK is similar to the performance
of RK until iterate x3. After this point, the momentum parameter becomes more effective
and the mRK method accelerates. This behavior appears also in our experiments in the next
section where we work with matrices with many rows. There we can notice that the momentum
parameter seems to become more effective after the first m+ 1 iterations.

2.7 Numerical Experiments

In this section we study the computational behavior of the two proposed algorithms, mSGD
and smSGD. In particular, we focus mostly on the evaluation of the performance of mSGD.
To highlight the usefulness of smSGD, an empirical verification of Theorem 15 is presented in
subsection 2.7.2. As we have already mentioned, both mSGD and smSGD can be interpreted
as sketch-and-project methods (with relaxation), and as a result a comprehensive array of

1In the plots of Figure 2.1, the hyperplane of each update is chosen in an alternating fashion for illustration
purposes
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well-known algorithms can be recovered as special cases by varying the main parameters of
the methods (check Section 2.6). In our experiments we focus on the popular special cases of
randomized Kaczmarz method (RK) and the randomized coordinate descent method (RCD)
without relaxation (ω = 1), and show the practical benefits of adding the momentum term2.
The choice of the stepsize ω = 1 is not arbitrary. Recently, in [168] both relaxed RK and relaxed
RCD were analyzed, and it was proved that the quantity E

[
‖xk − x∗‖2B

]
converges linearly to

zero for ω ∈ (0, 2), and that the best convergence rate is obtained precisely for ω = 1. Thus
the comparison is with the best-in-theory no-momentum variants.

Note that, convergence analysis of the error E
[
‖xk − x∗‖2B

]
and of the expected function

values E
[
f(xk)

]
in Theorem 8 shows that mSGD enjoys global non-asymptotic linear conver-

gence rate but not faster than the no-momentum method. The accelerated linear convergence
rate has been obtained only in the weak sense (Theorem 11). Nevertheless, in practice as indi-
cated from our experiments, mSGD is faster than its no momentum variant. Note also that in
all of the presented experiments the momentum parameters β of the methods are chosen to be
positive constants that do not depend on parameters that are not known to the users such as
λ+

min and λmax.

In comparing the methods with their momentum variants we use both the relative error
measure ‖xk−x∗‖2B/‖x0−x∗‖2B and the function values f(xk)3. In all implementations, except
for the experiments on average consensus (Section 2.7.3), the starting point is chosen to be
x0 = 0. In the case of average consensus the starting point must be the vector with the initial
private values of the nodes of the network. All the code for the experiments is written in the
Julia programming language. For the horizontal axis we use either the number of iterations or
the wall-clock time measured using the tic-toc Julia function.

This section is divided in three main experiments. In the first one we evaluate the perfor-
mance of the mSGD method in the special cases of mRK and mRCD for solving both synthetic
consistent Gaussian systems and consistent linear systems with real matrices. In the second ex-
periment we computationally verify Theorem 15 (comparison between the mSGD and smSGD
methods). In the last experiment building upon the recent results of [113] we show how the
addition of the momentum accelerates the pairwise randomized gossip (PRG) algorithm for
solving the average consensus problem.

Assumptions No-momentum, Momentum, Stochastic Momentum,
β = 0 β ≥ 0 β ≥ 0

A general, B = I RK mRK smRK
A � 0, B = A RCD mRCD smRCD
A incidence matrix,
B = I

PRG mPRG smPRG

Table 2.5: Abbreviations of the algorithms (special cases of general framework) that we use in
the numerical evaluation section. In all methods the random matrices are chosen to be unit
coordinate vectors in Rm (S = ei). With PRG we denote the Pairwise Randomized Gossip
algorithm for solving the average consensus problem first proposed in [16]. Following similar
notation with the rest of the chapter with mPRG and smPRG we indicate its momentum and
stochastic momentum variants respectively.

2.7.1 Evaluation of mSGD

In this subsection we study the computational behavior of mRK and mRCD when they com-
pared with their no momentum variants for both synthetic and real data.

2The experiments were repeated with various values of the main parameters and initializations, and similar
results were obtained in all cases.

3Remember that in our setting we have f(x∗) = 0 for the optimal solution x∗ of the best approximation
problem; thus f(x) − f(x∗) = f(x). The function values f(xk) refer to function (2.19) in the case of RK
and to function (2.21) for the RCD. For block variants the objective function of problem (1.6) has also closed
form expression but it can be very difficult to compute. In these cases one can instead evaluate the quantity
‖Ax− b‖2B.
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Synthetic Data

The synthetic data for this comparison is generated as follows4.
For mRK: All elements of matrix A ∈ Rm×n and vector z ∈ Rn are chosen to be i.i.d

N (0, 1). Then the right hand side of the linear system is set to b = Az. With this way the
consistency of the linear system with matrix A and right hand side b is ensured.

For mRCD: A Gaussian matrix P ∈ Rm×n is generated and then matrix A = P>P ∈ Rn×n
is used in the linear system. The vector z ∈ Rn is chosen to be i.i.d N (0, 1) and again to ensure
consistency of the linear system, the right hand side is set to b = Az.

In particular for the evaluation of mRK we generate Gaussian matrices with m = 300 rows
and several columns while for the case of mRCD the matrix P is chosen to be Gaussian with
m = 500 rows and several columns5. Linear systems of these forms were extensively studied
[182, 61] and it was shown that the quantity 1/λ+

min(condition number) can be easily controlled.
For each linear system we run mRK (Figures 2.2 and 2.3) and mRCD (Figures 2.4 and 2.5) for

several values of momentum parameters β and fixed stepsize ω = 1 and we plot the performance
of the methods (average after 10 trials) for both the relative error measure and the function
values. Note that for β = 0 the methods are equivalent with their no-momentum variants RK
and RCD respectively.

From Figures 2.2, 2.3, 2.4 and 2.5 it is clear that the addition of momentum term leads to
an improvement in the performance of both, RK and RCD. More specifically, from the four
figures we observe the following:

• For the well conditioned linear systems (1/λ+
min small) it is known that even the no-

momentum variant converges rapidly to the optimal solution. In these cases the benefits
of the addition of momentum are not obvious. The momentum term is beneficial for the
case where the no-momentum variant (β = 0) converges slowly, that is when 1/λ+

min is
large (ill-conditioned linear systems).

• For the case of fixed stepsize ω = 1, the problems with small condition number require
smaller momentum parameter β to have faster convergence. Note the first two rows of
Figures 2.2 and 2.4, where β = 0.3 or β = 0.4, are good options.

• For large values of 1/λ+
min, it seems that the choice of β = 0.5 is the best. As an example

for matrix A ∈ R300×280 in Figure 2.2, (where 1/λ+
min = 208, 730), note that to reach

relative error 10−10, RK needs around 2 million iterations, while mRK with momentum
parameter β = 0.5 requires only half that many iterations. The acceleration is obvious
also in terms of time where in 12 seconds the mRK with momentum parameter β = 0.5
achieves relative error of the order 10−9 and RK requires more than 25 seconds to obtain
the same accuracy.

• We observe that both mRK and mRCD, with appropriately chosen momentum parameters
0 < β ≤ 0.5, always converge faster than their no-momentum variants, RK and RCD,
respectively. This is a smaller momentum parameter than β ≈ 0.9 which is being used
extensively with mSGD for training deep neural networks [211, 196, 185].

• In [203] a stochastic power iteration with momentum is proposed for principal component
analysis (PCA). There it was demonstrated empirically that a naive application of mo-
mentum to the stochastic power iteration does not result in a faster method. To achieve
faster convergence, the authors proposed mini-batch and variance-reduction techniques
on top of the addition of momentum. In our setting, mere addition of the momentum
term to SGD (same is true for special cases such as RK and RCD) leads to empirically
faster methods.

4Note that in the first experiment we use Gaussian matrices which by construction are full rank matrices
with probability 1 and as a result the consistent linear systems have unique solution. Thus, for any starting
point x0, the vector z that is used to create the linear system is the solution mSGD converges to. This is not
true for general consistent linear systems, with no full-rank matrix. In this case, the solution x∗ = ΠL,B(x0)
that mSGD converges to is not necessarily equal to z. For this reason, in the evaluation of the relative error

measure ‖xk − x∗‖2B/‖x
0 − x∗‖2B, one should be careful and use the value x∗ = x0 + A†(b−Ax0)

x0=0
= A†b.

5RCD converge to the optimal solution only in the case of positive definite matrices. For this reason A =
P>P ∈ Rn×n is used which with probability 1 is a full rank matrix
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Figure 2.2: Performance of mRK (the method in the first row of Table 2.4) for fixed stepsize
ω = 1 and several momentum parameters β for consistent linear systems with Gaussian matrix
A with m = 300 rows and n = 100, 200, 250, 280, 290 columns. The graphs in the first (second)
column plot iterations (time) against residual error. All plots are averaged over 10 trials. The
title of each plot indicates the dimensions of the matrix A and the value of 1/λ+

min. The

“Error” on the vertical axis represents the relative error ‖xk − x∗‖2B/‖x0 − x∗‖2B
B=I,x0=0

=
‖xk − x∗‖2/‖x∗‖2B.
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Figure 2.3: Performance of mRK (the method in the first row of Table 2.4) for fixed stepsize
ω = 1 and several momentum parameters β for consistent linear systems with Gaussian matrix
A with m = 300 rows and n = 100, 200, 250, 280, 290 columns. The graphs in the first (second)
column plot iterations (time) against function values. All plots are averaged over 10 trials.
The title of each plot indicates the dimensions of the matrix A and the value of 1/λ+

min. The
function values f(xk) refer to function (2.19).
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Figure 2.4: Performance of mRCD (the method in the second row of Table 2.4). for fixed
stepsize ω = 1 and several momentum parameters β for consistent linear systems with positive
definite matrices A = P>P where P ∈ Rm×n is Gaussian matrix with m = 500 rows and
n = 200, 300, 400, 430, 450. The graphs in the first (second) column plot iterations (time)
against residual error. All plots are averaged over 10 trials. The title of each plot indicates the
dimensions of the matrix P and the value of 1/λ+

min. The “Error” on the vertical axis represents

the relative error ‖xk − x∗‖2B/‖x0 − x∗‖2B
B=A,x0=0

= ‖xk − x∗‖2A/‖x∗‖2A.
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Figure 2.5: Performance of mRCD (the method in the second row of Table 2.4). for fixed
stepsize ω = 1 and several momentum parameters β for consistent linear systems with positive
definite matrices A = P>P where P ∈ Rm×n is Gaussian matrix with m = 500 rows and
n = 200, 300, 400, 430, 450. The graphs in the first (second) column plot iterations (time)
against function values. All plots are averaged over 10 trials. The title of each plot indicates
the dimensions of the matrix P and the value of 1/λ+

min. The function values f(xk) refer to
function (2.21).
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Real Data

In the following experiments we test the performance of mRK using real matrices (datasets)
from the library of support vector machine problems LIBSVM [23]. Each dataset consists of
a matrix A ∈ Rm×n (m features and n characteristics) and a vector of labels b ∈ Rm. In our
experiments we choose to use only the matrices of the datasets and ignore the label vector. As
before, to ensure consistency of the linear system, we choose a Gaussian vector z ∈ Rn and the
right hand side of the linear system is set to b = Az. Similarly as in the case of synthetic data,
mRK is tested for several values of momentum parameters β and fixed stepsize ω = 1.

In Figure 2.6 the performance of all methods for both relative error measure ‖xk−x∗‖2/‖x∗‖2B
and function values f(xk) is presented. Note again that β = 0 represents the baseline RK
method. The addition of momentum parameter is again often beneficial and leads to faster
convergence. As an example, inspect the plots for the mushrooms dataset in Figure 2.6, where
mRK with β = 0.5 is much faster than the simple RK method in all presented plots, both in
terms of iterations and time. In particular, the addition of a momentum parameter leads to
visible speedup for the datasets mushrooms, splice, a9a and ionosphere. For these datasets the
acceleration is obvious in all plots both in terms of relative error and function values. For the
datasets australian, gisette and madelon the speedup is less obvious in the plots of the relative
error, while for the plots of function values it is not present at all.

2.7.2 Comparison of momentum & stochastic momentum

In Theorem 15, the total complexities (number of operations needed to achieve a given accuracy)
of mSGD and smSGD have been compared and it has been shown that for small momentum
parameter β,

Cβ =
CmSGD(β)

CsmSGD(βn)
≈ 1 +

n

g
,

where CmSGD and CsmSGD represent the total costs of the two methods. The goal of this
experiment is to show that this relationship holds also in practice.

For this experiment we assume that the non-zeros of matrix A are not concentrated in
certain rows but instead that each row has the same number of non-zero coordinates. We
denote by g the number the non-zero elements per row. Having this assumption it can be
shown that for the RK method the cost of one projection is equal to 4g operations while the
cost per iteration of the mRK and of the smRK are 4g + 3n and 4g + 1 respectively. For more
details about the cost per iteration of the general mSGD and smSGD check Table 2.6.

As a first step a Gaussian matrix A ∈ Rm×n is generated. Then using this matrix several
consistent linear systems are obtained as follows. Several values for g ∈ [1, n] are chosen and
for each one of these a matrix Ag ∈ Rm×n with the same elements as A but with n − g zero
coordinates per row is produced. For every matrix Ag, a Gaussian vector zg ∈ Rn is drawn
and to ensure consistency of the linear system, the right hand side is set to bg = Agz.

We run both mSGD and smSGD with small momentum parameter β = 0.0001 for solving
the linear systems Agx = bg for all selected values of g ∈ [1, n]. The starting point for each run
is taken to be x0 = 0 ∈ Rn. The methods run until ε = ‖xk−x∗‖ < 0.001, where x∗ = ΠLg

(x0)6

and Lg is the solution set of the linear system Agx = bg. In each run the number of operations
needed to achieve the accuracy ε have been counted. For each linear system the average after

10 trials of the value CmSGD(β)
CsmSGD(βn) is computed.

6To pre-compute the solution x∗ for each linear system Agx = bg we use the closed form expression of the
projection (1.14).
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Figure 2.6: The performance of mRK for several momentum parameters β on real data from
LIBSVM [23]. a9a: (m,n) = (32561, 123), mushrooms: (m,n) = (8124, 112), australian:
(m,n) = (690, 14), gisette: (m,n) = (6000, 5000), madelon: (m,n) = (2000, 500), splice:
(m,n) = (1000, 60), ionosphere: (m,n) = (351, 34). The graphs in the first (second) col-
umn plot iterations (time) against residual error while those in the third (forth) column plot
iterations (time) against function values. The “Error” on the vertical axis represents the rel-

ative error ‖xk − x∗‖2B/‖x0 − x∗‖2B
B=I,x0=0

= ‖xk − x∗‖2/‖x∗‖2B and the function values f(xk)
refer to function (2.19).
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Figure 2.7: Comparison of the total complexities of mRK and smRK. The green continuous
line denotes the theoretical relationship 1 + n

g that we predict in Theorem 15. The blue dotted

line shows the ratio of the total complexities CmSGD(β)
CsmSGD(βn) for several linear systems Agx = bg

where g ∈ [1, n]. The momentum parameter β = 0.0001 is used for both methods.

Algorithm Cost per iteration Cost per Iteration
(RK, mRK, smRK)

Basic Method (β = 0) O(g) 4g
mSGD O(g) +O(n) = O(n) 4g + 3n
smSGD O(g) +O(1) = O(g) 4g + 1

Table 2.6: Cost per iteration of the basic, mSGD and smSGD in the general setting and in the
special cases of RK,mRK and smRK.

In Figure 2.7 the actual ratio CmSGD(β)
CsmSGD(βn) and the theoretical approximation 1 + n

g are plot

and it is shown that they have similar behavior. Thus the theoretical prediction of Theorem 15
is numerically confirmed. In particular in the implementations we use the Gaussian matrices
A ∈ R200×100 and A ∈ R1000×300.

2.7.3 Faster method for average consensus

Background

Average consensus (AC) is a fundamental problem in distributed computing and multi-agent
systems [42, 16]. Consider a connected undirected network G = (V, E) with node set V =
{1, 2, . . . , n} and edges E , (|E| = m), where each node i ∈ V owns a private value ci ∈ R. The
goal of the AC problem is for each node of the network to compute the average of these private
values, c̄ := 1

n

∑
i ci, via a protocol which allows communication between neighbours only. The

problem comes up in many real world applications such as coordination of autonomous agents,
estimation, rumour spreading in social networks, PageRank and distributed data fusion on
ad-hoc networks and decentralized optimization.

It was shown recently that several randomized methods for solving linear systems can be
interpreted as randomized gossip algorithms for solving the AC problem when applied to a
special system encoding the underlying network [74, 113]. As we have already explained both
basic method [168] and basic method with momentum (this chapter) find the solution of the
linear system that is closer to the starting point of the algorithms. That is, both methods
converge linearly to x∗ = ΠL,B(x0); the projection of the initial iterate onto the solution set of
the linear system. As a result (check the Introduction), they can be interpreted as methods
for solving the best approximation problem (1.22). In the special case that

1. the linear system in the constraints of (1.22) is the homogeneous linear system (Ax = 0)
with matrix A ∈ Rm×n being the incidence matrix of the undirected graph G = (V, E),
and
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2. the starting point of the method are the initial values of the nodes x0 = c,

it is straightforward to see that the solution of the best approximation problem is a vector
with all components equal to the consensus value c̄ := 1

n

∑
i ci. Under this setting, the famous

randomized pairwise gossip algorithm (randomly pick an edge e ∈ E and replace the private
values of its two nodes to their average) that was first proposed and analyzed in [16], is equivalent
to the RK method without relaxation (ω = 1) [74, 113].

Remark 2. In the gossip framework, the condition number of the linear system when RK is
used has a simple structure and it depends on the characteristics of the network under study.
More specifically, it depends on the number of the edges m and on the Laplacian matrix of the
network7:

1

λ+
min(W)

(2.18)
=

1

λ+
min(A>A/‖A‖2F )

‖A‖2F =2m
=

2m

λ+
min(A>A)

=
2m

λ+
min(L)

, (2.23)

where L = A>A is the Laplacian matrix of the network and the quantity λ+
min(L) is the very

well studied algebraic connectivity of the graph [31].

Remark 3. The convergence analysis in this chapter holds for any consistent linear system
Ax = b without any assumption on the rank of the matrix A. The lack of any assumption on
the form of matrix A allows us to solve the homogeneous linear system Ax = 0 where A is the
incidence matrix of the network which by construction is rank deficient. More specifically, it
can be shown that rank(A) = n − 1 [113]. Note that many existing methods for solving linear
systems make the assumption that the matrix A of the linear systems is full rank [182, 132, 134]
and as a result can not be used to solve the AC problem.

Numerical Setup

Our goal in this experiment is to show that the addition of the momentum term to the random-
ized pairwise gossip algorithm (RK in the gossip setting) can lead to faster gossip algorithms
and as a result the nodes of the network will converge to the average consensus faster both in
number of iterations and in time. We do not intend to analyze the distributed behavior of the
method (this is an ongoing research work). In our implementations we use three of the most
popular graph topologies in the literature of wireless sensor networks. These are the line graph,
cycle graph and the random geometric graph G(n, r). In practice, G(n, r) consider ideal for
modeling wireless sensor networks, because of their particular formulation. In the experiments
the 2-dimensional G(n, r) is used which is formed by placing n nodes uniformly at random in
a unit square with edges only between nodes that have euclidean distance less than the given
radius r. To preserve the connectivity of G(n, r) a radius r = r(n) = log(n)/n is used [152].
The AC problem is solved for the three aforementioned networks for both n = 100 and n = 200
number of nodes. We run mRK with several momentum parameters β for 10 trials and we plot
their average. Our results are available in Figures 2.8 and 2.9.

Note that the vector of the initial values of the nodes can be chosen arbitrarily, and the
proposed algorithms will find the average of these values. In Figures 2.8 and 2.9 the initial value
of each node is chosen independently at random from the uniform distribution in the interval
(0, 1).

Experimental Results

By observing Figures 2.8 and 2.9, it is clear that the addition of the momentum term improves
the performance of the popular pairwise randomized gossip (PRG) method [16]. The choice
β = 0.4 as the momentum parameter improves the performance of the vanilla PRG for all
networks under study and β = 0.5 is a good choice for the cases of the cycle and line graph.
Note that for networks such as the cycle and line graphs there are known closed form expressions
for the algebraic connectivity [31]. Thus, using equation (2.23), we can compute the exact values
of the condition number 1/λ+

min for these networks. Interestingly, as we can see in Table 2.7

7Matrix A of the linear system is the incidence matrix of the graph and it is known that the Laplacian matrix
is equal to L = A>A, where ‖A‖2F = 2m.
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Figure 2.8: Performance of mPRG for several momentum parameters β for solving the average
consensus problem in a cycle graph, line graph and random geometric graph G(n, r) with n =
100 nodes. For the G(n, r) to ensure connectivity of the network a radius r =

√
log(n)/n is used.

The graphs in the first (second) column plot iterations (time) against residual error while those
in the third (forth) column plot iterations (time) against function values. The “Error” in the

vertical axis represents the relative error ‖xk−x∗‖2B/‖x0−x∗‖2B
B=I,x0=c

= ‖xk−x∗‖2/‖c−x∗‖2B
and the function values f(xk) refer to function (2.19).

for n = 100 and n = 200 (number of nodes), the condition number 1/λ+
min appearing in the

iteration complexity of our methods is not very large. This is in contrast with experimental
observations from Section 2.7.1 where it was shown that the choice β = 0.5 is good for very ill
conditioned problems only (1/λ+

min very large).

Network Formula for λ+min(L) 1/λ+min for n = 100 1/λ+min for n = 200
Line 2 (1− cos(π/n)) 1013 4052
Cycle 2 (1− cos(2π/n)) 253 1013

Table 2.7: Algebraic connectivity of cycle and line graph for n = 100 and n = 200

2.8 Conclusion

In this chapter, we studied the convergence analysis of several stochastic optimization algorithms
enriched with heavy ball momentum for solving stochastic optimization problems of special
structure. We proved global, non-asymptotic linear convergence rates of all of these methods as
well as accelerated linear rate for the case of the norm of expected iterates. We also introduced
a new momentum strategy called stochastic momentum which is beneficial for the case of sparse
data and proved linear convergence in this setting. We corroborated our theoretical results with
extensive experimental testing.

Our work is amenable to further extensions. A natural extension of our results is the analysis
of heavy ball momentum variants of our proposed methods (SGD,SN, SPP, etc) in the case of
general convex or strongly convex functions. While we have shown that the expected iterates
converge in an accelerated manner, it is an open problem whether an accelerated rate can be
established for the expected distance, i.e., for E

[
‖xk − x∗‖2B

]
. In our analysis we also focus

on the case of fixed constant step-size and momentum parameters. A study of the effect of
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Figure 2.9: Performance of mPRG for several momentum parameters β for solving the average
consensus problem in a cycle graph, line graph and random geometric graph G(n, r) with n =
200 nodes. For the G(n, r) to ensure connectivity of the network a radius r =

√
log(n)/n is used.

The graphs in the first (second) column plot iterations (time) against residual error while those
in the third (forth) column plot iterations (time) against function values. The “Error” in the

vertical axis represents the relative error ‖xk−x∗‖2B/‖x0−x∗‖2B
B=I,x0=c

= ‖xk−x∗‖2/‖c−x∗‖2
and the function values f(xk) refer to function (2.19).

decreasing or adaptive choice of the parameters might provide novel insights.
The obtained results hold under the exactness condition which as we explain is very weak,

allowing for virtually arbitrary distributions D from which the random matrices are drawn.
One may wish to design optimized distributions in terms of the convergence rates or overall
complexity.

Finally, we show how the addition of momentum on top of gossip algorithms can lead
to faster convergence. An interesting question is to interpret the distributed nature of these
algorithms and try to understand how we can improve the analysis using the properties of the
underlying network. This is precisely what we are doing later in Chapter 4.

2.9 Proofs of Main Results

2.9.1 Technical lemmas

Lemma 16. Fix F 1 = F 0 ≥ 0 and let {F k}k≥0 be a sequence of nonnegative real numbers
satisfying the relation

F k+1 ≤ a1F
k + a2F

k−1, ∀k ≥ 1, (2.24)

where a2 ≥ 0, a1 + a2 < 1 and at least one of the coefficients a1, a2 is positive. Then the

sequence satisfies the relation F k+1 ≤ qk(1 + δ)F 0 for all k ≥ 1, where q =
a1+
√
a21+4a2
2 and

δ = q − a1 ≥ 0. Moreover,
q ≥ a1 + a2, (2.25)

with equality if and only if a2 = 0 (in which case q = a1 and δ = 0).

Proof. Choose δ =
−a1+

√
a21+4a2

2 . We claim δ ≥ 0 and a2 ≤ (a1 + δ)δ. Indeed, non-negativity
of δ follows from a2 ≥ 0, while the second relation follows from the fact that δ satisfies

(a1 + δ)δ − a2 = 0. (2.26)
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In view of these two relations, adding δFk to both sides of (2.24), we get

F k+1 + δF k ≤ (a1 + δ)F k + a2F
k−1 ≤ (a1 + δ)(F k + δF k−1) = q(F k + δF k−1). (2.27)

Let us now argue that 0 < q < 1. Non-negativity of q follows from non-negativity of a2.
Clearly, as long as a2 > 0, q is positive. If a2 = 0, then a1 > 0 by assumption, which implies
that q is positive. The inequality q < 1 follows directly from the assumption a1 + a2 < 1. By
unrolling the recurrence (2.27), we obtain F k+1 ≤ F k+1 + δF k ≤ qk(F 1 + δF 0) = qk(1 + δ)F 0.

Finally, let us establish (2.27). Noting that a1 = q − δ, and since in view of (2.26) we
have a2 = qδ, we conclude that a1 + a2 = q + δ(q − 1) ≤ q, where the inequality follows from
q < 1.

Finally, let us present a simple lemma of an identity that we use in our main proofs. This
preliminary result is known to hold for the case of Euclidean norms (B = I). We provide the
proof for the more general B−norm for completeness.

Lemma 17. Let a, b, c be arbitrary vectors in Rn and let B be a positive definite matrix. Then
the following identity holds: 2〈a− c, c− b〉B = ‖a− b‖2B − ‖c− b‖2B − ‖a− c‖2B,

Proof.

LHS = 2〈a− c, c− b〉B = 2(a− c)>B(c− b)
= 2a>Bc− 2a>Bb− 2c>Bc+ 2c>Bb

and

RHS = ‖a− b‖2B − ‖c− b‖2B − ‖a− c‖2B
= (a− b)>B(a− b)− (c− b)>B(c− b)− (a− c)>B(a− c)
= a>Ba− a>Bb− b>Ba+ b>Bb− c>Bc+ c>Bb+ b>Bc− b>Bb

−a>Ba+ a>Bc+ c>Ba− c>Bc

= 2a>Bc− 2a>Bb− 2c>Bc+ 2c>Bb

LHS (left-hand side)=RHS (right-hand side) and this completes the proof.

2.9.2 Proof of Theorem 8

First, we decompose

‖xk+1 − x∗‖2B = ‖xk − ω∇fSk
(xk) + β(xk − xk−1)− x∗‖2B

= ‖xk − ω∇fSk
(xk)− x∗‖2B︸ ︷︷ ︸

1

+ 2〈xk − ω∇fSk
(xk)− x∗, β(xk − xk−1)〉B︸ ︷︷ ︸

2

+β2‖xk − xk−1‖2B︸ ︷︷ ︸
3

. (2.28)

We will now analyze the three expressions 1 , 2 , 3 separately. The first expression can be
written as

1 = ‖xk − x∗‖2B − 2ω〈xk − x∗,∇fSk
(xk)〉B + ω2‖∇fSk

(xk)‖2B
(1.38),(1.39)

= ‖xk − x∗‖2B − 4ωfSk
(xk) + 2ω2fSk

(xk)

= ‖xk − x∗‖2B − 2ω(2− ω)fSk
(xk). (2.29)
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We will now bound the second expression. First, we have

2 = 2β〈xk − x∗, xk − xk−1〉B + 2ωβ〈∇fSk
(xk), xk−1 − xk〉B

= 2β〈xk − x∗, xk − x∗〉B + 2β〈xk − x∗, x∗ − xk−1〉B + 2ωβ〈∇fSk
(xk), xk−1 − xk〉B

= 2β‖xk − x∗‖2B + 2β〈xk − x∗, x∗ − xk−1〉B + 2ωβ〈∇fSk
(xk), xk−1 − xk〉B.

(2.30)
Using the identity from Lemma 17 for the vectors xk, x∗ and xk−1 we obtain:

2〈xk − x∗, x∗ − xk−1〉B = ‖xk − xk−1‖2B − ‖xk−1 − x∗‖2B − ‖xk − x∗‖2B.

Substituting this into (2.30) gives

2 = β‖xk − x∗‖2B + β‖xk − xk−1‖2B − β‖xk−1 − x∗‖2B + 2ωβ〈∇fSk
(xk), xk−1 − xk〉B.

(2.31)

The third expression can be bounded as

3 = β2‖(xk − x∗) + (x∗ − xk−1)‖2B ≤ 2β2‖xk − x∗‖2B + 2β2‖xk−1 − x∗‖2B. (2.32)

By substituting the bounds (2.29), (2.31), (2.32) into (2.28) we obtain

‖xk+1 − x∗‖2B ≤ ‖xk − x∗‖2B − 2ω(2− ω)fSk
(xk)

+β‖xk − x∗‖2B + β‖xk − xk−1‖2B − β‖xk−1 − x∗‖2B
+2ωβ〈∇fSk

(xk), xk−1 − xk〉B + 2β2‖xk − x∗‖2B + 2β2‖xk−1 − x∗‖2B
≤ (1 + 3β + 2β2)‖xk − x∗‖2B + (β + 2β2)‖xk−1 − x∗‖2B − 2ω(2− ω)fSk

(xk)

+2ωβ〈∇fSk
(xk), xk−1 − xk〉B.

Now by first taking expectation with respect to Sk, we obtain:

ESk
[‖xk+1 − x∗‖2B] ≤ (1 + 3β + 2β2)‖xk − x∗‖2B + (β + 2β2)‖xk−1 − x∗‖2B

−2ω(2− ω)f(xk) + 2ωβ〈∇f(xk), xk−1 − xk〉B
≤ (1 + 3β + 2β2)‖xk − x∗‖2B + (β + 2β2)‖xk−1 − x∗‖2B

−2ω(2− ω)f(xk) + 2ωβ(f(xk−1)− f(xk))

= (1 + 3β + 2β2)‖xk − x∗‖2B + (β + 2β2)‖xk−1 − x∗‖2B
−(2ω(2− ω) + 2ωβ)f(xk) + 2ωβf(xk−1).

where in the second step we used the inequality 〈∇f(xk), xk−1 − xk〉 ≤ f(xk−1) − f(xk) and
the fact that ωβ ≥ 0, which follows from the assumptions. We now apply inequalities (1.36)
and (1.37), obtaining

ESk
[‖xk+1 − x∗‖2B] ≤ (1 + 3β + 2β2 − (ω(2− ω) + ωβ)λ+

min)︸ ︷︷ ︸
a1

‖xk − x∗‖2B

+ (β + 2β2 + ωβλmax)︸ ︷︷ ︸
a2

‖xk−1 − x∗‖2B.

By taking expectation again, and letting F k := E[‖xk − x∗‖2B], we get the relation

F k+1 ≤ a1F
k + a2F

k−1. (2.33)

It suffices to apply Lemma 16 to the relation (2.33). The conditions of the lemma are
satisfied. Indeed, a2 ≥ 0, and if a2 = 0, then β = 0 and hence a1 = 1− ω(2− ω)λ+

min > 0. The
condition a1 + a2 < 1 holds by assumption.

The convergence result in function values, E[f(xk)], follows as a corollary by applying in-
equality (1.36) to (2.5).
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2.9.3 Proof of Theorem 10

Let pt = β
1−β (xt − xt−1) and dt = ‖xt + pt − x∗‖2B. In view of (2.4), we can write

xt+1 + pt+1 = xt+1 +
β

1− β
(xt+1 − xt)

(2.4)
= xt − ω∇fSt

(xt) + β(xt − xt−1) +
β

1− β
(
−ω∇fSt

(xt) + β(xt − xt−1)
)

= xt −
[
ω +

β

1− β
ω

]
∇fSt(x

t) +

[
β +

β2

1− β

]
(xt − xt−1)

= xt − ω

1− β
∇fSt(x

t) +
β

1− β
(xt − xt−1)

= xt + pt − ω

1− β
∇fSt

(xt) (2.34)

and therefore

dt+1 (2.34)
=

∥∥∥∥xt + pt − ω

1− β
∇fSt

(xt)− x∗
∥∥∥∥2

B

= dt − 2
ω

1− β
〈xt + pt − x∗,∇fSt(x

t)〉B +
ω2

(1− β)2
‖∇fSt(x

t)‖2B

= dt − 2ω

1− β
〈xt − x∗,∇fSt(x

t)〉B −
2ωβ

(1− β)2
〈xt − xt−1,∇fSt(x

t)〉B

+
ω2

(1− β)2
‖∇fSt(x

t)‖2B.

Taking expectation with respect to the random matrix St we obtain:

ESt
[dt+1] = dt − 2ω

1− β
〈xt − x∗,∇f(xt)〉B −

2ωβ

(1− β)2
〈xt − xt−1,∇f(xt)〉B

+
ω2

(1− β)2
2f(xt)

(1.40)
= dt − 4ω

1− β
f(xt)− 2ωβ

(1− β)2
〈xt − xt−1,∇f(xt)〉B +

ω2

(1− β)2
2f(xt)

≤ dt − 4ω

1− β
f(xt)− 2ωβ

(1− β)2
[f(xt)− f(xt−1)] +

ω2

(1− β)2
2f(xt)

= dt +

[
− 4ω

1− β
− 2ωβ

(1− β)2
+

2ω2

(1− β)2

]
f(xt) +

2ωβ

(1− β)2
f(xt−1),

where the inequality follows from convexity of f . After rearranging the terms we get

ESt
[dt+1] +

2ωβ

(1− β)2
f(xt) + αf(xt) ≤ dt +

2ωβ

(1− β)2
f(xt−1),

where α = 4ω
1−β −

2ω2

(1−β)2 > 0. Taking expectations again and using the tower property, we get

θt+1 + αE[f(xt)] ≤ θt, t = 1, 2, . . . , (2.35)

where θt = E[dt] + 2ωβ
(1−β)2E[f(xt−1)]. By summing up (2.35) for t = 1, . . . , k we get

k∑
t=1

E[f(xt)] ≤ θ1 − θk−1

α
≤ θ1

α
. (2.36)
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Finally, using Jensen’s inequality, we get

E[f(x̂k)] = E

[
f

(
1

k

k∑
t=1

xt

)]
≤ E

[
1

k

k∑
t=1

f(xt)

]
=

1

k

k∑
t=1

E[f(xt)]
(2.36)

≤ θ1

αk
.

It remains to note that θ1 = ‖x0 − x∗‖2B + 2ωβ
(1−β)2 f(x0).

2.9.4 Proof of Theorem 11

In the proof of Theorem 11 the following two lemmas are used.

Lemma 18 ([168]). Assume exactness. Let x ∈ Rn and x∗ = ΠL,B(x). If λi = 0, then
u>i B1/2(x− x∗) = 0.

Lemma 19 ([48, 53]). Consider the second degree linear homogeneous recurrence relation:

rk+1 = a1r
k + a2r

k−1 (2.37)

with initial conditions r0, r1 ∈ R. Assume that the constant coefficients a1 and a2 satisfy the
inequality a2

1 +4a2 < 0 (the roots of the characteristic equation t2−a1t−a2 = 0 are imaginary).
Then there are complex constants C0 and C1 (depending on the initial conditions r0 and r1)
such that:

rk = 2Mk(C0 cos(θk) + C1 sin(θk))

where M =

(√
a21
4 +

(−a21−4a2)
4

)
=
√
−a2 and θ is such that a1 = 2M cos(θ) and

√
−a2

1 − 4a2 =

2M sin(θ).

We can now turn to the proof of Theorem 11. Plugging in the expression for the stochastic
gradient, mSGD can be written in the form

xk+1 = xk − ω∇fSk
(xk) + β(xk − xk−1)

(1.13)
= xk − ωB−1Zk(xk − x∗) + β(xk − xk−1). (2.38)

Subtracting x∗ from both sides of (2.38), we get

xk+1 − x∗ = (I− ωB−1Zk)(xk − x∗) + β(xk − x∗ + x∗ − xk−1)

=
(
(1 + β)I− ωB−1Zk

)
(xk − x∗)− β(xk−1 − x∗).

Multiplying the last identity from the left by B1/2, we get

B1/2(xk+1 − x∗) =
(

(1 + β)I− ωB−1/2ZkB
−1/2

)
B1/2(xk − x∗)− βB1/2(xk−1 − x∗).

Taking expectations, conditioned on xk (that is, the expectation is with respect to Sk):

B1/2E[xk+1 − x∗ | xk] =
(

(1 + β)I− ωB−1/2E[Z]B−1/2
)

B1/2(xk − x∗)− βB1/2(xk−1 − x∗).
(2.39)

Taking expectations again, and using the tower property, we get

B1/2E[xk+1 − x∗] = B1/2E
[
E[xk+1 − x∗ | xk]

]
(2.39)

=
(

(1 + β)I− ωB−1/2E[Z]B−1/2
)

B1/2E[xk − x∗]− βB1/2E[xk−1 − x∗].

Plugging the eigenvalue decomposition UΛU> of the matrix W = B−1/2E[Z]B−1/2 into
the above, and multiplying both sides from the left by U>, we obtain

U>B1/2E[xk+1 − x∗] = U>
(
(1 + β)I− ωUΛU>

)
B1/2E[xk − x∗]− βU>B1/2E[xk−1 − x∗].

(2.40)
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Let us define sk := U>B1/2E[xk − x∗] ∈ Rn. Then relation (2.40) takes the form of the
recursion

sk+1 = [(1 + β)I− ωΛ]sk − βsk−1,

which can be written in a coordinate-by-coordinate form as follows:

sk+1
i = [(1 + β)− ωλi]ski − βsk−1

i for all i = 1, 2, 3, ..., n, (2.41)

where ski indicates the ith coordinate of sk.

We will now fix i and analyze recursion (2.41) using Lemma 19. Note that (2.41) is a second
degree linear homogeneous recurrence relation of the form (2.37) with a1 = 1 + β − ωλi and
a2 = −β. Recall that 0 ≤ λi ≤ 1 for all i. Since we assume that 0 < ω ≤ 1/λmax, we know that
0 ≤ ωλi ≤ 1 for all i. We now consider two cases:

1. λi = 0.

In this case, (2.41) takes the form:

sk+1
i = (1 + β)ski − βsk−1

i . (2.42)

Applying Proposition 9, we know that x∗ = ΠL,B(x0) = ΠL,B(x1). Using Lemma 18
twice, once for x = x0 and then for x = x1, we observe that s0

i = u>i B1/2(x0 − x∗) = 0
and s1

i = u>i B1/2(x1 − x∗) = 0. Finally, in view of (2.42) we conclude that

ski = 0 for all k ≥ 0. (2.43)

2. λi > 0.

Since 0 < ωλi ≤ 1 and β ≥ 0, we have 1 + β − ωλi ≥ 0 and hence

a2
1 + 4a2 = (1 + β − ωλi)2 − 4β ≤ (1 + β − ωλ+

min)2 − 4β < 0,

where the last inequality can be shown to hold8 for

(
1−

√
ωλ+

min

)2

< β < 1. Applying

Lemma 19 the following bound can be deduced

ski = 2(−a2)k/2(C0 cos(θk) + C1 sin(θk)) ≤ 2βk/2Pi, (2.44)

where Pi is a constant depending on the initial conditions (we can simply choose Pi =
|C0|+ |C1|).

Now putting the two cases together, for all k ≥ 0 we have

‖E[xk − x∗]‖2B = E[xk − x∗]>BE[xk − x∗] = E[xk − x∗]B1/2UU>B1/2E[xk − x∗]

= ‖U>B1/2E[xk − x∗]‖2 = ‖sk‖2 =

n∑
i=1

(ski )2

=
∑
i:λi=0

(ski )2 +
∑
i:λi>0

(ski )2 (2.43)
=

∑
i:λi>0

(ski )2

(2.44)

≤
∑
i:λi>0

4βkP 2
i

= βkC,

where C = 4
∑
i:λi>0 P

2
i .

8The lower bound on β is tight. However, the upper bound is not. However, we do not care much about the
regime of large β as β is the convergence rate, and hence is only interesting if smaller than 1.
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2.9.5 Proof of Theorem 14

The proof follows a similar pattern to that of Theorem 8. However, stochasticity in the mo-
mentum term introduces an additional layer of complexity, which we shall tackle by utilizing a
more involved version of the tower property.

For simplicity, let i = ik and rki := e>i (xk − xk−1)ei. First, we decompose

‖xk+1 − x∗‖2 = ‖xk − ω∇fSk
(xk) + γrki − x∗‖2

= ‖xk − ω∇fSk
(xk)− x∗‖2 + 2〈xk − ω∇fSk

(xk)− x∗, γrki 〉+ γ2‖rki ‖2.(2.45)

We shall use the tower property in the form

E[E[E[X | xk,Sk] | xk]] = E[X], (2.46)

where X is some random variable. We shall perform the three expectations in order, from the
innermost to the outermost. Applying the inner expectation to the identity (2.45), we get

E[‖xk+1 − x∗‖2 | xk,Sk] = E[‖xk − ω∇fSk
(xk)− x∗‖2 | xk,Sk]︸ ︷︷ ︸

1

+E[2〈xk − ω∇fSk
(xk)− x∗, γrki 〉 | xk,Sk]︸ ︷︷ ︸

2

+E[γ2‖rki ‖2 | xk,Sk]︸ ︷︷ ︸
3

. (2.47)

We will now analyze the three expressions 1 , 2 , 3 separately. The first expression is
constant under the expectation, and hence we can write

1 = ‖xk − ω∇fSk
(xk)− x∗‖2

= ‖xk − x∗‖2 − 2ω〈xk − x∗,∇fSk
(xk)〉+ ω2‖∇fSk

(xk)‖2
(1.38)+(1.39)

= ‖xk − x∗‖2 − 4ωfSk
(xk) + 2ω2fSk

(xk)

= ‖xk − x∗‖2 − 2ω(2− ω)fSk
(xk). (2.48)

We will now bound the second expression. Using the identity

E[rki | xk,Sk] = Ei[rki ] =

n∑
i=1

1

n
rki =

1

n
(xk − xk−1), (2.49)

we can write

2 = E[2〈xk − ω∇fSk
(xk)− x∗, γrki 〉 | xk,Sk]

= 2〈xk − ω∇fSk
(xk)− x∗, γE[rki | xk,Sk]〉

(2.49)
= 2〈xk − ω∇fSk

(xk)− x∗, γ
n

(xk − xk−1)〉

= 2
γ

n
〈xk − x∗, xk − xk−1〉+ 2ω

γ

n
〈∇fSk

(xk), xk−1 − xk〉

= 2
γ

n
〈xk − x∗, xk − x∗〉+ 2

γ

n
〈xk − x∗, x∗ − xk−1〉+ 2ω

γ

n
〈∇fSk

(xk), xk−1 − xk〉

= 2
γ

n
‖xk − x∗‖2 + 2

γ

n
〈xk − x∗, x∗ − xk−1〉+ 2ω

γ

n
〈∇fSk

(xk), xk−1 − xk〉. (2.50)

Using the fact that for arbitrary vectors a, b, c ∈ Rn we have the identity 2〈a − c, c − b〉 =
‖a− b‖2 − ‖c− b‖2 − ‖a− c‖2, we obtain

2〈xk − x∗, x∗ − xk−1〉 = ‖xk − xk−1‖2 − ‖xk−1 − x∗‖2 − ‖xk − x∗‖2.
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Substituting this into (2.50) gives

2 =
γ

n
‖xk − x∗‖2 +

γ

n
‖xk − xk−1‖2 − γ

n
‖xk−1 − x∗‖2 + 2ω

γ

n
〈∇fSk

(xk), xk−1 − xk〉.
(2.51)

The third expression can be bound as

3 = E[γ2‖rki ‖2 | xk,Sk]

= γ2Ei[‖rki ‖2]

= γ2
n∑
i=1

1

n
(xki − xk−1

i )2

=
γ2

n
‖xk − xk−1‖2

=
γ2

n
‖(xk − x∗) + (x∗ − xk−1)‖2

≤ 2γ2

n
‖xk − x∗‖2 +

2γ2

n
‖xk−1 − x∗‖2. (2.52)

By substituting the bounds (2.48), (2.51), (2.52) into (2.47) we obtain

E[‖xk+1 − x∗‖2 | xk,Sk] ≤ ‖xk − x∗‖2 − 2ω(2− ω)fSk
(xk)

+
γ

n
‖xk − x∗‖2 +

γ

n
‖xk − xk−1‖2 − γ

n
‖xk−1 − x∗‖2

+2ω
γ

n
〈∇fSk

(xk), xk−1 − xk〉+ 2
γ2

n
‖xk − x∗‖2 (2.53)

+2
γ2

n
‖xk−1 − x∗‖2

(2.32)

≤
(

1 + 3
γ

n
+ 2

γ2

n

)
‖xk − x∗‖2 +

(
γ

n
+ 2

γ2

n

)
‖xk−1 − x∗‖2

−2ω(2− ω)fSk
(xk) + 2ω

γ

n
〈∇fSk

(xk), xk−1 − xk〉. (2.54)

We now take the middle expectation (see (2.46)) and apply it to inequality (2.54):

E[E[‖xk+1 − x∗‖2 | xk,Sk] | xk] ≤
(

1 + 3
γ

n
+ 2

γ2

n

)
‖xk − x∗‖2 +

(
γ

n
+ 2

γ2

n

)
‖xk−1 − x∗‖2

−2ω(2− ω)f(xk) + 2ω
γ

n
〈∇f(xk), xk−1 − xk〉

≤
(

1 + 3
γ

n
+ 2

γ2

n

)
‖xk − x∗‖2 +

(
γ

n
+ 2

γ2

n

)
‖xk−1 − x∗‖2

−2ω(2− ω)f(xk) + 2ω
γ

n
(f(xk−1)− f(xk))

=

(
1 + 3

γ

n
+ 2

γ2

n

)
‖xk − x∗‖2 +

(
γ

n
+ 2

γ2

n

)
‖xk−1 − x∗‖2

−
(

2ω(2− ω) + 2ω
γ

n

)
f(xk) + 2ω

γ

n
f(xk−1).

where in the second step we used the inequality 〈∇f(xk), xk−1 − xk〉 ≤ f(xk−1) − f(xk) and
the fact that ωγ ≥ 0, which follows from the assumptions. We now apply inequalities (1.36)
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and (1.37), obtaining

E[E[‖xk+1 − x∗‖2 | xk,Sk] | xk] ≤
(

1 + 3
γ

n
+ 2

γ2

n
−
(
ω(2− ω) + ω

γ

n

)
λ+

min

)
︸ ︷︷ ︸

a1

‖xk − x∗‖2

+
1

n

(
γ + 2γ2 + ωγλmax

)
︸ ︷︷ ︸

a2

‖xk−1 − x∗‖2.

By taking expectation again (outermost expectation in the tower rule (2.46)), and letting
F k := E[‖xk − x∗‖2B], we get the relation

F k+1 ≤ a1F
k + a2F

k−1. (2.55)

It suffices to apply Lemma 16 to the relation (2.33). The conditions of the lemma are
satisfied. Indeed, a2 ≥ 0, and if a2 = 0, then γ = 0 and hence a1 = 1− ω(1− ω)λ+

min > 0. The
condition a1 + a2 < 1 holds by assumption.

The convergence result in function values follows as a corollary by applying inequality (1.36)
to (2.14).
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Chapter 3

Inexact Randomized Iterative
Methods

3.1 Introduction

In the era of big data where data sets become continuously larger, randomized iterative meth-
ods become very popular and are increasingly playing a major role in areas such as numerical
linear algebra, scientific computing and optimization. They are preferred mainly because of
their cheap per-iteration cost which leads to improvements in terms of complexity upon clas-
sical results by orders of magnitude. In addition they can easily scale to extreme dimensions.
However, a common feature of these methods is that in their update rule a particular subprob-
lem needs to be solved exactly. In a large scale setting, often this step is computationally very
expensive. The purpose of this work is to reduce the cost of this step by allowing for inexact
updates in the stochastic methods under study.

3.1.1 The setting

In this chapter we are interested to solve the three closely related problems described in the
previous chapters. As a reminder, these are:

(i) stochastic quadratic optimization (1.6),

(ii) best approximation (1.22), and

(iii) (bounded) concave quadratic maximization (1.26).

In particular we propose and analyze inexact variants of the exact algorithms presented in
the introduction of this thesis for solving the above problems. Among the methods studied
are: stochastic gradient descent (SGD), stochastic Newton (SN), stochastic proximal point
(SPP), sketch and project method (SPM) and stochastic subspace ascent (SDSA). In all of
these methods, a certain potentially expensive calculation/operation needs to be performed in
each step; it is this operation that we propose to be performed inexactly. For instance, in the
case of SGD, it is the computation of the stochastic gradient ∇fSk

(xk), in the case of SPM is
the computation of the projection ΠLS,B(xk), and in the case of SDSA it is the computation of
the dual update Skλ

k.
We perform an iteration complexity analysis under an abstract notion of inexactness and

also under a more structured form of inexactness appearing in practical scenarios. An inexact
solution of these subproblems can be obtained much more quickly than the exact solution. Since
in practical applications the savings thus obtained are larger than the increase in the number
of iterations needed for convergence, our inexact methods can be dramatically faster.

3.1.2 Structure of the chapter and main contributions

Let us now outline the main contribution and the structure of this chapter.
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Assumption on
the Inexactness error εk

ω Upper Bounds Theorem

Assumption 1a (0, 2) ρk/2‖x0 − x∗‖B +
∑k−1
i=0 ρ

k−1−i
2 σi 20

Assumption 1b (0, 2)
(√
ρ+ q

)2k ‖x0 − x∗‖2B 22

Assumptions 1,2 (0, 2) ρk‖x0 − x∗‖2B +
∑k−1
i=0 ρ

k−1−iσ̄2
i 23(i)

Assumptions 1b,2 (0, 2)
(
ρ+ q2

)k ‖x0 − x∗‖2B 23(ii)

Assumptions 1c,2 (0, 2)
(
ρ+ q2λ+

min

)k ‖x0 − x∗‖2B 23(iii)

Table 3.1: Summary of the iteration complexity results obtained in this chapter. ω denotes the stepsize
(relaxation parameter) of the method. In all cases, x∗ = ΠL,B(x0) and ρ = 1−ω(2−ω)λ+

min ∈ (0, 1) are
the quantities appear in the convergence results (here λ+

min denotes the minimum non zero eigenvalue
of matrix W, see equation (2.18)). Inexactness parameter q is chosen always in such a way to obtain
linear convergence and it can be seen as the quantity that controls the inexactness. In all theorems the
quantity of convergence is E[‖xk − x∗‖2B] (except in Theorem 20 where we analyze E[‖xk − x∗‖B]). As
we show in Section 3.5, under similar assumptions, iSDSA has exactly the same convergence with iBasic
but the upper bounds of the third column are related to the dual function values E

[
D(y∗)−D(y0)

]
.

In Section 3.2 we describe the subproblems and introduce two notions of inexactness (ab-
stract and structured) that will be used in the rest of this chapter. The Inexact Basic Method
(iBasic) is also presented. iBasic is a method that simultaneously captures inexact variants of
the algorithms (1.17), (1.18), (1.19) for solving the stochastic optimization problem (1.6) and
algorithm (1.25) for solving the best approximation problem (1.22). It is an inexact variant of
the Basic Method, first presented in [168], where the inexactness is introduced by the addition
of an inexactness error εk in the original update rule. We illustrate the generality of iBasic by
presenting popular algorithms that can be cast as special cases.

In Section 3.3 we establish convergence results of iBasic under general assumptions on the
inexactness error εk of its update rule (see Algorithm 4). In this part we do not focus on
any specific mechanisms which lead to inexactness; we treat the problem abstractly. However,
such errors appear often in practical scenarios and can be associated with inaccurate numerical
solvers, quantization, sparsification and compression mechanisms. In particular, we introduce
several abstract assumptions on the inexactness level and describe our generic convergence
results. For all assumptions we establish linear rate of decay of the quantity E[‖xk−x∗‖2B] (i.e.
L2 convergence)1.

Subsequently, in Section 3.4 we apply our general convergence results to a more structured
notion of inexactness error and propose a concrete mechanisms leading to such errors. We
provide theoretical guarantees for this method in situations when a linearly convergent iterative
method (e.g., Conjugate Gradient) is used to solve the subproblem inexactly. We also highlight
the importance of the dual viewpoint through a sketch-and-project interpretation.

In Section 3.5 we study an inexact variant of SDSA, which we called iSDSA, for directly
solving the dual problem (1.26). We provide a correspondence between iBasic and iSDSA and
we show that the random iterates of iBasic arise as affine images of iSDSA. We consider both
abstract and structured inexactness errors and provide linearly convergent rates in terms of the
dual function suboptimality E

[
D(y∗)−D(y0)

]
.

Finally, in Section 3.6 we evaluate the performance of the proposed inexact methods through
numerical experiments and show the benefits of our approach on both synthetic and real
datasets. Concluding remarks are given in Section 3.7.

A summary of the convergence results of iBasic under several assumptions on the inexactness
error with pointers to the relevant theorems is available in Table 3.1. We highlight that similar
convergence results can be also obtained for iSDSA in terms of the dual function suboptimality
E
[
D(y∗)−D(y0)

]
(check Section 3.5 for more details on iSDSA).

1As we explain later, a convergence of the expected function values of problem 1.6 can be easily obtained as
a corollary of L2 convergence.
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3.1.3 Notation

Following the rest of this thesis, with boldface upper-case letters we denote matrices and I is
the identity matrix. By L we denote the solution set of the linear system Ax = b. By LS, where
S is a random matrix, we denote the solution set of the sketched linear system S>Ax = S>b.
In general, we use ∗ to express the exact solution of a sub-problem and ≈ to indicate its inexact
variant. Unless stated otherwise, throughout the chapter, x∗ is the projection of x0 onto L in
the B-norm: x∗ = ΠL,B(x0).

3.2 Inexact Update Rules

In this section we start by explaining the key sub-problems that need to be solved exactly in
the update rules of the previously described methods. We present iBasic, a method that solves
problems (1.6) and (1.22) and we show how by varying the main parameters of the method we
recover inexact variants of popular algorithms as special cases. Finally closely related work on
inexact algorithms for solving different problems is also presented.

3.2.1 Expensive sub-problems in update rules

Let us devote this subsection on explaining how the inexactness can be introduced in the current
exact update rules of SGD2 (1.17), Sketch and Project (1.25) and SDSA (1.29) for solving the
stochastic optimization, best approximation and the dual problem respectively. As we have
shown these methods solve closely related problems and the key subproblems in their update
rule are similar. However the introduction of inexactness in the update rule of each one of them
can have different interpretation.

For example for the case of SGD for solving the stochastic optimization problem (1.6) (see
also Section 3.4.1 and 3.4.2 for more details), if we define λk∗ = (S>k AB−1A>Sk)†S>k (b−Axk)

then the stochastic gradient of function f becomes ∇fSk
(xk)

(1.13)
= −B−1A>Skλ

k
∗ and the

update rule of SGD takes the form: xk+1 = xk + ωB−1A>Skλ
k
∗. Clearly in this update the

expensive part is the computation of the quantity λk∗ that can be equivalently computed to be the
least norm solution of the smaller (in comparison to Ax = b) linear system S>k AB−1A>Skλ =
S>k (b−Axk). In our work we are suggesting to use an approximation λk≈ of the exact solution
and with this way avoid executing the possibly expensive step of the update rule. Thus the
inexact update is taking the following form:

xk+1 = xk + ωB−1A>Skλ
k
≈ = xk − ω∇fSk

(xk) + ωB−1A>Sk(λk≈ − λk∗)︸ ︷︷ ︸
εk

.

Here εk denotes a more abstract notion of inexactness and it is not necessary to be always
equivalent to the quantity ωB−1A>Sk(λk≈ − λk∗). It can be interpreted as an expression that
acts as an perturbation of the exact update. In the case that εk has the above form we say that
the notion of inexactness is structured. In our work we are interested in both the abstract and
more structured notions of inexactness. We first present general convergence results where we
require the error εk to satisfy general assumptions (without caring how this error is generated)
and later we analyze the concept of structured inexactness by presenting algorithms where
εk = ωB−1A>Sk(λk≈ − λk∗).

In similar way, the expensive operation of SPM (1.25) is the exact computation of the
projection Π∗LSk

,B(xk). Thus we are suggesting to replace this step with an inexact variant and

compute an approximation of this projection. The inexactness here can be also interpreted using

both, the abstract εk error and its more structured version εk = ω
(

Π≈LSk
,B(xk)−Π∗LSk

,B(xk)
)

.

At this point, observe that, by using the expression (1.14) the structure of the εk in SPM and
SGD has the same form.

2Note that SGD has identical updates to the Stochastic Newton and Stochastic proximal point method. Thus
the inexactness can be added to these updates in similar way.
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Exact Algorithms
Key Subproblem

(problem that we solve inexactly)
Inexact Update Rules

(abstract and structured inexactness error)

SGD (1.17)
Exact computation of λk∗,

where λk∗ = arg minλ:Mkλ=dk ‖λ‖.
Appears in the computation of ∇fSk

(xk) = −B−1A>Skλ
k
∗

xk+1 = xk + ωB−1A>Skλ
k
≈

= xk − ω∇fSk
(xk) + ωB−1A>Sk(λk≈ − λk∗)︸ ︷︷ ︸

εk

.

SPM (1.25)
Exact computation of the projection

Π∗LSk
,B(xk) = arg minx′∈LSk

‖x′ − xk‖B

xk+1 = ωΠ≈LSk
,B(xk) + (1− ω)xk

= ωΠLSk
,B(xk) + (1− ω)xk + ω

(
Π≈LSk

,B(xk)−Π∗LSk
,B(xk)

)
︸ ︷︷ ︸

εk

SDSA (1.29)
Exact computation of λk∗,

where λk∗ ∈ arg maxλD(yk + Skλ).
yk+1 = yk + ωSkλ

k
≈ = yk + ωSkλ

k
∗ + ωSk(λk≈ − λk∗)︸ ︷︷ ︸

εkd

Table 3.2: The exact algorithms under study with the potentially expensive to compute key sub-
problems of their update rule. The inexact update rules are presented in the last column for both
notions of inexactness (abstract and more structured). We use ∗ to define the important quantity that
needs to be computed exactly in the update rule of each method and ≈ to indicate the proposed inexact
variant.

In the SDSA the expensive subproblem in the update rule is the computation of the λk∗
that satisfy λk∗ ∈ arg maxλD(yk + Skλ). Using the definition of the dual function (1.26)
this value can be also computed by evaluating the least norm solution of the linear system
S>k AB−1A>Skλ = S>k

(
b−A(x0 + B−1A>yk

)
). Later in Section 3.5 we analyze both notions

of inexactness (abstract and more structured) for inexact variants of SDSA.
Table 3.2 presents the key sub-problem that needs to be solved in each algorithm as well as

the part where the inexact error is appeared in the update rule.

3.2.2 The inexact basic method

In each iteration of the all aforementioned exact methods a sketch matrix S ∼ D is drawn
from a given distribution and then a certain subproblem is solved exactly to obtain the next
iterate. The sketch matrix S ∈ Rm×q requires to have m rows but no assumption on the
number of columns is made which means that the number of columns q allows to vary through
the iterations and it can be very large. The setting that we are interested in is precisely that
of having such large random matrices S. In these cases we expect that having approximate
solutions of the subproblems will be beneficial.

Recently randomized iterative algorithms that requires to solve large subproblems in each
iteration have been extensively studied and it was shown that are really beneficial when they
compared to their single coordinates variants (S ∈ Rm×1) [134, 135, 166, 113]. However, in
theses cases the evaluation of an exact solution for the suproblem in the update rule can be
computationally very expensive. In this work we propose and analyze inexact variants by allow-
ing to solve the subproblem that appear in the update rules of the stochastic methods, inexactly.
In particular, following the convention established in [168] of naming the main algorithm of the
paper Basic method we propose the inexact Basic method (iBasic) (Algorithm 4).

Algorithm 4 Inexact Basic Method (iBasic)

Input: Distribution D from which we draw random matrices S, positive definite matrix B ∈
Rn×n, stepsize ω > 0.

Initialize: x0 ∈ Rn
1: for k = 0, 1, 2, · · · do
2: Generate a fresh sample Sk ∼ D
3: Set xk+1 = xk − ωB−1A>Sk(S>k AB−1A>Sk)†S>k (Axk − b) + εk

4: end for

The εk in the update rule of the method represents the abstract inexactness error described
in Subsection 3.2.1. Note that, iBasic can have several equivalent interpretations. This allow as
to study the methods (1.17),(1.18),(1.19) for solving the stochastic optimization problem and
the sketch and project method (1.25) for the best approximation problem in a single algorithm
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only. In particular iBasic can be seen as inexact stochastic gradient descent (iSGD) with fixed
stepsize applied to (1.6). From (1.13), ∇fSk

(xk) = B−1A>Hk(Axk − b) and as a result the
update rule of iBasic can be equivalently written as: xk+1 = xk−ω∇fSk

(xk)+εk. In the case of
the best approximation problem (1.22), iBasic can be interpreted as inexact Sketch and Project
method (iSPM) as follows:

xk+1 = xk − ωB−1A>Sk(S>k AB−1A>Sk)†S>k (Axk − b) + εk

= ω
[
xk −B−1(S>k A)>(S>k AB−1(S>k A)>)†(S>k Axk − S>k b)

]
+ (1− ω)xk + εk

(1.14)
= ωΠLSk

,B(xk) + (1− ω)xk + εk (3.1)

For the dual problem (1.26) we devote Section 3.5 for presenting an inexact variant of the SDSA
(iSDSA) and analyze its convergence using the rates obtained for the iBasic in Sections 3.3 and
3.4.

3.2.3 General framework and further special cases

The proposed inexact methods, iBasic (Algorithm 4) and iSDSA (Section 3.5), belong in the
general sketch and project framework, first proposed from Gower and Richtarik in [73] for
solving consistent linear systems and where a unified analysis of several randomized methods
was studied. This interpretation of the algorithms allow us to recover a comprehensive array
of well-known methods as special cases by choosing carefully the combination of the main
parameters of the algorithms.

In particular, the iBasic has two main parameters (besides the stepsize ω > 0 of the update
rule). These are the distribution D from which we draw random matrices S and the positive
definite matrix B ∈ Rn×n. By choosing carefully combinations of the parameters D and B
we can recover several existing popular algorithms as special cases of the general method. For
example, special cases of the exact Basic method are the Randomized Kaczmarz, Randomized
Gaussian Kaczmarz3, Randomized Coordinate Descent and their block variants. For more
details about the generality of the sketch and project framework and further algorithms that
can be cast as special cases of the analysis we refer the interested reader to Section 3 of [73].
Here we present only the inexact update rules of two special cases that we will later use in the
numerical evaluation.

Special Cases: Let us define with I:C the column concatenation of the m × m identity
matrix indexed by a random subset C of [m].

• Inexact Randomized Block Kaczmarz (iRBK): Let B = I and let pick in each iteration
the random matrix S = I:C ∼ D. In this setup the update rule of the iBasic simplifies to

xk+1 = xk − ωA>C:(AC:A
>
C:)
†(AC:x

k − bC) + εk. (3.2)

• Inexact Randomized Block Coordinate Descent (iRBCD)4: If the matrix A of the linear
system is positive definite then we can choose B = A. Let also pick in each iteration the
random matrix S = I:C ∼ D. In this setup the update rule of the iBasic simplifies to

xk+1 = xk − ωI:C(I>:CAI:C)†I>:C(Axk − b) + εk. (3.3)

For more papers related to Kaczmarz method (randomized, greedy, cyclic update rules) we
refer the interested reader to [91, 114, 158, 17, 144, 159, 27, 132, 134, 49, 120, 216, 135, 175].
For the coordinate descent method (a.k.a Gauss-Seidel for linear systems) and its block variant,
Randomized Block Coordinate Descent we suggest [104, 139, 166, 167, 160, 161, 163, 22, 102,
51, 2, 192].

3Special case of the iBasic, when the random matrix S is chosen to be a Gaussian vector with mean 0 ∈ Rm
and a positive definite covariance matrix Σ ∈ Rm×m. That is S ∼ N(0,Σ) [73].

4In the setting of solving linear systems Randomized Coordinate Descent is known also as Gauss-Seidel
method. Its block variant can be also interpret as randomized coordinate Newton method (see [162]).
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3.2.4 Other related work on inexact methods

One of the current trends in the large scale optimization problems is the introduction of in-
exactness in the update rules of popular deterministic and stochastic methods. The rational
behind this is that an approximate/inexact step can often computed very efficiently and can
have significant computational gains compare to its exact variants.

In the area of deterministic algorithms, the inexact variant of the full gradient descent
method, xk+1 = xk −ωk[∇f(xk) + εk], has received a lot of attention [174, 39, 180, 59, 128]. It
has been analyzed for the cases of convex and strongly convex functions under several mean-
ingful assumptions on the inexactness error εk and its practical benefit compared to the exact
gradient descent is apparent. For further deterministic inexact methods check [36] for Inexact
Newton methods, [181, 171] for Inexact Proximal Point methods and [12] for Inexact Fixed
point methods.

In the recent years, with the explosion that happens in areas like machine learning and data
science inexactness enters also the updating rules of several stochastic optimization algorithms
and many new methods have been proposed and analyzed.

In the large scale setting, stochastic optimization methods are preferred mainly because
of their cheap per iteration cost (compared to their deterministic variants), their property to
scale to extreme dimensions and their improved theoretical complexity bounds. In areas like
machine learning and data science, where the datasets become larger rapidly, the development
of faster and efficient stochastic algorithms is crucial. For this reason, inexactness has recently
introduced to the update rules of several stochastic optimization algorithms and new methods
have been proposed and analyzed. One of the most interesting work on inexact stochastic
algorithms appears in the area of second order methods. In particular on inexact variants of
the Sketch-Newton method and subsampled Newton Method for minimize convex and non-
convex functions [172, 9, 14, 204, 205, 207]. Note that our results are related also with this
literature since our algorithm can be seen as inexact stochastic Newton method (see equation
(1.18)). To the best or our knowledge our work is the first that provide convergence analysis
of inexact stochastic proximal point methods (equation (1.19)) in any setting. From numerical
linear algebra viewpoint inexact sketch and project methods for solving the best approximation
problem and its dual problem where also never analyzed before.

As we already mentioned our framework is quite general and many algorithms, like iRBK
(3.2) and iRBCD (3.3) can be cast as special cases. As a result, our general convergence analysis
includes the analysis of inexact variants of all of these more specific algorithms as special cases.
In [134] an analysis of the exact randomized block Kacmzarz method has been proposed and
in the experiments an inexact variant was used to speedup the method. However, no iteration
complexity results were presented for the inexact variant and both the analysis and numerical
evaluation have been made for linear systems with full rank matrices that come with natural
partition of the rows (this is a much more restricted case than the one analyzed in our setting).
For inexact variants of the randomized block coordinate descent algorithm in different settings
than ours we suggest [187, 54, 20, 46].

Finally an analysis of approximate stochastic gradient descent for solving the empirical risk
minimization problem using quadratic constraints and sequential semi-definite programs has
been presented in [85].

3.3 Convergence Results Under General Assumptions

In this section we consider scenarios in which the inexactness error εk can be controlled, by
specifying a per iteration bound σk on the norm of the error. In particular, by making different
assumptions on the bound σk we derive general convergence rate results. Our focus is on the
abstract notion of inexactness described in Section 3.2.1 and we make no assumptions on how
this error is generated.

An important assumption that needs to be hold in all of our results is exactness. A formal
presentation of exactness was presented in the introduction of this thesis. We highlight that is
a requirement for all of the convergence results of this chapter (It is also required in the analysis
of the exact algorithms; see Theorems 3 and 6 in the introduction).
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3.3.1 Assumptions on inexactness error

In the convergence analysis of iBasic the following assumptions on the inexactness error are
used. We note that Assumptions 1a, 1b and 1c are special cases of Assumption 1. Moreover
Assumption 2 is algorithmic dependent and can hold in addition of any of the other four
assumptions. In our analysis, depending on the result we aim at, we will require either one of
the first four Assumptions to hold by itself, or to hold together with Assumption 2. We will
always assume exactness.

In all assumptions the expectation on the norm of error (‖εk‖2) is conditioned on the value
of the current iterate xk and the random matrix Sk. Moreover it is worth to mention that
for the convergence analysis we never assume that the inexactness error has zero mean, that is
E[εk] = 0.

Assumption 1.
E[‖εk‖2B | xk,Sk] ≤ σ2

k, (3.4)

where the upper bound σk is a sequence of random variables (that can possibly depends on
both the value of the current iterate xk and the choice of the random Sk at the kth iteration).

The following three assumptions on the sequence of upper bounds are more restricted how-
ever as we will later see allow us to obtain stronger and more controlled results.

Assumption 1a.

E[‖εk‖2B | xk,Sk] ≤ σ2
k, (3.5)

where the upper bound σk ∈ R is a sequence of real numbers.

Assumption 1b.
E[‖εk‖2B | xk,Sk] ≤ σ2

k = q2‖xk − x∗‖2B, (3.6)

where the upper bound is a special sequence that depends on a non-negative inexactness pa-
rameter q and the distance to the optimal value ‖xk − x∗‖2B.

Assumption 1c.
E[‖εk‖2B | xk,Sk] ≤ σ2

k = 2q2fSk
(xk), (3.7)

where the upper bound is a special sequence that depends on a non-negative inexactness pa-
rameter q and the value of the stochastic function fSk

computed at the iterate xk. Recall,
that in our setting fS(x) = 1

2‖∇fS(x)‖2B (1.38). Hence, the upper bound can be equivalently
expressed as σ2

k = q2‖∇fS(x)‖2B.

Finally the next assumption is more algorithmic oriented. It holds in cases where the
inexactness error εk in the update rule is chosen to be orthogonal with respect to the B-inner
product to the vector ΠLSk

,B(xk)−x∗ = (I−ωB−1Zk)(xk−x∗). This statement may seem odd
at this point but its usefulness will become more apparent in the next section where inexact
algorithms with structured inexactness error will be analyzed. As it turns out, in the case of
structured inexactness error (Algorithm 5) this assumption is satisfied.

Assumption 2.
E[
〈
(I− ωB−1Zk)(xk − x∗), εk

〉
B

] = 0. (3.8)

3.3.2 Convergence results

In this section we present the analysis of the convergence rates of iBasic by assuming several
combination of the previous presented assumptions.

All convergence results are described only in terms of convergence of the iterates xk, that
is ‖xk − x∗‖2B, and not the objective function values f(xk). This is sufficient, because by
f(x) ≤ λmax

2 ‖x − x∗‖2B (see Lemma 1) we can directly deduce a convergence rate for the
function values.

The exact Basic method (Algorithm 4 with εk = 0), has been analyzed in [168] and it was
shown to converge with E[‖xk − x∗‖2B] ≤ ρk‖x0 − x∗‖2B where ρ = 1 − ω(2 − ω)λ+

min. Our
analysis of iBasic is more general and includes the convergence of the exact Basic method as
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special case when we assume that the upper bound is σk = 0, ∀k ≥ 0. For brevity, in he
convergence analysis results of this chapter we also use

ρ = 1− ω(2− ω)λ+
min.

Let us start by presenting the convergence of iBasic when only Assumption 1a holds for the
inexactness error.

Theorem 20. Let assume exactness and let {xk}∞k=0 be the iterates produced by iBasic with
ω ∈ (0, 2). Set x∗ = ΠL,B(x0) and consider the error εk be such that it satisfies Assumption
1a. Then,

E[‖xk − x∗‖B] ≤ ρk/2‖x0 − x∗‖B +

k−1∑
i=0

ρ
k−1−i

2 σi. (3.9)

Proof. See Section 3.8.1.

Corollary 21. In the special case that the upper bound σk in Assumption 1a is fixed, that is
σk = σ for all k > 0 then inequality (3.9) of Theorem 20 takes the following form:

E[‖xk − x∗‖B] ≤ ρk/2‖x0 − x∗‖B + σ
ρ1/2

1− ρ
. (3.10)

This means that we obtain a linear convergence rate up to a solution level that is proportional
to the upper bound σ5.

Proof. See Section 3.8.2.

Inspired from [59], let us now analyze iBasic using the sequence of upper bounds that
described in Assumption 1b. This construction of the upper bounds allows us to obtain stronger
and more controlled results. In particular using the upper bound of Assumption 1b the sequence
of expected errors converge linearly to the exact x∗ (not in a potential neighborhood like
the previous result). In addition Assumption 1b guarantees that the distance to the optimal
solution reduces with the increasing of the number of iterations. However for this stronger
convergence a bound for λ+

min is required, a quantity that in many problems is unknown to
the user or intractable to compute. Nevertheless, there are cases that this value has a closed
form expression and can be computed before hand without any further cost. See for example
[113, 116, 112, 80] where methods for solving the average consensus were presented and the
value of λ+

min corresponds to the algebraic connectivity of the network under study.

Theorem 22. Assume exactness. Let {xk}∞k=0 be the iterates produced by iBasic with ω ∈ (0, 2).
Set x∗ = ΠL,B(x0) and consider the inexactness error εk be such that it satisfies Assumption
1b, with 0 ≤ q < 1−√ρ. Then

E[‖xk − x∗‖2B] ≤ (
√
ρ+ q)

2k ‖x0 − x∗‖2B. (3.11)

Proof. See Section 3.8.3.

At Theorem 22, to guarantee linear convergence the inexact parameter q should live in the
interval

[
0, 1−√ρ

)
. In particular, q is the parameter that controls the level of inexactness of

Algorithm 4. Not surprisingly the fastest convergence rate is obtained when q = 0; in such case
the method becomes equivalent with its exact variant and the convergence rate simplifies to
ρ = 1− ω(2− ω)λ+

min. Note also that similar to the exact case the optimal convergence rate is
obtained for ω = 1 [168].

Moreover, the upper bound σk of Assumption 1b depends on two important quantities, the
λ+

min (through the upper bound of the inexactness parameter q) and the distance to the optimal

5Several similar more specific assumptions can be made for the upper bound σk. For example if the upper
bound satisfies σk = σk with σ ∈ (0, 1) for all k > 0 then it can be shown that C ∈ (0, 1) exist such that
inequality (3.9) of Theorem 20 takes the form: E[‖xk − x∗‖B] ≤ O(Ck) (see [180, 59] for similar results).
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solution ‖xk − x∗‖2B. Thus, it can have natural interpretation. In particular the inexactness
error is allowed to be large either when the current iterate is far from the optimal solution
(‖xk − x∗‖2B large) or when the problem is well conditioned and λ+

min is large. In the opposite
scenario, when we have ill conditioned problem or we are already close enough to the optimum
x∗ we should be more careful and allow less errors to the updates of the method.

In the next theorem we provide the complexity results of iBasic in the case that the As-
sumption 2 is satisfied combined with one of the previous assumptions.

Theorem 23. Let assume exactness and let {xk}∞k=0 be the iterates produced by iBasic with
ω ∈ (0, 2). Set x∗ = ΠL,B(x0). Let also assume that the inexactness error εk be such that it
satisfies Assumption 2. Then:

(i) If Assumption 1 holds:

E[‖xk − x∗‖2B] ≤ ρk‖x0 − x∗‖2B +

k−1∑
i=0

ρk−1−iσ̄2
i , (3.12)

where σ̄2
i = E[σ2

i ],∀i ∈ [k − 1].

(ii) If Assumption 1b holds with q ∈
(
0,
√
ρ
)
:

E[‖xk − x∗‖2B] ≤ (ρ+ q2)k‖x0 − x∗‖2B. (3.13)

(iii) If Assumption 1c holds with q ∈
(

0,
√
ω(2− ω)

)
:

E[‖xk−x∗‖2B] ≤ (1−(ω(2−ω)−q2)λ+
min)k‖x0−x∗‖2B = (ρ+q2λ+

min)k‖x0−x∗‖2B. (3.14)

Proof. See Section 3.8.4.

Remark 4. In the case that Assumptions 1a and 2 hold simultaneously, the convergence of
iBasic is similar to (3.12) but in this case σ̄2

i = σ2
i , ∀i ∈ [k − 1] (due to Assumption 1a,

σk ∈ R is a sequence of real numbers). In addition, note that for q ∈ (0,min{√ρ, 1 − √ρ})
having Assumption 2 on top of Assumption 1b leads to improvement of the convergence rate.
In particular, from Theorem 22, iBasic converges with rate (

√
ρ + q)2 = ρ + q2 + 2

√
ρq while

having both assumptions this is simplified to the faster ρ+ q2 (3.13).

3.4 iBasic with Structured Inexactness Error

Up to this point, the analysis of iBasic was focused in more general abstract cases where the
inexactness error εk of the update rule satisfies several general assumptions. In this section we
are focusing on a more structured form of inexactness error and we provide convergence analysis
in the case that a linearly convergent algorithm is used for the computation of the expensive
key subproblem of the method.

3.4.1 Linear system in the update rule

As we already mentioned in Section 3.2.1 the update rule of the exact Basic method (Algorithm 4
with εk = 0) can be expressed as xk+1 = xk+ωB−1A>Skλ

k
∗, where λk∗ = (S>k AB−1A>Sk)†S>k (b−

Axk).
Using this expression the exact Basic method can be equivalently interpreted as the following

two step procedure:

1. Find the least norm solution6 of S>k AB−1A>Sk︸ ︷︷ ︸
Mk

λ = S>k (b−Axk)︸ ︷︷ ︸
dk

. That is find λk∗ =

arg minλ∈Qk
‖λ‖ where Qk = {λ ∈ Rq : Mkλ = dk}.

6We are precisely looking for the least norm solution of the linear system Mkλ = dk because this solution
can be written down in a compact way using the Moore-Penrose pseudoinverse. This is equivalent with the
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2. Compute the next iterate: xk+1 = xk + ωB−1A>Skλ
k
∗.

In the case that the random matrix Sk is large (this is the case that we are interested in),
solving exactly the linear system Mkλ = dk in each step can be prohibitively expensive. To
reduce this cost we allow the inner linear system Mkλ = dk to be solved inexactly using an
iterative method. In particular we propose and analyze the following inexact algorithm:

Algorithm 5 iBasic with structured inexactness error

Input: Distribution D from which we draw random matrices S, positive definite matrix B ∈
Rn×n, stepsize ω > 0.

Initialize: x0 ∈ Rn
1: for k = 0, 1, 2, · · · do
2: Generate a fresh sample Sk ∼ D
3: Using an iterative method compute an approximation λk≈ of the least norm solution of

the linear system:
S>k AB−1A>Sk︸ ︷︷ ︸

Mk

λ = S>k (b−Axk)︸ ︷︷ ︸
dk

. (3.15)

4: Set xk+1 = xk + ωB−1A>Skλ
k
≈.

5: end for

For the computation of the inexact solution of the linear system (3.15) any known iterative
method for solving general linear systems can be used. In our analysis we focus on linearly
convergent methods. For example based on the properties of the linear system (3.15), conjugate
gradient (CG) or sketch and project method (SPM) can be used for the execution of step 3. In
these cases, we name Algorithm 5, InexactCG and InexactSP respectively.

It is known that the classical CG can solve linear systems with positive definite matrices.
In our approach matrix Mk is positive definite only when the original linear system Ax = b
has full rank matrix A. On the other side SPM can solve any consistent linear system and as
a result can solve the inner linear system Mkλ

k = dk without any further assumption on the
original linear system. In this case, one should be careful because the system has no unique
solution. We are interested to find the least norm solution of Mkλ

k = dk which means that the
starting point of the sketch and project at the kth iteration should be always λk0 = 0. Recall that
any special case of the sketch and project method (Section 3.2.3) solves the best approximation
problem.

Let us now define λkr to be the approximate solution λk≈ of the q × q linear system (3.15)
obtained after r steps of the linearly convergent iterative method. Using this, the update rule
of Algorithm 5, takes the form:

xk+1 = xk + ωB−1A>Skλ
k
r . (3.16)

Remark 5. The update rule (3.16) of Algorithm 5 is equivalent to the update rule of iBasic
(Algorithm 4) when the error εk is chosen to be,

εk = ωB−1A>Sk(λkr − λk∗). (3.17)

This is precisely the connection between the abstract and more concrete/structured notion of
inexactness that first presented in Table 3.2.

Let us now define a Lemma that is useful for the analysis of this section and it verifies that
Algorithm 5 with unit stepsize satisfies the general Assumption 2 presented in Section 3.3.1.

Lemma 24. Let us denote xk∗ = ΠLSk
,B(xk) the projection of xk onto LSk

in the B-norm and

x∗ = ΠL,B(x0). Let also assume that ω = 1 (unit stepsize). Then for the updates of Algorithm 5

expression that appears in our update: λk∗ = (S>k AB−1A>Sk)†S>k (b−Axk) = M†kdk. However it can be easily
shown that the method will still converge with the same rate of convergence even if we choose any other solution
of the linear system Mkλ = dk.

78



Figure 3.1: Graphical interpretation of orthogonality (justifies equation (3.18)). It shows that the
two vectors, xk∗ − x∗ and εk, are orthogonal complements of each other with respect to the B-inner
product. xk+1 is the point that Algorithm 5 computes in each step. The colored region represents the
Null(S>kA). xk∗ = ΠLSk

,B(xk), x∗ = ΠL,B(x0) and εk is the inexactness error.

it holds that: 〈
xk∗ − x∗, εk

〉
B

=
〈
(I− ωB−1Zk)(xk − x∗), εk

〉
B

= 0, ∀k ≥ 0. (3.18)

Proof. Note that xk∗−x∗ = xk−∇fSk
(xk)−x∗ ∈ Null(S>k A) . Moreover εk

(3.17)
= B−1A>Sk(λkr−

λk∗) ∈ Range(B−1A>Sk). From the knowledge that the null space of an arbitrary matrix is the
orthogonal complement of the range space of its transpose we have that Null(S>k A) is orthog-
onal with respect to the B-inner product to Range(B−1A>Sk). This completes the proof (see
Figure 3.1 for the graphical interpretation).

3.4.2 Sketch and project interpretation

Let us now give a different interpretation of the inexact update rule of Algorithm 5 using the
sketch and project approach. That will make us appreciate more the importance of the dual
viewpoint and make clear the connection between the primal and dual methods.

In general, execute a projection step is one of the most common task in numerical linear
algebra/optimization literature. However in the large scale setting even this task can be pro-
hibitively expensive and it can be difficult to execute inexactly. For this reason we suggest to
move to the dual space where the inexactness can be easily controlled.

Observe that the update rule of the exact sketch and project method (1.23) has the same
structure as the best approximation problem (1.22) where the linear system under study is the
sketched system S>k Ax = S>k b and the starting point is the current iterate xk. Hence we can
easily compute its dual:

max
λ∈Rq

Dk(λ) := (S>k b− S>k Axk)>λ− 1

2
‖A>Skλ‖2B−1 . (3.19)

where λ ∈ Rq is the dual variable. The λk∗ (possibly more than one) that solves the dual problem
in each iteration k, is the one that satisfies ∇Dk(λk∗) = 0. By computing the derivative this is
equivalent with finding the λ that satisfies the linear system S>k AB−1A>Skλ = S>k (b−Axk).
This is the same linear system we desire to solve inexactly in Algorithm 5. Thus, computing
an inexact solution λk≈ of the linear system is equivalent with computing an inexact solution of
the dual problem (3.19). Then by using the affine mapping (1.27) that connects the primal and
the dual spaces we can also evaluate an inexact solution of the original primal problem (1.23).

The following result relates the inexact levels of these quantities. In particular it shows that
dual suboptimality of λk in terms of dual function values is equal to the distance of the dual
values λk in the Mk-norm.

Lemma 25. Let us define λk∗ ∈ Rq be the exact solution of the linear system S>k AB−1A>Skλ =
S>k (b−Axk) or equivalently of dual problem (3.19). Let us also denote with λk≈ ∈ Rq the inexact
solution. Then:

Dk(λk∗)−Dk(λk≈) =
1

2
‖λk≈ − λk∗‖2S>k AB−1A>Sk

.
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Proof.

Dk(λk∗)−Dk(λk≈)
(3.19)

= [S>k b− S>k Axk]>[λk∗ − λk≈]− 1

2
(λk∗)

>S>k AB−1A>Skλ
k
∗

+
1

2
(λk≈)>S>k AB−1A>Skλ

k
≈

(1.28)
= (λk∗)

>S>k AB−1A>Sk[λk∗ − λk≈]− 1

2
(λk∗)

>S>k AB−1A>Skλ
k
∗

+
1

2
(λk≈)>S>k AB−1A>Skλ

k
≈

=
1

2
(λk≈ − λk∗)>S>k AB−1A>Sk(λk≈ − λk∗)

=
1

2
‖λk≈ − λk∗‖2S>k AB−1A>Sk

where in the second equality we use equation (1.28) to connect the optimal solutions of (1.23)
and (3.19) and obtain [S>k b− S>k Axk]> = (λk∗)

>S>k AB−1A>Sk.

3.4.3 Complexity results

In this part we analyze the performance of Algorithm 5 when a linearly convergent iterative
method is used for solving inexactly the linear system (3.15) in step 3 of Algorithm 5 . We
denote with λkr the approximate solution of the linear system after we run the iterative method
for r steps.

Before state the main convergence result let us present a lemma that summarize some
observations that are true in our setting.

Lemma 26. Let λk∗ = (S>k AB−1A>Sk)†S>k (b−Axk) be the exact solution and λkr be approxi-
mate solution of the linear system (3.15). Then, ‖λk∗‖2Mk

= 2fSk
(xk) and ‖εk‖2B = ‖λkr−λk∗‖2Mk

.

Proof.

‖λk∗‖2Mk
= ‖M†

kS
>
k A(x∗ − xk)‖2Mk

= (xk − x∗)>A>Sk M†
kMkM

†
k︸ ︷︷ ︸

M†k

S>k A(xk − x∗)

(1.11)
= (xk − x∗)>Zk(xk − x∗) (1.12)

= 2fSk
(xk). (3.20)

Moreover,

‖εk‖2B
Remark 5

= ‖B−1A>Sk(λkr − λk∗)‖2B = ‖λkr − λk∗‖2S>k AB−1A>Sk
= ‖λkr − λk∗‖2Mk

.(3.21)

Theorem 27. Let us assume that for the computation of the inexact solution of the linear
system (3.15) in step 3 of Algorithm 5, a linearly convergent iterative method is chosen such
that 7:

E[‖λkr − λk∗‖2Mk
| xk,Sk] ≤ ρrSk

‖λk0 − λk∗‖2Mk
, (3.22)

where λk0 = 0 for any k > 0 and ρSk
∈ (0, 1) for every choice of Sk ∼ D. Let exactness

hold and let {xk}∞k=0 be the iterates produced by Algorithm 5 with unit stepsize (ω = 1). Set
x∗ = ΠL,B(x0). Suppose further that there exists a scalar θ < 1 such that with probability 1,
ρSk
≤ θ. Then, Algorithm 5 converges linearly with:

E[‖xk − x∗‖2B] ≤
[
1− (1− θr)λ+

min

]k ‖x0 − x∗‖2B.

7In the case that deterministic iterative method is used, like CG, we have that ‖λkr − λk∗‖2Mk
≤ ρrSk

‖λk0 −
λk∗‖2Mk

which is also true in expectation.
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Proof. Theorem 27 can be interpreted as corollary of the general Theorem 23(iii). Thus, it is
sufficient to show that Algorithm 5 satisfies the two Assumptions 1c and 2. Firstly, note that
from Lemma 24, Assumption 2 is true. Moreover,

E[‖εk‖2Mk
| xk,Sk]

(3.21)
= E[‖λkr − λk∗‖2Mk

| xk,Sk]
(3.22)

≤ ρrSk
‖λk0 − λk∗‖2Mk

≤ θr‖λk0 − λk∗‖2Mk

λk
0=0
= θr‖λk∗‖2Mk

(3.20)
= 2θrfSk

(xk)

which means that Assumption 1c also holds with q = θr/2 ∈ (0, 1). This completes the proof.

Having present the main result of this section let us now state some remarks that will help
understand the convergence rate of the last Theorem.

Remark 6. From its definition θr ∈ (0, 1) and as a result (1− θr)λ+
min ≤ λ+

min. This means
that the method converges linearly but always with worst rate than its exact variant.

Remark 7. Let as assume that θ is fixed. Then as the number of iterations in step 3 of the
algorithm (r → ∞) increasing (1 − θr) → 1 and as a result the method behaves similar to the
exact case.

Remark 8. The λ+
min depends only on the random matrices S ∼ D and to the positive definite

matrix B and is independent to the iterative process used in step 3. The iterative process of
step 3 controls only the parameter θ of the convergence rate.

Remark 9. Let us assume that we run Algorithm 5 two separate times for two different choices
of the linearly convergence iterative method of step 3. Let also assume that the distribution D
of the random matrices and the positive definite matrix B are the same for both instances and
that for step 3 the iterative method run for r steps for both algorithms. Let assume that θ1 < θ2

then we have that ρ1 = 1− (1− θr1)λ+
min < 1− (1− θr2)λ+

min = ρ2. This means in the case that
θ is easily computable, we should always prefer the inexact method with smaller θ.

The convergence of Theorem 27 is quite general and it holds for any linearly convergent
methods that can inexactly solve (3.15). However, in case that the iterative method is known we
can have more concrete results. See below the more specified results for the cases of Conjugate
gradient (CG) and Sketch and project method (SPM).

Convergence of InexactCG: CG is deterministic iterative method for solving linear systems
Ax = b with symmetric and positive definite matrix A ∈ Rn×n in finite number of iterations.
In particular, it can be shown that converges to the unique solution in at most n steps. The
worst case behavior of CG is given by [198, 67] 8:

‖xk − x∗‖A ≤

(√
κ(A)− 1√
κ(A) + 1

)2k

‖x0 − x∗‖A, (3.23)

where xk is the kth iteration of the method and κ(A) the condition number of matrix A.
Having present the convergence of CG for general linear systems, let us now return back to

our setting. We denote λkr ∈ Rq to be the approximate solution of the inner linear system (3.15)
after r conjugate gradient steps. Thus using (3.23) we know that ‖λkr − λk∗‖2Mk

≤ ρ4r
Sk
‖λk0 −

λk∗‖2Mk
, where ρSk

=

(√
κ(Mk)−1√
κ(Mk)+1

)
. Now by making the same assumption as the general

Theorem 27 the InexactCG converges with E[‖xk − x∗‖2B] ≤
[
1− (1− θrCG)λ+

min

]k ‖x0 − x∗‖2B,

where θCG < 1 such that ρSk
=

(√
κ(Mk)−1√
κ(Mk)+1

)4

≤ θCG with probability 1.

8A sharper convergence rate of CG [198] for solving Ax = b can be also used

‖xk − x∗‖2A ≤
(
λn−k − λ1
λn−k + λ1

)2

‖x0 − x∗‖2A,

where matrix A ∈ Rn×n has λ1 ≤ λ2 ≤ · · · ≤ λn eigenvalues.
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Convergence of InexactSP: In this setting we suggest to run the sketch and project
method (SPM) for solving inexactly the linear system (3.15). This allow us to have no
assumptions on the structure of the original system Ax = b and as a result we are able
to solve more general problems compared to what problems InexactCG can solve9. Like
before, by making the same assumptions as in Theorem 27 the more specific convergence

E[‖xk − x∗‖2B] ≤
[
1− (1− θrSP )λ+

min

]k ‖x0 − x∗‖2B, for the InexactSP can be obtained. Now
the quantity ρSk

denotes the convergence rate of the exact Basic method10 when this applied
to solve linear system (3.15) and θSP < 1 is a scalar such that ρSk

≤ θSP with probability 1.

3.5 Inexact Dual Method

In the previous sections we focused on the analysis of inexact stochastic methods for solving
the stochastic optimization problem (1.6) and the best approximation (1.22). In this section
we turn into the dual of the best approximation (1.26) and we propose and analyze an inexact
variant of the SDSA (1.29). We call the new method iSDSA and is formalized as Algorithm 6.
In the update rule εkd indicates the dual inexactness error that appears in the kth iteration of
iSDSA.

Algorithm 6 Inexact Stochastic Dual Subspace Ascent (iSDSA)

Input: Distribution D from which we draw random matrices S, positive definite matrix B ∈
Rn×n, stepsize ω > 0.

Initialize: y0 = 0 ∈ Rm, x0 ∈ Rn
1: for k = 0, 1, 2, · · · do
2: Draw a fresh sample Sk ∼ D
3: Set yk+1 = yk + ωSk

(
S>k AB−1A>Sk

)†
S>k
(
b−A(x0 + B−1A>yk)

)
+ εkd

4: end for

3.5.1 Correspondence between the primal and dual methods

With the sequence of the dual iterates {yk}∞k=0 produced by the iSDSA we can associate a
sequence of primal iterates {xk}∞k=0 using the affine mapping (1.31). In our first result we show
that the random iterates produced by iBasic arise as an affine image of iSDSA under this affine
mapping.

Theorem 28. (Correspondence between the primal and dual methods) Let {xk}∞k=0 be the
iterates produced by iBasic (Algorithm 4). Let y0 = 0, and {yk}∞k=0 the iterates of the iSDSA.
Assume that the two methods use the same stepsize ω > 0 and the same sequence of random
matrices Sk. Assume also that εk = B−1A>εkd where εk and εkd are the inexactness errors
appear in the update rules of iBasic and iSDSA respectively. Then

xk = φ(yk) = x0 + B−1A>yk.

for all k ≥ 0. That is, the primal iterates arise as affine images of the dual iterates.

Proof.

φ(yk+1)
(1.31)

= x0 + B−1A>yk+1 (1.30),Alg.6
= x0 + B−1A>

[
yk + ωSkλ

k + εkd
]

(1.11),(1.30)
= x0 + B−1A>yk︸ ︷︷ ︸

φ(yk)

+ωB−1Zk

x∗ − (x0 + B−1A>yk︸ ︷︷ ︸
φ(yk)

)

+ B−1A>εkd

= φ(yk)− ωB−1Zk(φ(yk)− x∗) + B−1A>εkd

9Recall that InexactCG requires the matrix Mk to be positive definite (this is true when matrix A is a full
rank matrix)

10Recall that iBasic and its exact variant (εk = 0) can be expressed as sketch and project methods (3.1).
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Thus by choosing the inexactness error of the primal method to be εk = B−1A>εkd the sequence
of vectors {φ(yk)} satisfies the same recursion as the sequence {xk} defined by iBasic. It
remains to check that the first element of both recursions coincide. Indeed, since y0 = 0, we
have x0 = φ(0) = φ(y0).

3.5.2 iSDSA with structured inexactness error

In this subsection we present Algorithm 7. It can be seen as a special case of iSDSA but with
a more structured inexactness error.

Algorithm 7 iSDSA with structured inexactness error

Input: Distribution D from which we draw random matrices S, positive definite matrix B ∈
Rn×n, stepsize ω > 0.

Initialize: y0 = 0 ∈ Rm, x0 ∈ Rn
1: for k = 0, 1, 2, · · · do
2: Generate a fresh sample Sk ∼ D
3: Using an Iterative method compute an approximation λk≈ of the least norm solution of

the linear system:

S>k AB−1A>Sk︸ ︷︷ ︸
Mk

λ = S>k (b−A(x0 + B−1A>yk)︸ ︷︷ ︸
dk

(3.24)

4: Set yk+1 = yk + ωSkλ
k
≈

5: end for

Similar to their primal variants, it can be easily checked that Algorithm 7 is a special case
of the iSDSA ( Algorithm 6) when the dual inexactness error is chosen to be εkd = Sk(λkr − λk∗).
Note that, using the observation of Remark 5 that εk = ωB−1A>Sk(λkr − λk∗) and the above
expression of εkd we can easily verify that the expression εk = B−1A>εkd holds. This is precisely
the connection between the primal and dual inexactness errors that have already been used in
the proof of Theorem 28.

3.5.3 Convergence of dual function values

We are now ready to state a linear convergence result describing the behavior of the inexact dual
method in terms of the function values D(yk). The following result is focused on the convergence
of iSDSA by making similar assumption to Assumption 1b. Similar convergence results can be
obtained using any other assumption of Section 3.3.1. The convergence of Algorithm 7, can
be also easily derived using similar arguments with the one presented in Section 3.4 and the
convergence guarantees of Theorem 27.

Theorem 29. (Convergence of dual objective). Assume exactness. Let y0 = 0 and let {yk}∞k=0

to be the dual iterates of iSDSA (Algorithm 6) with ω ∈ (0, 2). Set x∗ = ΠL,B(x0) and let
y∗ be any dual optimal solution. Consider the inexactness error εkd be such that it satisfies
E[‖B−1A>εkd‖2B | yk,Sk] ≤ σ2

k = q22
[
D(y∗)−D(yk)

]
where 0 ≤ q < 1−√ρ. Then

E[D(y∗)−D(yk)] ≤ (
√
ρ+ q)

2k [
D(y∗)−D(y0)

]
. (3.25)

Proof. The proof follows by applying Theorem 22 together with Theorem 28 and the identity
1
2‖x

k − x∗‖2B = D(y∗)−D(yk) (1.32).

Note that in the case that q = 0, iSDSA simplifies to its exact variant SDSA and the
convergence rate coincide with the one presented in Theorem 6. Following similar arguments
to those in [74], the same rate can be proved for the duality gap E[P (xk)−D(yk)].
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3.6 Numerical Evaluation

In this section we perform preliminary numerical tests for studying the computational behav-
ior of iBasic with structured inexactness error when is used to solve the best approximation
problem (1.22) or equivalently the stochastic optimization problem (1.6)11. As we have al-
ready mentioned, iBasic can be interpreted as sketch-and-project method, and as a result a
comprehensive array of well-known algorithms can be recovered as special cases by varying the
main parameters of the methods (Section 3.2.3). In particular, in our experiments we focus on
the evaluation of two popular special cases, the inexact Randomized Block Kaczmarz (iRBK)
(equation (3.2)) and inexact randomized block coordinate descent method (iRBCD) (equation
(3.3))We implement Algorithm 5 presented in Section 3.4 using CG 12 to inexactly solve the lin-
ear system of the update rule (equation (3.15)). Recall that in this case we named the method
InexactCG.

The convergence analysis of previous sections is quite general and holds for several com-
binations of the two main parameters of the method, the positive definite matrix B and the
distribution D of the random matrices S. For obtaining iRBK as special case we have to choose
B = I ∈ Rn×n (Identity matrix) and for the iRBCD the given matrix A should be positive
definite and choose B = A. For both methods the distribution D should be over random ma-
trices S = I:C where I:C is the column concatenation of the m × m identity matrix indexed
by a random subset C of [m]. In our experiments we choose to have one specific distribution
over these matrices. In particular, we assume that the random matrix in each iteration is cho-
sen uniformly at random to be S = I:d with the subset d of [m] to have fixed pre-specified
cardinality.

The code for all experiments is written in the Julia 0.6.3 programming language and run on
a Mac laptop computer (OS X El Capitan), 2.7 GHz Intel Core i5 with 8 GB of RAM.

To coincide with the theoretical convergence results of Algorithm 5 the relaxation parameter
(stepsize) of the methods study in our experiments is chosen to be ω = 1 (no relaxation). In
all implementations, we use x0 = 0 ∈ Rn as an initial point and in comparing the methods

with their inexact variants we use the relative error measure ‖xk − x∗‖2B/‖x0 − x∗‖2B
x0=0
=

‖xk − x∗‖2B/‖x∗‖2B. We run each method (exact and inexact) until the relative error is below
10−5. For the horizontal axis we use either the number of iterations or the wall-clock time
measured using the tic-toc Julia function. In the exact variants, the linear system (3.15) in
Algorithm 5 needs to be solved exactly. In our experiments we follow the implementation of
[73] for both exact RBCD and exact RBK where the built-in direct solver (sometimes referred
to as ”backslash”) is used.

Experimental setup: For the construction of consistent linear systems Ax = b we use
the setup described in Section 2.7.1. In particular, the linear systems used for the numerical
evaluation of iRBK and iRBCD have been generated as described in Section 2.7.1 for algorithms
mRK and mRCD, respectively.

3.6.1 Importance of large block size

Many recent works have shown that using larger block sizes can be very beneficial for the
performance of randomized iterative algorithms [73, 166, 134, 113]. In Figure 3.2 we numerically
verify this statement. We show that both RBK and RBCD (no inexact updates) outperform
in number of iterations and wall clock time their serial variants where only one coordinate
is chosen (block of size d = 1) per iteration. This justify the necessity of choosing methods
with large block sizes. Recall that this is precisely the class of algorithms that could have an
expensive subproblem in their update rule which is required to be solved exactly and as a result
can benefit the most from the introduction of inexactness.

11Note that from Section 3.5 and the correspondence between the primal and dual methods, iSDSA will have
similar behavior when is applied to the dual problem (1.26).

12Recall that in order to use CG, the matrix Mk that appears in linear system (3.15) should be positive
definite. This is true in the case that the matrix A of the original system has full column rank matrix. Note
however that the analysis of Section 3.4 holds for any consistent linear system Ax = b and without making any
further assumption on its structure or the linearly convergence methods.
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Figure 3.2: Comparison of the performance of the exact RBK and RBCD with their non-block variants
RK and RCD. For the Kaczmarz methods (first column) A ∈ R1000,700 is a Gaussian matrix and for the
Coordinate descent methods (second column) A = P>P ∈ R700×700 where P ∈ R1000×700 is Gaussian
matrix. To guarantee consistency b = Az where z is also Gaussian vector. The block size that chosen
for the block variants is d = 300.

3.6.2 Inexactness and block size (iRBCD)

In this experiment, we first construct a positive definite linear system following the previously
described procedure for iRBCD. We first generate a Gaussian matrix P ∈ R10000×7000 and
then the positive definite matrix A = P>P ∈ R7000×7000 is used to define a consistent liner
system. We run iRBCD in this specific linear system and compare its performance with its exact
variance for several block sizes d (numbers of column of matrix S). For evaluating the inexact
solution of the linear system in the update rule we run CG for either 2, 5 or 10 iterations. In
Figure 3.3, we plot the evolution of the relative error in terms of both the number of iterations
and the wall-clock time.

We observe that for any block size the inexact methods are always faster in terms of wall
clock time than their exact variants even if they require (as is expected) equal or larger number
of iterations. Moreover it is obvious that the performance of the inexact method becomes much
better than the exact variant as the size d increases and as a results the sub-problem that
needs to be solved in each step becomes more expensive. It is worth to highlight that for the
chosen systems, the exact RBCD behaves better in terms of wall clock time as the size of block
increases (this coincides with the findings of the previous experiment).

3.6.3 Evaluation of iRBK

In the last experiment we evaluate the performance of iRBK in both synthetic and real datasets.
For computing the inexact solution of the linear system in the update rule we run CG for
pre-specified number of iterations that can vary depending the datasets. In particular, we
compare iRBK and RBK on synthetic linear systems generated with the Julia Gaussian matrix
functions “randn(m,n)” and “sprandn(m,n,r)” (input r of sprandn function indicates the density
of the matrix). For the real datasets, we test the performance of iRBK and RBK using real
matrices from the library of support vector machine problems LIBSVM [23]. Each dataset of
the LIBSVM consists of a matrix A ∈ Rm×n (m features and n characteristics) and a vector
of labels b ∈ Rm. In our experiments we choose to use only the matrices of the datasets and
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Figure 3.3: Performance of iRBCD (InexactCG) and exact RBCD for solving a consistent linear
systems with A = P>P ∈ R7000×7000, where P ∈ R10000×7000 is a Gaussian matrix. The right hand
side for the system is chosen to be b = Az where z is also a Gaussian vector. Several block sizes are
used: d = 1000, 2000, 3500, 4500. The graphs in the first (second) row plot the iterations (time) against
relative error ‖xk − x∗‖2A/‖x∗‖2A.
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Figure 3.4: The performance of iRBK (InexactCG) and RBK on synthetic and real datasets. Synthetic
matrices: (a) randn(m,n) with (m,n)=(1000,700), (b) sprandn(m,n,0.01) with (m,n)=(1000,700). Real
Matrices from LIBSVM [23] : (c) splice : (m,n)=(1000,60), (d) madelon: (m,n)=(2000,500). The
graphs in the first (second) row plot the iterations (time) against relative error ‖xk −x∗‖2/‖x∗‖2. The
quantity d in the title of each plot indicates the size of the block size for both iRBK and RBK.

ignore the label vectors 13. As before, to ensure consistency of the linear system, we choose a
Gaussian vector z ∈ Rn and the right hand side of the linear system is set to b = Az (for both
the synthetic and the real matrices). By observing Figure 3.4 it is clear that for all problems
under study the performance of iRBK in terms of wall clock time is much better than its exact
variant RBK.

3.7 Conclusion

In this chapter we propose and analyze inexact variants of several stochastic algorithms for
solving quadratic optimization problems and linear systems. We provide linear convergence
rate under several assumptions on the inexactness error. The proposed methods require more
iterations than their exact variants to achieve the same accuracy. However, as we show through

13Note that the real matrices of the Splice and Madelon datasets are full rank matrices.
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our numerical evaluations, the inexact algorithms require significantly less time to converge.
With the continuously increasing size of datasets, inexactness should definitely be a tool that

practitioners should use in their implementations even in the case of stochastic methods that
have much cheaper-to-compute iteration complexity than their deterministic variants. Recently,
accelerated and parallel stochastic optimization methods [115, 168, 192] have been proposed for
solving linear systems. We speculate that the addition of inexactness to these update rules will
lead to methods faster in practice. We also believe that our approach and complexity results
can be extended to the more general case of minimization of convex and non-convex functions
in the stochastic setting.

3.8 Proofs of Main Results

In our convergence analysis we use several popular inequalities. Look Table 3.3 for the abbre-
viations and the relevant formulas.

A key step in the proofs of the theorems is to use the tower property of the expectation.
We use it in the form

E[E[E[X | xk,Sk] | xk]] = E[X], (3.26)

where X is some random variable. In all proofs we perform the three expectations in order,
from the innermost to the outermost. Similar to the main part of this chapter we use ρ =
1− ω(2− ω)λ+

min.
The following remark on random variables is also used in our proofs.

Remark 10. Let x and y be random vectors and let σ positive constant. If we assume
E[‖x‖2B | y] ≤ σ2 then by using the variance inequality (check Table 3.3) we obtain E[‖x‖B | y] ≤
σ. In our setting if we assume E[‖εk‖2B | xk,Sk] ≤ σ2

k where εk is the inexactness error and xk

is the current iterate then by the variance inequality it holds that E[‖εk‖B | xk,Sk] ≤ σk.

Useful inequalities
Inequalities
(Full names)

Abbreviations Formula Assumptions

Jensen Inequality Jensen f [E(x)] ≤ E[f(x)] f is convex
Conditioned Jensen C.J. f(E[x | s]) ≤ E[f(x) | s] f is convex

Cauchy-Swartz
(B-norm)

C.S. |〈a, b〉B| ≤ ‖a‖B‖b‖B a, b ∈ Rn

Variance Inequality V.I (E[X])2 ≤ E[X2] X random variable

Table 3.3: Popular inequalities with abbreviations and formulas.

3.8.1 Proof of Theorem 20

Proof. First we decompose:

‖xk+1 − x∗‖2B = ‖(I− ωB−1Zk)(xk − x∗) + εk‖2B
= ‖(I− ωB−1Zk)(xk − x∗)‖2B + ‖εk‖2B

+2
〈
(I− ωB−1Zk)(xk − x∗), εk

〉
. (3.27)

Applying the innermost expectation of (3.26) to (3.27), we get:

E
[
‖xk+1 − x∗‖2B | xk,Sk

]
= E

[
‖(I− ωB−1Zk)(xk − x∗)‖2B | xk,Sk

]︸ ︷︷ ︸
T1

+E
[
‖εk‖2B | xk,Sk

]︸ ︷︷ ︸
T2

+2E
[〈

(I− ωB−1Zk)(xk − x∗), εk
〉
B
| xk,Sk

]︸ ︷︷ ︸
T3

. (3.28)
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We now analyze the three expression T1,T2,T3 separately.

Note that an upper bound for the expression T2 can be directly obtained from the assump-
tion

T2 = E[‖εk‖2B | xk,Sk] ≤ σ2
k. (3.29)

The first expression can be written as:

T1 = E[‖(I− ωB−1Zk)(xk − x∗)‖2B | xk,Sk] = ‖(I− ωB−1Zk)(xk − x∗)‖2B
(1.42)

= ‖xk − x∗‖2B − 2ω(2− ω)fSk
(xk).(3.30)

For expression T3:

E
[〈

(I− ωB−1Zk)(xk − x∗), εk
〉
B
| xk,Sk

]
=

〈
(I− ωB−1Zk)(xk − x∗),E[εk | xk,Sk]

〉
B

C.S.
≤ ‖(I− ωB−1Zk)(xk − x∗)‖B‖E[εk | xk,Sk]‖B

C.J.
≤ ‖(I− ωB−1Zk)(xk − x∗)‖BE[‖εk‖B | xk,Sk]

(∗)
≤ ‖(I− ωB−1Zk)(xk − x∗)‖Bσk, (3.31)

where in the inequality (∗) we use Remark 10 and (3.5).

By substituting the bounds (3.29), (3.30), and (3.31) into (3.28) we obtain:

E
[
‖xk+1 − x∗‖2B | xk,Sk

]
≤ ‖xk − x∗‖2B − 2ω(2− ω)fSk

(xk) + σ2
k

+2‖(I− ωB−1Zk)(xk − x∗)‖Bσk. (3.32)

We now take the middle expectation (see (3.26)) and apply it to inequality (3.32):

E
[
E[‖xk+1 − x∗‖2B | xk,Sk] | xk

]
≤ ‖xk − x∗‖2B − 2ω(2− ω)f(xk) + σ2

k

+2E[‖(I− ωB−1Zk)(xk − x∗)‖B | xk]σk. (3.33)

Now let us find a bound on the quantity E
[
‖(I− ωB−1Zk)(xk − x∗)‖B | xk

]
. Note that from

(1.43) and (1.42) we have that E
[
‖(I− ωB−1Zk)(xk − x∗)‖2B | xk

]
≤ ρ‖xk − x∗‖2B. By using

Remark 10 in the last inequality we obtain:

E
[
‖(I− ωB−1Zk)(xk − x∗)‖B | xk

]
=
√
ρ‖xk − x∗‖B. (3.34)

By substituting (3.34) in (3.33):

E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk] ≤ ‖xk − x∗‖2B − 2ω(2− ω)f(xk) + σ2
k

+2σk
√
ρ‖xk − x∗‖B

(1.43)

≤ ρ‖xk − x∗‖2B + σ2
k + 2σk

√
ρ‖xk − x∗‖B (3.35)

We take the final expectation (outermost expectation in the tower rule (3.26)) on the above
expression to find:

E[‖xk+1 − x∗‖2B] = E[E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk]]

≤ ρE[‖xk − x∗‖2B] + σ2
k + 2σk

√
ρ E[‖xk − x∗‖B]

V.I
≤ ρE[‖xk − x∗‖2B] + σ2

k + 2σk
√
ρ
√
E[‖xk − x∗‖2B] (3.36)

Using rk = E
[
‖xk − x∗‖2B

]
equation (3.36) takes the form:

rk+1 ≤ ρrk + σ2
k + 2σk

√
ρ
√
rk =

(√
ρrk + σk

)2
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If we further substitute pk =
√
rk and ` =

√
ρ the recurrence simplifies to:

pk+1 ≤ `pk + σk

By unrolling the final inequality:

pk ≤ `kr0 + (`0σk−1 + `σk−2 + · · ·+ `k−1σ0) = `kp0 +

k−1∑
i=0

`k−1−iσi.

Hence, √
E[‖xk − x∗‖2B] ≤ ρk/2‖x0 − x∗‖B +

k−1∑
i=0

ρ
k−1−i

2 σi.

The result is obtained by using V.I in the last expression.

3.8.2 Proof of Corollary 21

By denoting rk = E[‖xk − x∗‖B] in (3.9) we obtain:

rk ≤ ρk/2r0 + ρ1/2σ

k−1∑
i=0

ρk−1−i = ρk/2r0 + ρ1/2σ

k−1∑
i=0

ρi = ρk/2r0 + ρ1/2σ
1− ρk

1− ρ
.

Since 1− ρk ≤ 1 the result is obtained.

3.8.3 Proof of Theorem 22

In order to prove Theorem 22 we need to follow similar steps to the proof of Theorem 20. The
main differences of the two proofs appear at the points that we need to upper bound the norm
of the inexactness error (‖εk‖2). In particular instead of using the general sequence σ2

k ∈ R we
utilize the bound q2‖xk − x∗‖2B from Assumption 1b. Thus, it is sufficient to focus at the parts
of the proof that these bound is used.

Similar to the proof of Theorem 20 we first decompose to obtain the equation (3.28). There,
the expression T1 can be upper bounded from (3.30) but now using the Assumption 1b the
expression T2 and T3 can be upper bounded as follows:

T2 = E[‖εk‖2B | xk,Sk] ≤ q2‖xk − x∗‖2B. (3.37)

T3 = E[
〈
(I− ωB−1Zk)(xk − x∗), εk

〉
B
| xk,Sk]

Remark 10 and (3.31)

≤ ‖(I− ωB−1Zk)(xk − x∗)‖Bq‖xk − x∗‖ (3.38)

As a result by substituting the bounds (3.30), (3.37), and (3.38) into (3.28) we obtain:

E[‖xk+1 − x∗‖2B | xk,Sk]
(3.28)

≤ ‖xk − x∗‖2B − 2ω(2− ω)fSk
(xk) + q2‖xk − x∗‖2B

+2‖(I− ωB−1Zk)(xk − x∗)‖Bq‖xk − x∗‖B. (3.39)

By following the same steps to the proof of Theorem 20 the equation (3.35) takes the form:

E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk] ≤ ρ‖xk − x∗‖2B + q2‖xk − x∗‖2B
+ 2q‖xk − x∗‖B

√
ρ‖xk − x∗‖B

=
(
ρ+ 2q

√
ρ+ q2

)
‖xk − x∗‖2B.

= (
√
ρ+ q)

2 ‖xk − x∗‖2B (3.40)

We take the final expectation (outermost expectation in the tower rule (3.26)) on the above
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expression to find:

E[‖xk+1 − x∗‖2B] = E
[
E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk]

]
≤ (

√
ρ+ q)

2 E[‖xk − x∗‖2B]. (3.41)

The final result follows by unrolling the recurrence.

3.8.4 Proof of Theorem 23

Proof. Similar to the previous two proofs by decomposing the update rule and using the in-
nermost expectation of (3.26) we obtain equation (3.28). An upper bound of expression T1 is
again given by inequality (3.30). For the expression T2 depending the assumption that we have
on the norm of the inexactness error different upper bounds can be used. In particular,

(i) If Assumption 1 holds then: T2 = E[‖εk‖2B | xk,Sk] ≤ σ2
k.

(ii) If Assumption 1b holds then: T2 = E[‖εk‖2B | xk,Sk] ≤ σ2
k = q2‖xk − x∗‖2B.

(iii) If Assumption 1c holds then: T2 = E[‖εk‖2B | xk,Sk] ≤ σ2
k = 2q2fSk

(xk).

The main difference from the previous proofs, is that due to the Assumption 2 and tower
property (3.26) the expression T3 will eventually be equal to zero. More specifically, we have
that:

E
[
E
[
E
[〈

(I− ωB−1Zk)(xk − x∗), εk
〉
B
| xk,Sk

]
| xk

]]
= E

[〈
(I− ωB−1Zk)(xk − x∗), εk

〉
B

]
= T3 = 0, (3.42)

Thus, in this case equation (3.32) takes the form:

E[‖xk+1 − x∗‖2B | xk,Sk] ≤ ‖xk − x∗‖2B − 2ω(2− ω)fSk
(xk) + σ2

k. (3.43)

Using the above expression depending the assumption that we have we obtain the following
results:

(i) By taking the middle expectation (see (3.26)) and apply it to the above inequality:

E
[
E
[
‖xk+1 − x∗‖2B | xk,Sk

]
| xk

]
≤ ‖xk − x∗‖2B − 2ω(2− ω)f(xk) + E[σ2

k | xk]

(1.43)

≤ ρ‖xk − x∗‖2B + E[σ2
k | xk] (3.44)

We take the final expectation (outermost expectation in the tower rule (3.26)) on the
above expression to find:

E
[
‖xk+1 − x∗‖2B

]
= E

[
E
[
E
[
‖xk+1 − x∗‖2B | xk,Sk

]
| xk

]]
≤ ρE[‖xk − x∗‖2B] + E[E[σ2

k | xk]]

= ρE[‖xk − x∗‖2B] + E[σ2
k]

= ρE[‖xk − x∗‖2B] + σ̄2
k (3.45)

Using rk = E
[
‖xk − x∗‖2B

]
the last inequality takes the form rk+1 ≤ ρrk+σ̄2

k. By unrolling

the last expression: rk ≤ ρkr0 +(ρ0σ̄2
k−1 +ρσ̄2

k−2 + · · ·+ρk−1σ̄2
0) = ρkr0 +

∑k−1
i=0 ρ

k−1−iσ̄2
i .

Hence,

E[‖xk − x∗‖2B] ≤ ρk‖x0 − x∗‖2B +

k−1∑
i=0

ρk−1−iσ̄2
i .

(ii) For the case (ii) inequality (3.43) takes the form:

E[‖xk+1 − x∗‖2B | xk,Sk] ≤ ‖xk − x∗‖2B − 2ω(2− ω)fSk
(xk) + q2‖xk − x∗‖2B,
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and by taking the middle expectation (see (3.26)) we obtain:

E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk] ≤ ‖xk − x∗‖2B − 2ω(2− ω)f(xk) + q2‖xk − x∗‖2B
(1.43)

≤ ρ‖xk − x∗‖2B + q2‖xk − x∗‖2B
= (ρ+ q2)‖xk − x∗‖2B. (3.46)

By taking the final expectation of the tower rule (3.26) and apply it to the above inequality:

E[‖xk+1 − x∗‖2B] ≤ (ρ+ q2)E[‖xk − x∗‖2B]. (3.47)

and the result is obtain by unrolling the last expression.

(iii) For the case (iii) inequality (3.43) takes the form:

E[‖xk+1 − x∗‖2B | xk,Sk] ≤ ‖xk − x∗‖2B − 2(ω(2− ω)− q2)fSk
(xk), (3.48)

and by taking the middle expectation (see (3.26)) we obtain:

E[E[‖xk+1 − x∗‖2B | xk,Sk] | xk] ≤ ‖xk − x∗‖2B − 2(ω(2− ω)− q2)f(xk)

(1.37)

≤ ‖xk − x∗‖2B − (ω(2− ω)− q2)λ+
min‖x

k − x∗‖2B
= (1− (ω(2− ω)− q2)λ+

min)‖xk − x∗‖2B. (3.49)

By taking the final expectation of the tower rule (3.26) to the above inequality:

E[‖xk+1 − x∗‖2B] ≤ (1− (ω(2− ω)− q2)λ+
min)E[‖xk − x∗‖2B]. (3.50)

and the result is obtain by unrolling the last expression.
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Chapter 4

Revisiting Randomized Gossip
Algorithms

4.1 Introduction

Average consensus is a fundamental problem in distributed computing and multi-agent systems.
It comes up in many real world applications such as coordination of autonomous agents, esti-
mation, rumour spreading in social networks, PageRank and distributed data fusion on ad-hoc
networks and decentralized optimization. Due to its great importance there is much classical
[190, 35] and recent [202, 201, 16] work on the design of efficient algorithms/protocols for solving
it.

In the average consensus (AC) problem we are given an undirected connected network
G = (V, E) with node set V = {1, 2, . . . , n} and edges E . Each node i ∈ V “knows” a private
value ci ∈ R. The goal of AC is for every node to compute the average of these private values,
c̄ := 1

n

∑
i ci, in a decentralized fashion. That is, the exchange of information can only occur

between connected nodes (neighbors).
Among the most attractive protocols for solving the average consensus problem are gossip

algorithms. The development and design of gossip algorithms was studied extensively in the last
decade. The seminal 2006 paper of Boyd et al. [16] motivated a fury of subsequent research and
gossip algorithms now appear in many applications, including distributed data fusion in sensor
networks [202], load balancing [29] and clock synchronization [56]. For a survey of selected
relevant work prior to 2010, we refer the reader to the work of Dimakis et al. [42]. For more
recent results on randomized gossip algorithms we suggest [217, 106, 148, 109, 131, 6]. See also
[43, 7, 149].

4.1.1 Main contributions

In this chapter, we connect two areas of research which until now have remained remarkably
disjoint in the literature: randomized iterative (projection) methods for solving linear systems
and randomized gossip protocols for solving the average consensus. This connection enables
us to make contributions by borrowing from each body of literature to the other and using it
we propose a new framework for the design and analysis of novel efficient randomized gossip
protocols.

The main contributions of our work include:

• RandNLA. We show how classical randomized iterative methods for solving linear sys-
tems can be interpreted as gossip algorithms when applied to special systems encoding
the underlying network and explain in detail their decentralized nature. Through our
general framework we recover a comprehensive array of well-known gossip protocols as
special cases. In addition our approach allows for the development of novel block and
dual variants of all of these methods. From a numerical analysis viewpoint our work is
the first that explores in depth, the decentralized nature of randomized iterative methods
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for solving linear systems and proposes them as efficient methods for solving the average
consensus problem (and its weighted variant).

• Weighted AC. The methods presented in this chapter solve the more general weighted
average consensus (Weighted AC) problem (Section 4.3.1) popular in the area of dis-
tributed cooperative spectrum sensing networks. The proposed protocols are the first
randomized gossip algorithms that directly solve this problem with finite-time conver-
gence rate analysis. In particular, we prove linear convergence of the proposed protocols
and explain how we can obtain further acceleration using momentum. To the best of our
knowledge, the existing decentralized protocols that solve the weighted average consensus
problem show convergence but without convergence analysis.

• Acceleration. We present novel and provably accelerated randomized gossip protocols.
In each step, of the proposed algorithms, all nodes of the network update their values
using their own information but only a subset of them exchange messages. The protocols
are inspired by the recently proposed accelerated variants of randomized Kaczmarz-type
methods and use momentum terms on top of the sketch and project update rule (gossip
communication) to obtain better theoretical and practical performance. To the best of
our knowledge, our accelerated protocols are the first randomized gossip algorithms that
converge to a consensus with a provably accelerated linear rate without making any further
assumptions on the structure of the network. Achieving an accelerated linear rate in this
setting using randomized gossip protocols was an open problem.

• Duality. We reveal a hidden duality of randomized gossip algorithms, with the dual
iterative process maintaining variables attached to the edges of the network. We show
how the randomized coordinate descent and randomized Newton methods work as edge-
based dual randomized gossip algorithms.

• Experiments. We corroborate our theoretical results with extensive experimental testing
on typical wireless network topologies. We numerically verify the linear convergence
of the our protocols for solving the weighted AC problem. We explain the benefit of
using block variants in the gossip protocols where more than two nodes update their
values in each iteration. We explore the performance of the proposed provably accelerated
gossip protocols and show that they significantly outperform the standard pairwise gossip
algorithm and existing fast pairwise gossip protocols with momentum. An experiment
showing the importance of over-relaxation in the gossip setting is also presented.

We believe that this work could potentially open up new avenues of research in the area of
decentralized gossip protocols.

4.1.2 Structure of the chapter

This chapter is organized as follows. Section 4.2 introduces the necessary background on basic
randomized iterative methods for linear systems that will be used for the development of ran-
domized gossip protocols. Related work on the literature of linear system solvers, randomized
gossip algorithms for averaging and gossip algorithms for consensus optimization is presented.
In Section 4.3 the more general weighted average consensus problem is described and the con-
nections between the two areas of research (randomized projection methods for linear systems
and gossip algorithms) is established. In particular we explain how methods for solving linear
systems can be interpreted as gossip algorithms when applied to special systems encoding the
underlying network and elaborate in detail their distributed nature. Novel block gossip vari-
ants are also presented. In Section 4.4 we describe and analyze fast and provably accelerated
randomized gossip algorithms. In each step of these protocols all nodes of the network update
their values but only a subset of them exchange their private values. Section 4.5 describes
dual randomized gossip algorithms that operate with values that are associated to the edges of
the network and Section 4.6 highlights further connections between methods for solving linear
systems and gossip algorithms. Numerical evaluation of the new gossip protocols is presented
in Section 4.7. Finally, concluding remarks are given in Section 4.8.
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4.1.3 Notation

For convenience, a table of the most frequently used notation of this chapter is included in
Section A.2. In particular, with boldface upper-case letters denote matrices; I is the identity
matrix. By ‖ · ‖ and ‖ · ‖F we denote the Euclidean norm and the Frobenius norm, respectively.
For a positive integer number n, we write [n] := {1, 2, . . . , n}. By L we denote the solution set
of the linear system Ax = b, where A ∈ Rm×n and b ∈ Rm.

Vector xk = (xk1 , . . . , x
k
n) ∈ Rn represents the vector with the private values of the n nodes

of the network at the kth iteration while with xki we denote the value of node i ∈ [n] at the
kth iteration. Ni ⊆ V denotes the set of nodes that are neighbors of node i ∈ V. By α(G) we
denote the algebraic connectivity of graph G. Throughout the chapter, x∗ is the projection of
x0 onto L in the B-norm. We write x∗ = ΠL,B(x0).

The complexity of all gossip protocols presented in this chapter is described by the spectrum
of matrix

W = B−1/2A>E[H]AB−1/2 (1.11)
= B−1/2E[Z]B−1/2, (4.1)

where the expectation is taken over S ∼ D. With λ+
min and λmax we indicate the smallest

nonzero and the largest eigenvalue of matrix W, respectively. Recall that this is exactly the
same matrix used in the previous chapters of this thesis.

Finally, with Q ∈ R|E|×n we define the incidence matrix and with L ∈ Rn×n the Laplacian
matrix of the network. Note that it holds that L = Q>Q. Further, with D we denote the
degree matrix of the graph. That is, D = Diag(d1, d2, . . . , dn) ∈ Rn×n where di is the degree
of node i ∈ V.

4.2 Background - Technical Preliminaries

As we have already mentioned in this thesis, solving linear systems is a central problem in
numerical linear algebra and plays an important role in computer science, control theory, scien-
tific computing, optimization, computer vision, machine learning, and many other fields. With
the advent of the age of big data, practitioners are looking for ways to solve linear systems
of unprecedented sizes. In this large scale setting, randomized iterative methods are preferred
mainly because of their cheap per iteration cost and because they can easily scale to extreme
dimensions.

4.2.1 Randomized iterative methods for linear systems

Recall that in the introduction of this thesis we presented the sketch and project method (1.25)
and we explained how this algorithm is identical to SGD (1.17), SN (1.18) and SPP (1.19) for
solving the stochastic quadratic optimization problem (1.6). For the benefit of the reader and
for the easier comparison to the gossip algorithms, a formal presentation of the Sketch and
Project method for solving a consistent linear system Ax = b is presented in Algorithm 8.

Algorithm 8 Sketch and Project Method [168]

1: Parameters: Distribution D from which method samples matrices; stepsize/relaxation parameter
ω ∈ R; momentum parameter β.

2: Initialize: x0, x1 ∈ Rn
3: for k = 0, 1, 2, . . . do
4: Draw a fresh Sk ∼ D
5: Set xk+1 = xk − ωB−1A>Sk(S>kAB−1A>Sk)†S>k (Axk − b)
6: end for
7: Output: The last iterate xk

In this chapter, we are mostly interested in two special cases of the sketch and project
framework— the randomized Kaczmarz (RK) method and its block variant, the randomized
block Kaczmarz (RBK) method. In addition, in the following sections we present novel scaled
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and accelerated variants of these two selected cases and interpret their gossip nature. In partic-
ular, we focus on explaining how these methods can solve the average consensus problem and
its more general version, the weighted average consensus (subsection 4.3.1).

Let ei ∈ Rm be the ith unit coordinate vector in Rm and let I:C be column submatrix of the
m×m identity matrix with columns indexed by C ⊆ [m]. Then RK and RBK methods can be
obtained as special cases of Algorithm 8 as follows:

• RK: Let B = I and Sk = ei, where i ∈ [m] is chosen independently at each iteration, with
probability pi > 0. In this setup the update rule of Algorithm 8 simplifies to

xk+1 = xk − ωAi:x
k − bi

‖Ai:‖2
A>i: . (4.2)

• RBK: Let B = I and S = I:C , where set C ⊆ [m] is chosen independently at each iteration,
with probability pC ≥ 0. In this setup the update rule of Algorithm 8 simplifies to

xk+1 = xk − ωA>C:(AC:A
>
C:)
†(AC:x

k − bC). (4.3)

As we explained in Chapter 1, the sketch and project method, converges linearly to one
particular solution of the linear system: the projection (on B-norm) of the initial iterate x0

onto the solution set of the linear system, x∗ = ΠL,B(x0). Therefore, the method solve the best
approximation problem (1.22).

The convergence performance of the Sketch and Project method (Algorithm 8) for solving
the best approximation problem is described by the following theorem1.

Theorem 30. Let assume exactness and let {xk}∞k=0 be the iterates produced by the sketch and
project method (Algorithm 8) with step-size ω ∈ (0, 2). Set, x∗ = ΠL,B(x0). Then,

E[‖xk − x∗‖2B] ≤ ρk‖x0 − x∗‖2B, (4.4)

where
ρ := 1− ω(2− ω)λ+

min ∈ [0, 1]. (4.5)

In other words, using standard arguments, from Theorem 30 we observe that for a given
ε > 0 we have that:

k ≥ 1

1− ρ
log

(
1

ε

)
⇒ E[‖xk − x∗‖2B] ≤ ε‖x0 − x∗‖2B

4.2.2 Other related work

Gossip algorithms for average consensus The problem of average consensus has been
extensively studied in the automatic control and signal processing literature for the past two
decades [42], and was first introduced for decentralized processing in the seminal work [190]. A
clear connection between the rate of convergence and spectral characteristics of the underlying
network topology over which message passing occurs was first established in [16] for pairwise
randomized gossip algorithms.

Motivated by network topologies with salient properties of wireless networks (e.g., nodes
can communicate directly only with other nearby nodes), several methods were proposed to
accelerate the convergence of gossip algorithms. For instance, [8] proposed averaging among a
set of nodes forming a path in the network (this protocol can be seen as special case of our
block variants in Section 4.3.4). Broadcast gossip algorithms have also been analyzed [7] where
the nodes communicate with more than one of their neighbors by broadcasting their values.

While the gossip algorithms studied in [16, 8, 7] are all first-order (the update of xk+1

only depends on xk), a faster randomized pairwise gossip protocol was proposed in [19] which
suggested to incorporate additional memory to accelerate convergence. The first analysis of

1For the proof of Theorem 30 check Theorem 3 in Section 1.5 and recall that SGD and the sketch and project
method are identical in this setting.
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this protocol was later proposed in [106] under strong condition. It is worth to mention that in
the setting of deterministic gossip algorithms theoretical guarantees for accelerated convergence
were obtained in [150, 94]. In Section 4.4 we propose fast and provably accelerated randomized
gossip algorithms with memory and compare them in more detail with the fast randomized
algorithm proposed in [19, 106].

Gossip algorithms for multiagent consensus optimization. In the past decade there has
been substantial interest in consensus-based mulitiagent optimization methods that use gossip
updates in their update rule [131, 209, 179]. In multiagent consensus optimization setting , n
agents or nodes, cooperate to solve an optimization problem. In particular, a local objective
function fi : Rd → R is associated with each node i ∈ [n] and the goal is for all nodes to solve
the optimization problem

min
x∈Rd

1

n

n∑
i=1

fi(x) (4.6)

by communicate only with their neighbors. In this setting gossip algorithms works in two steps
by first executing some local computation followed by communication over the network [131].
Note that the average consensus problem with ci as node i initial value can be case as a special
case of the optimization problem (4.6) when the function values are fi(x) = (x− ci)2.

Recently there has been an increasing interest in applying mulitagent optimization methods
to solve convex and non-convex optimization problems arising in machine learning [189, 105,
4, 5, 25, 95, 83]. In this setting most consensus-based optimization methods make use of
standard, first-order gossip, such as those described in [16], and incorporating momentum into
their updates to improve their practical performance.

4.3 Sketch and Project Methods as Gossip Algorithms

In this section we show how by carefully choosing the linear system in the constraints of the
best approximation problem (1.22) and the combination of the parameters of the Sketch and
Project method (Algorithm 8) we can design efficient randomized gossip algorithms. We show
that the proposed protocols can actually solve the weighted average consensus problem, a more
general version of the average consensus problem described in Section 4.1. In particular we
focus, on a scaled variant of the RK method (4.2) and on the RBK (4.3) and understand the
convergence rates of these methods in the consensus setting, their distributed nature and how
they are connected with existing gossip protocols.

4.3.1 Weighted average consensus

In the weighted average consensus (Weighted AC) problem we are given an undirected connected
network G = (V, E) with node set V = {1, 2, . . . , n} and edges E . Each node i ∈ V holds a
private value ci ∈ R and its weight wi. The goal of this problem is for every node to compute
the weighted average of the private values,

c̄ :=

∑n
i=1 wici∑n
i=1 wi

,

in a distributed fashion. That is, the exchange of information can only occur between connected
nodes (neighbors).

Note that in the special case when the weights of all nodes are the same (wi = r for all
i ∈ [n]) the weighted average consensus is reduced to the standard average consensus problem.
However, there are more special cases that could be interesting. For instance the weights can
represent the degree of the nodes (wi = di) or they can denote a probability vector and satisfy∑n
i wi = 1 with wi > 0.

It can be easily shown that the weighted average consensus problem can be expressed as
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optimization problem as follows:

min
x=(x1,...,xn)∈Rn

1

2
‖x− c‖2B subject to x1 = x2 = · · · = xn (4.7)

where matrix B = Diag(w1, w2, . . . , wn) is a diagonal positive definite matrix (that is wi > 0
for all i ∈ [n]) and c = (c1, . . . , cn)> the vector with the initial values ci of all nodes i ∈ V. The

optimal solution of this problem is x∗i =
∑n

i=1 wici∑n
i=1 wi

for all i ∈ [n] which is exactly the solution

of the weighted average consensus.
As we have explained, the standard average consensus problem can be cast as a special

case of weighted average consensus. However, in the situation when the nodes have access to
global information related to the network, such as the size of the network (number of nodes
n = |V|) and the sum of the weights

∑n
i=1 wi, then any algorithm that solves the standard

average consensus can be used to solve the weighted average consensus problem with the initial
private values of the nodes changed from ci to nwici∑n

i=1 wi
.

The weighted AC problem is popular in the area of distributed cooperative spectrum sensing
networks [84, 151, 212, 213]. In this setting, one of the goals is to develop decentralized protocols
for solving the cooperative sensing problem in cognitive radio systems. The weights in this case
represent a ratio related to the channel conditions of each node/agent [84]. The development of
methods for solving the weighted AC problem is an active area of research (check [84] for a recent
comparison of existing algorithms). However, to the best of our knowledge, existing analysis for
the proposed algorithms focuses on showing convergence and not on providing convergence rates.
Our framework allows us to obtain novel randomized gossip algorithms for solving the weighted
AC problem. In addition, we provide a tight analysis of their convergence rates. In particular,
we show convergence with a linear rate. See Section 4.7.1 for an experiment confirming linear
convergence of one of our proposed protocols on typical wireless network topologies.

4.3.2 Gossip algorithms through sketch and project framework

We propose that randomized gossip algorithms should be viewed as special case of the Sketch
and Project update to a particular problem of the form (1.22). In particular, we let c =
(c1, . . . , cn) be the initial values stored at the nodes of G, and choose A and b so that the
constraint Ax = b is equivalent to the requirement that xi = xj (the value stored at node i is
equal to the value stored at node j) for all (i, j) ∈ E .

Definition 31. We say that Ax = b is an “average consensus (AC) system” when Ax = b iff
xi = xj for all (i, j) ∈ E.

It is easy to see that Ax = b is an AC system precisely when b = 0 and the nullspace of A
is {t1n : t ∈ R}, where 1n is the vector of all ones in Rn. Hence, A has rank n− 1. Moreover in
the case that x0 = c, it is easy to see that for any AC system, the solution of (1.22) necessarily
is x∗ = c̄ · 1n — this is why we singled out AC systems. In this sense, any algorithm for solving
(1.22) will “find” the (weighted) average c̄. However, in order to obtain a distributed algorithm
we need to make sure that only “local” (with respect to G) exchange of information is allowed.

Choices of AC systems. It can be shown that many linear systems satisfy the above defi-
nition.

For example, we can choose:

1. b = 0 and A = Q ∈ R|E|×n to be the incidence matrix of G. That is, Q ∈ R|E|×n such that
Qx = 0 directly encodes the constraints xi = xj for (i, j) ∈ E . That is, row e = (i, j) ∈ E
of matrix Q contains value 1 in column i, value −1 in column j (we use an arbitrary but
fixed order of nodes defining each edge in order to fix Q) and zeros elsewhere.

2. A different choice is to pick b = 0 and A = L = Q>Q, where L is the Laplacian matrix
of network G.

Depending on what AC system is used, the sketch and project methods can have different
interpretations as gossip protocols.
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In this work we mainly focus on the above two AC systems but we highlight that other
choices are possible2. In Section 4.4.2 for the provably accelerated gossip protocols we also use
a normalized variant (‖Ai:‖2 = 1) of the Incidence matrix.

Standard form and mass preservation

Assume that Ax = b is an AC system. Note that since b = 0, the update rule of Algorithm 8
simplifies to:

xk+1 =
[
I− ωA>HkA

]
xk = [I− ωZk]xk. (4.8)

This is the standard form in which randomized gossip algorithms are written. What is new
here is that the iteration matrix I−ωZk has a specific structure which guarantees convergence
to x∗ under very weak assumptions (see Theorem 30). Note that if x0 = c, i.e., the starting
primal iterate is the vector of private values (as should be expected from any gossip algorithm),
then the iterates of (4.8) enjoy a mass preservation property (the proof follows the fact that
A1n = 0):

Theorem 32 (Mass preservation). If Ax = b is an AC system, then the iterates produced by
(4.8) satisfy: 1

n

∑n
i=1 x

k
i = c̄, for all k ≥ 0.

Proof. Let fix k ≥ 0 then,

1

n
1>n x

k+1 =
1

n
1>n (I− ωA>HkA)xk =

1

n
1>n Ixk − 1

n
1>nωA>HkAx

k A1n=0
=

1

n
1>n x

k.

ε-Averaging time

Let zk := ‖xk − x∗‖. The typical measure of convergence speed employed in the randomized
gossip literature, called ε-averaging time and here denoted by Tave(ε), represents the smallest
time k for which xk gets within εz0 from x∗, with probability greater than 1−ε, uniformly over
all starting values x0 = c. More formally, we define

Tave(ε) := sup
c∈Rn

inf
{
k : P

(
zk > εz0

)
≤ ε
}
.

This definition differs slightly from the standard one in that we use z0 instead of ‖c‖.
Inequality (4.4), together with Markov inequality, can be used to give a bound on K(ε),

formalized next:

Theorem 33. Assume Ax = b is an AC system. Let x0 = c and B be positive definite diagonal
matrix. Assume exactness. Then for any 0 < ε < 1 we have

Tave(ε) ≤ 3
log(1/ε)

log(1/ρ)
≤ 3

log(1/ε)

1− ρ
,

where ρ is defined in (4.5).

Proof. See Section 4.9.1.

Note that under the assumptions of the above theorem, W = B−1/2E[Z]B−1/2 only has a
single zero eigenvalue, and hence λ+

min(W) is the second smallest eigenvalue of W. Thus, ρ
is the second largest eigenvalue of I −W. The bound on K(ε) appearing in Thm 33 is often
written with ρ replaced by λ2(I−W) [16].

In the rest of this section we show how two special cases of the sketch and project framework,
the randomized Kaczmarz (RK) and its block variant, randomized block Kaczmatz (RBK) work
as gossip algorithms for the two AC systems described above.

2Novel gossip algorithms can be proposed by using different AC systems to formulate the average consensus
problem. For example one possibility is using the random walk normalized Laplacian Lrw = D−1L. For the
case of degree-regular networks the symmetric normalized Laplacian matrix Lsym = D−1/2LD−1/2 can also
being used.
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4.3.3 Randomized Kaczmarz method as gossip algorithm

As we described before the sketch and project update rule of Algorithm 8 has several parameters
that should be chosen in advance by the user. These are the stepsize ω (relaxation parameter),
the positive definite matrix B and the distribution D of the random matrices S.

In this section we focus on one particular special case of the sketch and project framework,
a scaled/weighted variant of the randomized Kaczmarz method (RK) presented in (4.2), and
we show how this method works as gossip algorithm when applied to special systems encoding
the underlying network. In particular, the linear systems that we solve are the two AC systems
described in the previous section where the matrix is either the incidence matrix Q or the
Laplacian matrix L of the network.

As we described in (4.2) the standard RK method can be cast as special case of Algorithm 8
by choosing B = I and S = ei. In this section, we focus on a small modification of this algorithm
and we choose the positive definite matrix B to be B = Diag(w1, w2, . . . , wn), the diagonal
matrix of the weights presented in the weighted average consensus problem.

Scaled RK: Let us have a general consistent linear system Ax = b with A ∈ Rm×n. Let us
also choose B = Diag(w1, w2, . . . , wn) and Sk = ei, where i ∈ [m] is chosen in each iteration
independently, with probability pi > 0. In this setup the update rule of Algorithm 8 simplifies
to

xk+1 = xk − ω e>i (Axk − b)
e>i AB−1A>ei

B−1A>ei = xk − ω Ai:x
k − bi

‖B−1/2A>i: ‖22
B−1A>i: . (4.9)

This small modification of RK allow us to solve the more general weighted average consensus
presented in Section 4.3.1 (and at the same time the standard average consensus problem if
B = rI where r ∈ R). To the best of our knowledge, even if this variant is special case of the
general Sketch and project update, was never precisely presented before in any setting.

AC system with incidence matrix Q

Let us represent the constraints of problem (4.7) as linear system with matrix A = Q ∈ R|E|×n
be the Incidence matrix of the graph and right had side b = 0. Lets also assume that the
random matrices S ∼ D are unit coordinate vectors in Rm = R|E|.

Let e = (i, j) ∈ E then from the definition of matrix Q we have that Q>e: = fi − fj where
fi, fj are unit coordinate vectors in Rn. In addition, from the definition the diagonal positive
definite matrix B we have that

‖B−1/2Q>e:‖2 = ‖B−1/2(fi − fj)‖2 =
1

w1
+

1

wj
. (4.10)

Thus in this case the update rule (4.9) simplifies:

xk+1 b=0,A=Q,(4.9)
= xk − ω Qe:x

k

‖B−1/2Q>e:‖2
B−1Q>e:

(4.10)
= xk − ω Qe:x

k

1
w1

+ 1
wj

B−1Q>e:

= xk −
ω(xki − xkj )

1
wi

+ 1
wj

(
1

wi
fi −

1

wj
fj

)
. (4.11)

From (4.11) it can be easily seen that only the values of coordinates i and j update their
values. These coordinates correspond to the private values xki and xkj of the nodes of the selected

edge e = (i, j). In particular the values of xki and xkj are updated as follows:

xk+1
i =

(
1− ω wj

wj + wi

)
xki + ω

wj
wj + wi

xkj and xk+1
j = ω

wi
wj + wi

xki +

(
1− ω wi

wj + wi

)
xkj .

(4.12)
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Remark 11. In the special case that B = rI where r ∈ R (we solve the standard average
consensus problem) the update of the two nodes is simplified to

xk+1
i =

(
1− ω

2

)
xki +

ω

2
xkj and xk+1

j =
ω

2
xki +

(
1− ω

2

)
xkj .

If we further select ω = 1 then this becomes:

xk+1
i = xk+1

j =
xki + xkj

2
, (4.13)

which is the update of the standard pairwise randomized gossip algorithm first presented and
analyzed in [16].

AC system with Laplacian matrix L

The AC system takes the form Lx = 0, where matrix L ∈ Rn×n is the Laplacian matrix of the
network. In this case, each row of the matrix corresponds to a node. Using the definition of
the Laplacian, we have that L>i: = difi −

∑
j∈Ni

fj , where fi, fj are unit coordinate vectors in
Rn and di is the degree of node i ∈ V.

Thus, by letting B = Diag(w1, w2, . . . , wn) to be the diagonal matrix of the weights we
obtain:

‖B−1/2L>i: ‖2 =

∥∥∥∥∥∥B−1/2(difi −
∑
j∈Ni

fj)

∥∥∥∥∥∥
2

=
d2
i

wi
+
∑
j∈Ni

1

wj
. (4.14)

In this case, the update rule (4.9) simplifies to:

xk+1 b=0,A=L,(4.9)
= xk − ω Li:x

k

‖B−1/2L>i: ‖22
B−1L>i:

(4.14)
= xk − ω Li:x

k

d2i
wi

+
∑
j∈Ni

1
wj

B−1L>i:

= xk −
ω
(
dix

k
i −

∑
j∈Ni

xkj

)
d2i
wi

+
∑
j∈Ni

1
wj

 di
wi
fi −

∑
j∈Ni

1

wj
fj

 . (4.15)

From (4.15), it is clear that only coordinates {i} ∪ Ni update their values. All the other
coordinates remain unchanged. In particular, the value of the selected node i (coordinate i) is
updated as follows:

xk+1
i = xki −

ω
(
dix

k
i −

∑
j∈Ni

xkj

)
d2i
wi

+
∑
j∈Ni

1
wj

di
wi
, (4.16)

while the values of its neighbors j ∈ Ni are updated as:

xk+1
j = xkj +

ω
(
dix

k
i −

∑
`∈Ni

xk`
)

d2i
wi

+
∑
`∈Ni

1
w`

1

wj
. (4.17)

Remark 12. Let ω = 1 and B = rI where r ∈ R then the selected nodes update their values as
follows:

xk+1
i =

∑
`∈{i∪Ni} x

k
`

di + 1
and xk+1

j = xkj +
(dix

k
i −

∑
`∈Ni

xk` )

d2
i + di

. (4.18)

That is, the selected node i updates its value to the average of its neighbors and itself, while all
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the nodes j ∈ Ni update their values using the current value of node i and all nodes in Ni.

In a wireless network, to implement such an update, node i would first broadcast its current
value to all of its neighbors. Then it would need to receive values from each neighbor to compute
the sums over Ni, after which node i would broadcast the sum to all neighbors (since there may
be two neighbors j1, j2 ∈ Ni for which (j1, j2) /∈ E). In a wired network, using standard concepts
from the MPI library, such an update rule could be implemented efficiently by defining a process
group consisting of {i} ∪ Ni, and performing one Broadcast in this group from i (containing
xi) followed by an AllReduce to sum x` over ` ∈ Ni. Note that the terms involving diagonal
entries of B and the degrees di could be sent once, cached, and reused throughout the algorithm
execution to reduce communication overhead.

Details on complexity results

Recall that the convergence rate of the sketch and project method (Algorithm 8) is equivalent
to:

ρ := 1− ω(2− ω)λ+
min(W),

where ω ∈ (0, 2) and W = B−1/2A>E[H]AB−1/2 (from Theorem 30). In this subsection we
explain how the convergence rate of the scaled RK method (4.9) is modified for different choices
of the main parameters of the method.

Let us choose ω = 1 (no over-relaxation). In this case, the rate is simplified to ρ = 1−λ+
min.

Note that the different ways of modeling the problem (AC system) and the selection of the
main parameters (weight matrix B and distribution D) determine the convergence rate of the
method through the spectrum of matrix W.

Recall that in the kth iterate of the scaled RK method (4.9) a random vector Sk = ei is
chosen with probability pi > 0. For convenience, let us choose3:

pi =
‖B−1/2A>i: ‖2

‖B−1/2A>‖2F
. (4.19)

Then we have that:

E[H] = E[S(S>AB−1A>S)†S>]

=

m∑
i=1

pi
eie
>
i

e>i AB−1A>ei
=

m∑
i=1

pi
eie
>
i

‖A>i: ‖2B−1

=

m∑
i=1

pi
eie
>
i

‖B−1/2A>i: ‖2

(4.19)
=

m∑
i=1

eie
>
i

‖B−1/2A>‖2F
=

1

‖B−1/2A>‖2F
I, (4.20)

and

W
(4.1),(4.20)

=
B−1/2A>AB−1/2

‖B−1/2A>‖2F
. (4.21)

Incidence Matrix: Let us choose the AC system to be the one with the incidence matrix
A = Q. Then ‖B−1/2Q>‖2F =

∑n
i=1

di
bi

and we obtain

W
A=Q,(4.21)

=
B−1/2LB−1/2

‖B−1/2Q>‖2F
=

B−1/2LB−1/2∑n
i=1

di
Bii

.

3Similar probabilities have been chosen in [73] for the convergence of the standard RK method (B = I).
The distribution D of the matrices S used in equation (4.19) is common in the area of randomized iterative
methods for linear systems and is used to simplify the analysis and the expressions of the convergence rates. For
more choices of distributions we refer the interested reader to [73]. It is worth to mention that the probability
distribution that optimizes the convergence rate of the RK and other projection methods can be expressed as
the solution to a convex semidefinite program [73, 30].
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If we further have B = D, then W = D−1/2LD−1/2

n and the convergence rate simplifies to:

ρ = 1−
λ+

min

(
D−1/2LD−1/2

)
n

= 1− λ+
min (Lsym)

n
.

If B = rI where r ∈ R (solve the standard average consensus problem), then W = L
‖Q‖2F

=
L∑n

i=1 di
= L

2m and the convergence rate simplifies to

ρ = 1− λ+
min(L)

2m
= 1− α(G)

2m
, (4.22)

which is exactly the same convergence rate of the pairwise gossip algorithm presented in [16].
This was expected, since the gossip protocol in this case works exactly the same as the one
proposed in [16], see equation (4.13).

Laplacian Matrix: If we choose to formulate the AC system using the Laplacian matrix L,

that is A = L, then ‖B−1/2L>‖2F =
∑n
i=1

di(di+1)
Bii

and we have:

W
A=L,(4.21)

=
B−1/2L>LB−1/2∑n

i=1
di(di+1)

Bii

.

If B = D, then the convergence rate simplifies to:

ρ = 1−λ
+
min(D−1/2L>LD−1/2)∑n

i=1(di + 1)
= 1−

λ+
min

(
D−1/2L2D−1/2

)
n+

∑n
i=1 di

∑n
i=1 di=2m

= 1−
λ+

min

(
D−1/2L2D−1/2

)
n+ 2m

.

If B = rI, where r ∈ R, then W = L2

‖L‖2F
= L2∑n

i=1 di(di+1) and the convergence rate simplifies

to

ρ = 1− λ+
min(L2)∑n

i=1 di(di + 1)
= 1− α(G)2∑n

i=1 di(di + 1)
.

4.3.4 Block gossip algorithms

Up to this point we focused on the basic connections between the convergence analysis of the
sketch and project methods and the literature of randomized gossip algorithms. We show
how specific variants of the randomized Kaczmarz method (RK) can be interpreted as gossip
algorithms for solving the weighted and standard average consensus problems.

In this part we extend the previously described methods to their block variants related to
randomized block Kaczmarz (RBK) method (4.3). In particular, in each step of Algorithm 8,
the random matrix S is selected to be a random column submatrix of the m×m identity matrix
corresponding to columns indexed by a random subset C ⊆ [m]. That is, S = I:C , where a
set C ⊆ [m] is chosen in each iteration independently, with probability pC ≥ 0 (see equation
(4.3)). Note that in the special case that set C is a singleton with probability 1 the algorithm
is simply the randomized Kaczmarz method of the previous section.

To keep things simple, we assume that B = I (standard average consensus, without weights)
and choose the stepsize ω = 1. In the next section, we will describe gossip algorithms with
heavy ball momentum and explain in detail how the gossip interpretation of RBK change in
the more general case of ω ∈ (0, 2).

Similar to the previous subsections, we formulate the consensus problem using either A = Q
or A = L as the matrix in the AC system. In this setup, the iterative process of Algorithm 8
has the form:

xk+1 (4.3),(4.8)
= xk −A>I:C(I>:CAA>I:C)†I>:CAxk = xk −A>C:(AC:A

>
C:)
†AC:x

k, (4.23)
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which, as explained in the introduction, can be equivalently written as:

xk+1 = argmin
x∈Rn

{‖x− xk‖2 : I>:CAx = 0}. (4.24)

Essentially in each step of this method the next iterate is evaluated to be the projection of the
current iterate xk onto the solution set of a row subsystem of Ax = 0.

AC system with Incidence Matrix: In the case that A = Q the selected rows correspond
to a random subset C ⊆ E of selected edges. While (4.23) may seem to be a complicated
algebraic (resp. variational) characterization of the method, due to our choice of A = Q we
have the following result which gives a natural interpretation of RBK as a gossip algorithm (see
also Figure 4.1).

Theorem 34 (RBK as Gossip algorithm: RBKG). Consider the AC system with the constraints
being expressed using the Incidence matrix Q. Then each iteration of RBK (Algorithm (4.23))
works as gossip algorithm as follows:

1. Select a random set of edges C ⊆ E,

2. Form subgraph Gk of G from the selected edges

3. For each connected component of Gk, replace node values with their average.

Proof. See Section 4.9.2.

Using the convergence result of general Theorem 30 and the form of matrix W (recall that
in this case we assume B = I, S = I:C ∼ D and ω = 1), we obtain the following complexity for
the algorithm:

E[‖xk − x∗‖2] ≤
[
1− λ+

min

(
E
[
Q>C:(QC:Q

>
C:)
†QC:

])]k ‖x0 − x∗‖2. (4.25)

For more details on the above convergence rate of randomized block Kaczmarz method with
meaningfully bounds on the rate in a more general setting we suggest the papers [134, 135].

There is a very closed relationship between the gossip interpretation of RBK explained in
Theorem 34 and several existing randomized gossip algorithms that in each step update the
values of more than two nodes. For example the path averaging algorithm porposed in [8] is
a special case of RBK, when set C is restricted to correspond to a path of vertices. That is,
in path averaging, in each iteration a path of nodes is selected and the nodes that belong to
it update their values to their exact average. A different example is the recently proposed
clique gossiping [110] where the network is already divided into cliques and through a random
procedure a clique is activated and the nodes of it update their values to their exact average.
In [16] a synchronous variant of gossip algorithm is presented where in each step multiple node
pairs communicate exactly at the same time with the restriction that these simultaneously
active node pairs are disjoint.

It is easy to see that all of the above algorithms can be cast as special cases of RBK if the
distribution D of the random matrices is chosen carefully to be over random matrices S (column
sub-matrices of Identity) that update specific set of edges in each iteration. As a result our
general convergence analysis can recover the complexity results proposed in the above works.

Finally, as we mentioned, in the special case in which set C is always a singleton, Algo-
rithm (4.23) reduces to the standard randomized Kaczmarz method. This means that only a
random edge is selected in each iteration and the nodes incident with this edge replace their lo-
cal values with their average. This is the pairwise gossip algorithm of Boyd er al. [16] presented
in equation (4.13). Theorem 34 extends this interpretation to the case of the RBK method.

AC system with Laplacian Matrix: For this choice of AC system the update is more
complicated. To simplify the way that the block variant work as gossip we make an extra
assumption. We assume that the selected rows of the constraint I>:CLx = 0 in update (4.24)
have no-zero elements at different coordinates. This allows to have a direct extension of the
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Figure 4.1: Example of how the RBK method works as gossip algorithm in case of AC system with Incidence
matrix. In the presented network 3 edges are randomly selected and a subgraph of two connected components
(blue and red) is formed. Then the nodes of each connected component update their private values to their
average.

serial variant presented in Remark 12. Thus, in this setup, the RBK update rule (4.23) works
as gossip algorithm as follows:

1. |C| nodes are activated (with restriction that the nodes are not neighbors and they do
not share common neighbors)

2. For each node i ∈ C we have the following update:

xk+1
i =

∑
`∈{i∪Ni} x

k
`

di + 1
and xk+1

j = xkj +

(
dix

k
i −

∑
`∈Ni

xk`
)

d2
i + di

. (4.26)

The above update rule can be seen as a parallel variant of update (4.18). Similar to the
convergence in the case of Incidence matrix, the RBK for solving the AC system with a Laplacian
matrix converges to x∗ with the following rate (using result of Theorem 30):

E[‖xk − x∗‖2] ≤
[
1− λ+

min

(
E
[
L>C:(LC:L

>
C:)
†LC:

])]k ‖x0 − x∗‖2.

4.4 Faster and Provably Accelerated Randomized Gossip
Algorithms

The main goal in the design of gossip protocols is for the computation and communication to
be done as quickly and efficiently as possible. In this section, our focus is precisely this. We
design randomized gossip protocols which converge to consensus fast with provable accelerated
linear rates. To the best of our knowledge, the proposed protocols are the first randomized
gossip algorithms that converge to consensus with an accelerated linear rate.

In particular, we present novel protocols for solving the average consensus problem where in
each step all nodes of the network update their values but only a subset of them exchange their
private values. The protocols are inspired from the recently developed accelerated variants of
randomized Kaczmarz-type methods for solving consistent linear systems where the addition of
momentum terms on top of the sketch and project update rule provides better theoretical and
practical performance.

In the area of optimization algorithms, there are two popular ways to accelerate an algorithm
using momentum. The first one is using the Polyak’s heavy ball momentum [156] and the
second one is using the theoretically much better understood momentum introduced by Nesterov
[138, 140]. Both momentum approaches have been recently proposed and analyzed to improve
the performance of randomized iterative methods for solving linear systems.
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To simplify the presentation, the accelerated algorithms and their convergence rates are
presented for solving the standard average consensus problem (B = I). Using a similar approach
as in the previous section, the update rules and the convergence rates can be easily modified to
solve the more general weighted average consensus problem. For the protocols in this section
we use the incidence matrix A = Q or its normalized variant to formulate the AC system.

4.4.1 Gossip algorithms with heavy ball momentum

In Chapter 2 of this thesis we have analyzed heavy ball momentum variants of several algorithms
for solving the stochastic optimization problem (1.6) and as we explained the best approximation
problem (1.22). In this section we revisit Algorithm 1 of Chapter 2 and we focus on its sketch
and project viewpoint. In particular, we explain how it works as gossip algorithm when is
applied to the AC system with the incidence matrix.

Sketch and project with heavy ball momentum

The sketch and project method with heavy ball momentum is formally presented in the following
algorithm.

Algorithm 9 Sketch and Project with Heavy Ball Momentum

1: Parameters: Distribution D from which method samples matrices; stepsize/relaxation parameter
ω ∈ R; momentum parameter β.

2: Initialize: x0, x1 ∈ Rn
3: for k = 1, 2, . . . do
4: Draw a fresh Sk ∼ D
5: Set

xk+1 = xk − ωB−1A>Sk(S>kAB−1A>Sk)†S>k (Axk − b) + β(xk − xk−1). (4.27)

6: end for
7: Output: The last iterate xk

Using, B = I and the same choice of distribution D as in equations (4.2) and (4.3) we can
now obtain momentum variants of the RK and RBK as special case of the above algorithm as
follows:

• RK with momentum (mRK):

xk+1 = xk − ωAi:x
k − bi

‖Ai:‖2
A>i: + β(xk − xk−1). (4.28)

• RBK with momentum (mRBK):

xk+1 = xk − ωA>C:(AC:A
>
C:)
†(AC:x

k − bC) + β(xk − xk−1). (4.29)

For more details on the convergence analysis of Algorithm 9 see Section 2.3 and recall that
in our setting the sketch and project update rule is identical to the SGD (Chapter 1). As a
result Algorithm 9 is identical to Algorithm 1 (mSGD/mSN/mSPP).

Having presented Algorithm 9, let us now describe its behavior as a randomized gossip
protocol when applied to the AC system Ax = 0 with A = Q ∈ |E| × n (incidence matrix of
the network).

Note that since b = 0 (from the AC system definition), the update rule (4.27) of Algorithm 9
is simplified to (and by having B = I):

xk+1 =
[
I− ωA>Sk(S>k AA>Sk)†S>k A

]
xk + β(xk − xk−1). (4.30)

In the rest of this section we focus on two special cases of (4.30): RK with heavy ball
momentum (equation (4.28) with bi = 0) and RBK with heavy ball momentum (equation
(4.29) with bC = 0).

106



Algorithm 10 mRK: Randomized Kaczmarz with momentum as a gossip algorithm

1: Parameters: Distribution D from which method samples matrices; stepsize/relaxation parameter
ω ∈ R; heavy ball/momentum parameter β.

2: Initialize: x0, x1 ∈ Rn
3: for k = 1, 2, . . . do
4: Pick an edge e = (i, j) following the distribution D
5: The values of the nodes are updated as follows:

• Node i: xk+1
i = 2−ω

2
xki + ω

2
xkj + β(xki − xk−1

i )

• Node j: xk+1
j = 2−ω

2
xkj + ω

2
xki + β(xkj − xk−1

j )

• Any other node `: xk+1
` = xk` + β(xk` − xk−1

` )

6: end for
7: Output: The last iterate xk

Randomized Kaczmarz gossip with heavy ball momentum

As we have seen in previous section when the standard RK is applied to solve the AC system
Qx = 0, one can recover the famous pairwise gossip algorithm [16]. Algorithm 10 describes
how a relaxed variant of randomized Kaczmarz with heavy ball momentum (0 < ω < 2 and
0 ≤ β < 1) behaves as a gossip algorithm. See also Figure (4.2) for a graphical illustration of
the method.

Remark 13. In the special case that β = 0 (zero momentum) only the two nodes of edge
e = (i, j) update their values. In this case the two selected nodes do not update their values
to their exact average but to a convex combination that depends on the stepsize ω ∈ (0, 2). To
obtain the pairwise gossip algorithm of [16], one should further choose ω = 1.

Distributed Nature of the Algorithm: Here we highlight a few ways to implement
mRK in a distributed fashion.

• Pairwise broadcast gossip: In this protocol each node i ∈ V of the network G has a clock
that ticks at the times of a rate 1 Poisson process. The inter-tick times are exponentially
distributed, independent across nodes, and independent across time. This is equivalent to
a global clock ticking at a rate n Poisson process which wakes up an edge of the network at
random. In particular, in this implementation mRK works as follows: In the kth iteration
(time slot) the clock of node i ticks and node i randomly contact one of its neighbors
and simultaneously broadcast a signal to inform the nodes of the whole network that is
updating (this signal does not contain any private information of node i). The two nodes
(i, j) share their information and update their private values following the update rule of
Algorithm 10 while all the other nodes update their values using their own information.
In each iteration only one pair of nodes exchange their private values.

• Synchronous pairwise gossip: In this protocol a single global clock is available to all
nodes. The time is assumed to be slotted commonly across nodes and in each time slot
only a pair of nodes of the network is randomly activated and exchange their information
following the update rule of Algorithm 10. The remaining not activated nodes update
their values using their own last two private values. Note that this implementation of
mRK comes with the disadvantage that it requires a central entity which in each step
requires to choose the activated pair of nodes4.

• Asynchronous pairwise gossip with common counter: Note that the update rule of the
selected pair of nodes (i, j) in Algorithm 10 can be rewritten as follows:

xk+1
i = xki + β(xki − xk−1

i ) +
ω

2
(xkj − xki ),

4We speculate that a completely distributed synchronous gossip algorithm that finds pair of nodes in a
distributed manner without any additional computational burden can be design following the same procedure
proposed in Section III.C of [16].
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Figure 4.2: Example of how mRK works as gossip algorithm. In the presented network the edge that connects
nodes 6 and 7 is randomly selected. The pair of nodes exchange their information and update their values
following the update rule of the Algorithm 10 while the rest of the nodes, ` ∈ [5], update their values using only
their own previous private values.

xk+1
j = xkj + β(xkj − xk−1

j ) +
ω

2
(xki − xkj ).

In particular observe that the first part of the above expressions xki + β(xki − x
k−1
i ) (for

the case of node i) is exactly the same with the update rule of the non activate nodes
at kth iterate (check step 5 of Algorithm 10) . Thus, if we assume that all nodes share
a common counter that keeps track of the current iteration count and that each node
i ∈ V remembers the iteration counter ki of when it was last activated, then step 5 of
Algorithm 10 takes the form:

– xk+1
i = ik

[
xki + β(xki − x

k−1
i )

]
+ ω

2 (xkj − xki ),

– xk+1
j = jk

[
xkj + β(xkj − x

k−1
j )

]
+ ω

2 (xki − xkj ),

– ki = kj = k + 1,

– Any other node `: xk+1
` = xk` ,

where ik = k − ki (jk = k − kj) denotes the number of iterations between the current
iterate and the last time that the ith (jth) node is activated. In this implementation
only a pair of nodes communicate and update their values in each iteration (thus the
justification of asynchronous), however it requires the nodes to share a common counter
that keeps track the current iteration count in order to be able to compute the value of
ik = k − ki.

Connections with existing fast randomized gossip algorithms

In the randomized gossip literature there is one particular method closely related to our ap-
proach. It was first proposed in [19] and its analysis under strong conditions was presented
in [106]. In this work local memory is exploited by installing shift registers at each agent. In
particular we are interested in the case of two registers where the first stores the agent’s current
value and the second the agent’s value before the latest update. The algorithm can be described
as follows. Suppose that edge e = (i, j) is chosen at time k. Then,

• Node i: xk+1
i = ω(

xk
i +xk

j

2 ) + (1− ω)xk−1
i ,

• Node j: xk+1
i = ω(

xk
i +xk

j

2 ) + (1− ω)xk−1
j ,

• Any other node `: xk+1
` = xk` ,
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where ω ∈ [1, 2). The method was analyzed in [106] under a strong assumption on the proba-
bilities of choosing the pair of nodes, that as the authors mentioned, is unrealistic in practical
scenarios, and for networks like the random geometric graphs. At this point we should highlight
that the results presented in Chapter 2 hold for essentially any distribution D 5 and as a result
in the proposed gossip variants with heavy ball momentum such problem cannot occur.

Note that, in the special case that we choose β = ω − 1 in the update rule of Algorithm 10
is simplified to:

• Node i: xk+1
i = ω(

xk
i +xk

j

2 ) + (1− ω)xk−1
i ,

• Node j: xk+1
i = ω(

xk
i +xk

j

2 ) + (1− ω)xk−1
j ,

• Any other node `: xk+1
` = ωxk` + (1− ω)xk−1

` .

Recall that in order to apply Theorem 8, we need to assume that 0 < ω < 2 and β = ω−1 ≥ 0
which also means that ω ∈ [1, 2). Thus for ω ∈ [1, 2) and momentum parameter β = ω − 1 it
is easy to see that our approach is very similar to the shift-register algorithm. Both methods
update the selected pair of nodes in the same way. However, in Algorithm 10 the not selected
nodes of the network do not remain idle but instead update their values using their own previous
information.

By defining the momentum matrix M = Diag(β1, β2, . . . , βn), the above closely related
algorithms can be expressed, in vector form, as:

xk+1 = xk − ω

2
(xki − xkj )(ei − ej) + M(xk − xk−1). (4.31)

In particular, in mRK every diagonal element of matrix M is equal to ω − 1, while in the
algorithm of [19, 106] all the diagonal elements are zeros except the two values that correspond
to nodes i and j that are equal to βi = βj = ω − 1.

Remark 14. The shift register algorithm of [106] and Algorithm 10 of this work can be seen
as the two limit cases of the update rule (4.31). As we mentioned, the shift register method
[106] uses only two non-zero diagonal elements in M, while our method has a full diagonal. We
believe that further methods can be developed in the future by exploring the cases where more
than two but not all elements of the diagonal matrix M are non-zero. It might be possible to
obtain better convergence if one carefully chooses these values based on the network topology.
We leave this as an open problem for future research.

Randomized block Kaczmarz gossip with heavy ball momentum

Recall that Theorem 34 explains how RBK (with no momentum and no relaxation) can be
interpreted as a gossip algorithm. In this subsection by using this result we explain how
relaxed RBK with momentum works. Note that the update rule of RBK with momentum
can be rewritten as follows:

xk+1 (4.30),(4.29)
= ω

(
I−A>C:(AC:A

>
C:)
†AC:

)
xk + (1− ω)xk + β(xk − xk−1), (4.32)

and recall that xk+1 =
(
I−A>C:(AC:A

>
C:)
†AC:

)
xk is the update rule of the standard RBK

(4.23).
Thus, in analogy to the standard RBK, in the kth step, a random set of edges is selected and

q ≤ n connected components are formed as a result. This includes the connected components
that belong to both sub-graph Gk and also the singleton connected components (nodes outside
the Gk). Let us define the set of the nodes that belong in the r ∈ [q] connected component at
the kth step Vkr , such that V = ∪r∈[q]Vkr and |V| =

∑q
r=1 |Vkr | for any k > 0.

Using the update rule (4.32), Algorithm 11 shows how mRBK is updating the private values
of the nodes of the network (see also Figure 4.3 for the graphical interpretation).

Note that in the update rule of mRBK the nodes that are not attached to a selected edge
(do not belong in the sub-graph Gk) update their values via xk+1

` = xk` + β(xk` − x
k−1
` ). By

5The only restriction is the exactness condition to be satisfied. See Theorem 8.
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Algorithm 11 mRBK: Randomized Block Kaczmarz Gossip with momentum

1: Parameters: Distribution D from which method samples matrices; stepsize/relaxation parameter
ω ∈ R; heavy ball/momentum parameter β.

2: Initialize: x0, x1 ∈ Rn
3: for k = 1, 2, ... do
4: Select a random set of edges S ⊆ E
5: Form subgraph Gk of G from the selected edges
6: Node values are updated as follows:

• For each connected component Vkr of Gk, replace the values of its nodes with:

xk+1
i = ω

∑
j∈Vk

r
xkj

|Vkr |
+ (1− ω)xki + β(xki − xk−1

i ). (4.33)

• Any other node `: xk+1
` = xk` + β(xk` − xk−1

` )

7: end for
8: Output: The last iterate xk

considering these nodes as singleton connected components their update rule is exactly the
same with the nodes of sub-graph Gk. This is easy to see as follows:

xk+1
`

(4.33)
= ω

∑
j∈Vk

r
xkj

|Vkr |
+ (1− ω)xk` + β(xk` − xk−1

` )

|Vk
r |=1
= ωxk` + (1− ω)xk` + β(xk` − xk−1

` )

= xk` + β(xk` − xk−1
` ). (4.34)

Remark 15. In the special case that only one edge is selected in each iteration (Sk ∈ Rm×1)
the update rule of mRBK is simplified to the update rule of mRK. In this case the sub-graph Gk
is the pair of the two selected edges.

Remark 16. In previous section we explained how several existing gossip protocols for solving
the average consensus problem are special cases of the RBK (Theorem 34). For example two
gossip algorithms that can be cast as special cases of the standard RBK are the path averaging
proposed in [8] and the clique gossiping [110]. In path averaging, in each iteration a path of
nodes is selected and its nodes update their values to their exact average (ω = 1). In clique
gossiping, the network is already divided into cliques and through a random procedure a clique
is activated and the nodes of it update their values to their exact average (ω = 1). Since mRBK
contains the standard RBK as a special case (when β = 0), we expect that these special protocols
can also be accelerated with the addition of momentum parameter β ∈ (0, 1).

Mass preservation

One of the key properties of some of the most efficient randomized gossip algorithms is mass
preservation. That is, the sum (and as a result the average) of the private values of the
nodes remains fixed during the iterative procedure (

∑n
i=1 x

k
i =

∑n
i=1 x

0
i , ∀k ≥ 1). The

original pairwise gossip algorithm proposed in [16] satisfied the mass preservation property,
while exisiting fast gossip algorithms [19, 106] preserving a scaled sum. In this subsection we
show that mRK and mRBK gossip protocols presented above satisfy the mass preservation
property. In particular, we prove mass preservation for the case of the block randomized gossip
protocol (Algorithm 11) with momentum. This is sufficient since the randomized Kaczmarz
gossip with momentum (mRK), Algorithm 10 can be cast as special case.

Theorem 35. Assume that x0 = x1 = c. That is, the two registers of each node have the same
initial value. Then for the Algorithms 10 and 11 we have

∑n
i=1 x

k
i =

∑n
i=1 ci for any k ≥ 0

and as a result, 1
n

∑n
i=1 x

k
i = c̄.
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Figure 4.3: Example of how the mRBK method works as gossip algorithm. In the presented network the red
edges are randomly chosen in the kth iteration, and they form subgraph Gk and four connected component. In
this figure V k1 and V k2 are the two connected components that belong in the subgraph Gk while V k3 and V k4 are
the singleton connected components. Then the nodes update their values by communicate with the other nodes
of their connected component using the update rule (4.33). For example the node number 5 that belongs in the
connected component V k2 will update its value using the values of node 4 and 3 that also belong in the same

component as follows: xk+1
5 = ω

xk3+x
k
4+x

k
5

3
+ (1− ω)xk5 + β(xk5 − x

k−1
5 ).

Proof. We prove the result for the more general Algorithm 11. Assume that in the kth step of
the method q connected components are formed. Let the set of the nodes of each connected
component be Vkr so that V = ∪r={1,2,...q}Vkr and |V| =

∑q
r=1 |Vkr | for any k > 0. Thus:∑n

i=1 x
k+1
i =

∑
i∈Vk

1
xk+1
i + · · ·+

∑
i∈Vk

q
xk+1
i . (4.35)

Let us first focus, without loss of generality, on connected component r ∈ [q] and simplify the
expression for the sum of its nodes:∑

i∈Vk
r

xk+1
i

(4.33)
=

∑
i∈Vk

r
ω

∑
j∈Vk

r
xk
j

|Vk
r |

+ (1− ω)
∑
i∈Vk

r
xki + β

∑
i∈Vk

r
(xki − x

k−1
i )

= |Vkr |
ω
∑
j∈Vk

r
xkj

|Vkr |
+ (1− ω)

∑
i∈Vk

r

xki + β
∑
i∈Vk

r

(xki − xk−1
i )

= (1 + β)
∑
i∈Vk

r

xki − β
∑
i∈Vk

r

xk−1
i . (4.36)

By substituting this for all r ∈ [q] into the right hand side of (4.35) and from the fact that
V = ∪r∈[q]Vkr , we obtain:

n∑
i=1

xk+1
i = (1 + β)

n∑
i=1

xki − β
n∑
i=1

xk−1
i .

Since x0 = x1, we have
∑n
i=1 x

0
i =

∑n
i=1 x

1
i , and as a result

∑n
i=1 x

k
i =

∑n
i=1 x

0
i for all

k ≥ 0.

4.4.2 Provably accelerated randomized gossip algorithms

In this subsection we focus on one specific case of the Sketch and Project framework, the RK
method (4.2). We present two accelerated variants of RK where the Nesterov’s momentum is
used, for solving consistent linear systems and we describe their theoretical convergence results.
Based on these methods we propose two provably accelerated gossip protocols, along with some
remarks on their implementation.
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Accelerated Kaczmarz methods using Nesterov’s momentum

There are two different but very similar ways to provably accelerate the randomized Kaczmarz
method using Nesterov’s acceleration. The first paper that proves asymptotic convergence with
an accelerated linear rate is [107]. The proof technique is similar to the framework developed
by Nesterov in [139] for the acceleration of coordinate descent methods. In [192, 72] a modified
version for the selection of the parameters was proposed and a non-asymptotic accelerated linear
rate was established. In Algorithm 12, pseudocode of the Accelerated Kaczmarz method (Ac-
cRK) is presented where both variants can be cast as special cases, by choosing the parameters
with the correct way.

Algorithm 12 Accelerated Randomized Kaczmarz Method (AccRK)

1: Data: Matrix A ∈ Rm×n; vector b ∈ Rm
2: Choose x0 ∈ Rn and set v0 = x0

3: Parameters: Evaluate the sequences of the scalars αk, βk, γk following one of two possible
options.

4: for k = 0, 1, 2, . . . ,K do
5: yk = αkv

k + (1− αk)xk

6: Draw a fresh sample ik ∈ [m] with equal probability

7: xk+1 = yk − Aik:y
k−bik

‖Aik:‖2 A>ik:.

8: vk+1 = βkv
k + (1− βk)yk − γk

Aik:y
k−bik

‖Aik:‖2 A>ik:.

9: end for

There are two options for selecting the parameters of the AccRK for solving consistent linear
systems with normalized matrices, which we describe next.

1. From [107]: Choose λ ∈ [0, λ+
min(A>A)] and set γ−1 = 0. Generate the sequence {γk :

k = 0, 1, . . . ,K + 1} by choosing γk to be the largest root of

γ2
k −

γk
m

= (1− γk
λ
m)γ2

k−1,

and generate the sequences {αk : k = 0, 1, . . . ,K + 1} and {βk : k = 0, 1, . . . ,K + 1} by
setting

αk =
m− γkλ
γk(m2 − λ)

, βk = 1− γkλ

m
.

2. From [72]: Let

ν = max
u∈Range(A>)

u>
[∑m

i=1 A>i: Ai:(A
>A)†A>i: Ai:

]
u

u>A>A
m u

. (4.37)

Choose the three sequences to be fixed constants as follows: βk = β = 1 −
√

λ+
min(W)

ν ,

γk = γ =
√

1
λ+
min(W)ν

, αk = α = 1
1+γν ∈ (0, 1) where W = A>A

m .

Theoretical guarantees of AccRK

The two variants (Option 1 and Option 2) of AccRK are closely related, however their conver-
gence analyses are different. Below we present the theoretical guarantees of the two options as
presented in [107] and [72].

Theorem 36 ([107]). Let {xk}∞k=0 be the sequence of random iterates produced by Algorithm 12
with the Option 1 for the parameters. Let A be normalized matrix and let λ ∈ [0, λ+

min(A>A)].

Set σ1 = 1 +
√
λ

2m and σ2 = 1−
√
λ

2m . Then for any k ≥ 0 we have that:

E[‖xk − x∗‖2] ≤ 4λ

(σk1 − σk2 )2
‖x0 − x∗‖2(A>A)† .

112



Corollary 37 ([107]). Note that as k →∞, we have that σk2 → 0. This means that the decrease
of the right hand side is governed mainly by the behavior of the term σ1 in the denominator
and as a result the method converge asymptotically with a decrease factor per iteration: σ−2

1 =

(1 +
√
λ

2m )−2 ≈ 1−
√
λ
m . That is, as k →∞:

E[‖xk − x∗‖2] ≤
(

1−
√
λ/m

)k
4λ‖x0 − x∗‖2(A>A)†

Thus, by choosing λ = λ+
min and for the case that λ+

min is small, Algorithm 12 will have
significantly faster convergence rate than RK. Note that the above convergence results hold
only for normalized matrices A ∈ Rm×n, that is matrices that have ‖Ai:‖ = 1 for any i ∈ m.

Using Corollary 37, Algorithm 12 with the first choice of the parameters converges linearly

with rate
(

1−
√
λ/m

)
. That is, it requires O

(
m/
√
λ log(1/ε)

)
iterations to obtain accuracy

E[‖xk − x∗‖2] ≤ ε4λ‖x0 − x∗‖2(A>A)† .

Theorem 38 ([72]). Let W = A>A
m and let assume exactness6. Let {xk, yk, vk} be the iterates

of Algorithm 12 with the Option 2 for the parameters. Then

Ψk ≤
(

1−
√
λ+

min(W)/ν

)k
Ψ0,

where Ψk = E
[
‖vk − x∗‖2W† + 1

µ‖x
k − x∗‖2

]
.

The above result implies that Algorithm 12 converges linearly with rate 1−
√
λ+

min(W)/ν,

which translates to a total of O
(√

ν/λ+
min(W) log(1/ε)

)
iterations to bring the quantity Ψk

below ε > 0. It can be shown that 1 ≤ ν ≤ 1/λ+
min(W), (Lemma 2 in [72]) where ν is as

defined in (4.37). Thus,
√

1
λ+
min(W)

≤
√

ν
λ+
min(W)

≤ 1
λ+
min(W)

, which means that the rate of

AccRK (Option 2) is always better than that of the RK with unit stepsize which is equal to

O
(

1
λ+
min(W)

log(1/ε)
)

(see Theorem 30).

In [72], Theorem 38 has been proposed for solving more general consistent linear systems
(the matrix A of the system is not assumed to be normalized). In this case W = E[Z] and
the parameter ν is slightly more complicated than the one of equation (4.37). We refer the
interested reader to [72] for more details.

Comparison of the convergence rates: Before describe the distributed nature of the Ac-
cRK and explain how it can be interpreted as a gossip algorithm, let us compare the convergence
rates of the two options of the parameters for the case of general normalized consistent linear
systems (‖Ai:‖ = 1 for any i ∈ [m]).

Using Theorems 36 and 38, it is clear that the iteration complexity of AccRK is

O

(
m√
λ

log(1/ε)

)
λ=λ+

min(A>A)
= O

 m√
λ+

min(A>A)
log(1/ε)

 , (4.38)

and

O
(√

νm

λ+
min(A>A)

log(1/ε)

)
, (4.39)

for the Option 1 and Option 2 for the parameters, respectively.

In the following derivation we compare the iteration complexity of the two methods.

6Note that in this setting B = I, which means that W = E[Z], and the exactness assumption takes the form
Null(W) = Null(A).

113



Lemma 39. Let matrices C ∈ Rn×n and Ci ∈ Rn×n where i ∈ [m] be positive semidefinite,
and satisfying

∑m
i=1 Ci = C. Then

m∑
i=1

CiC
†Ci � C.

Proof. From the definition of the matrices it holds that Ci � C for any i ∈ [m]. Using the
properties of Moore-Penrose pseudoinverse, this implies that

C†i � C†. (4.40)

Therefore

Ci = CiC
†
iCi

(4.40)

� CiC
†Ci. (4.41)

From the definition of the matrices by taking the sum over all i ∈ [m] we obtain:

C =

m∑
i=1

Ci

(4.41)

�
m∑
i=1

CiC
†Ci,

which completes the proof.

Let us now choose Ci = A>i: Ai: and C = A>A. Note that from their definition the matrices
are positive semidefinite and satisfy

∑m
i=1 A>i: Ai: = A>A. Using Lemma 39 it is clear that:

m∑
i=1

A>i: Ai:(A
>A)†A>i: Ai: � A>A,

or in other words, for any vector v /∈ Null(A) we set the inequality

v>
[∑m

i=1 A>i: Ai:(A
>A)†A>i: Ai:

]
v

v>[A>A]v
≤ 1.

Multiplying both sides by m, we set:

v>
[∑m

i=1 A>i: Ai:(A
>A)†A>i: Ai:

]
v

v>[A>A
m ]v

≤ m.

Using the above derivation, it is clear from the definition of the parameter ν (4.37), that
ν ≤ m. By combining our finding with the bounds already obtained in [72] for the parameter
ν, we have that:

1 ≤ ν ≤ min

{
m,

1

λ+
min(W)

}
. (4.42)

Thus, by comparing the two iteration complexities of equations (4.38) and (4.39) it is clear that
Option 2 for the parameters [72] is always faster in theory than Option 1 [107]. To the best of
our knowledge, such comparison of the two choices of the parameters for the AccRK was never
presented before.

Accelerated randomized gossip algorithms

Having presented the complexity analysis guarantees of AccRK for solving consistent linear
systems with normalized matrices, let us now explain how the two options of AccRK behave
as gossip algorithms when they are used to solve the linear system Ax = 0 where A ∈ R|E|×n
is the normalized incidence matrix of the network. That is, each row e = (i, j) of A can be
represented as (Ae:)

> = 1√
2
(ei − ej) where ei (resp.ej) is the ith (resp. jth) unit coordinate

vector in Rn.

By using this particular linear system, the expression Ai:y
k−bi

‖Ai:‖2 A>i: that appears in steps 7
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and 8 of AccRK takes the following form when the row e = (i, j) ∈ E is sampled:

Ae:y
k − bi

‖Ae:‖2
A>e:

b=0
=

Ae:y
k

‖Ae:‖2
A>e:

form of A
=

yki − ykj
2

(ei − ej).

Recall that with L we denote the Laplacian matrix of the network. For solving the above

AC system (see Definition 31), the standard RK requires O
((

2m
λ+
min(L)

)
log(1/ε)

)
iterations to

achieve expected accuracy ε > 0. To understand the acceleration in the gossip framework this
should be compared to the

O

(
m

√
2

λ+
min(L)

log(1/ε)

)
of AccRK (Option 1) and the

O

(√
2mν

λ+
min(L)

log(1/ε)

)
of AccRK (Option 2).

Algorithm 13 describes in a single framework how the two variants of AccRK of Section 4.4.2
behave as gossip algorithms when are used to solve the above linear system. Note that each
node ` ∈ V of the network has two local registers to save the quantities vk` and xk` . In each
step using these two values every node ` ∈ V of the network (activated or not) computes the
quantity yk` = αkv

k
` + (1− αk)xk` . Then in the kth iteration the activated nodes i and j of the

randomly selected edge e = (i, j) exchange their values yki and ykj and update the values of xki ,

xkj and vki , vkj as shown in Algorithm 13. The rest of the nodes use only their own yk` to update

the values of vki and xki without communicate with any other node.

The parameter λ+
min(L) can be estimated by all nodes in a decentralized manner using the

method described in [24]. In order to implement this algorithm, we assume that all nodes have
synchronized clocks and that they know the rate at which gossip updates are performed, so that
inactive nodes also update their local values. This may not be feasible in all applications, but
when it is possible (e.g., if nodes are equipped with inexpensive GPS receivers, or have reliable
clocks) then they can benefit from the significant speedup achieved.

Algorithm 13 Accelerated Randomized Gossip Algorithm (AccGossip)

1: Data: Matrix A ∈ Rm×n (normalized incidence matrix); vector b = 0 ∈ Rm
2: Choose x0 ∈ Rn and set v0 = x0

3: Parameters: Evaluate the sequences of the scalars αk, βk, γk following one of two possible
options.

4: for k = 0, 1, 2, . . . ,K do
5: Each node ` ∈ V evaluate yk` = αkv

k
` + (1− αk)xk` .

6: Pick an edge e = (i, j) uniformly at random.
7: Then the nodes update their values as follows:

• The selected node i and node j:

xk+1
i = xk+1

j = (yki + ykj )/2

vk+1
i = βkv

k
i + (1− βk)yki − γk(yki − ykj )/2

vk+1
j = βkv

k
j + (1− βk)ykj − γk(ykj − yki )/2

• Any other node ` ∈ V:

xk+1
` = yk` , vk+1

` = βkv
k
` + (1− βk)yk`

8: end for
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4.5 Dual Randomized Gossip Algorithms

An important tool in optimization literature is duality. In our setting, instead of solving the
original minimization problem (primal problem) one may try to develop dual in nature methods
that have as a goal to directly solve the dual maximization problem. Then the primal solution
can be recovered through the use of optimality conditions and the development of an affine
mapping between the two spaces (primal and dual).

In this section, using existing dual methods and the connection already established between
the two areas of research (methods for linear systems and gossip algorithms), we present a
different viewpoint that allows the development of novel dual randomized gossip algorithms.

Without loss of generality we focus on the case of B = I (no weighted average consensus).
For simplicity, we formulate the AC system as the one with the incidence matrix of the network
(A = Q) and focus on presenting the distributed nature of dual randomized gossip algorithms
with no momentum. While we focus only on no-momentum protocols, we note that accelerated
variants of the dual methods could be easily obtained using tools from Section 4.4.

4.5.1 Dual problem and SDSA

As we have already presented in Section 1.4, the Lagrangian dual of the best approximation
problem (1.22) is the (bounded) unconstrained concave quadratic maximization problem:

max
y∈Rm

D(y) := (b−Ax0)>y − 1

2
‖A>y‖2B−1 . (4.43)

A direct method for solving the dual problem is Stochastic Dual Subspace Accent (SDSA),
a randomized iterative algorithm first proposed in [74], which updates the dual vectors yk as
follows:

yk+1 = yk + ωSk
(
S>k AB−1A>Sk

)†
S>k
(
b−A(x0 + B−1A>yk)

)
. (4.44)

In Section 1.4 we showed that the iterates {xk}k≥0 of the sketch and project method (Al-
gorithm 8) can be arised as affine images of the iterates {yk}k≥0 of the dual method (4.44)
through the mapping:

xk = φ(yk) = x0 + B−1A>yk, (4.45)

and we provided a proof for the linear convergence of SDSA (see Theorem 6). Recall that SDSA
and the sketch and project method (Algorithm 8) converge to a solution of the dual problem
and primal problem, respectively, with exactly the same convergence rate.

Let us choose B = I. In the special case that the random matrix Sk is chosen randomly
from the set of unit coordinate/basis vectors in Rm, the dual method (4.44) is the randomized
coordinate descent [104, 166], and the corresponding primal method is RK (4.2). More generally,
if Sk is a random column submatrix of the m × m identity matrix, the dual method is the
randomized Newton method [162], and the corresponding primal method is RBK (4.3). Next
we shall describe the more general block case in more detail.

4.5.2 Randomized Newton method as a dual gossip algorithm

In this subsection we bring a new insight into the randomized gossip framework by presenting
how the dual iterative process that is associated to RBK method solves the AC problem with
A = Q (incidence matrix). Recall that the right hand side of the linear system is b = 0. For
simplicity, we focus on the case of B = I and ω = 1.

Under this setting (A = Q, B = I and ω = 1) the dual iterative process (4.44) takes the
form:

yk+1 = yk − IC:(I
>
C:QQ>IC:)

†Q(x0 + Q>yk), (4.46)

and from Theorem 6 converges to a solution of the dual problem as follows:

E
[
D(y∗)−D(yk)

]
≤
[
1− λ+

min

(
E
[
Q>C:(QC:Q

>
C:)
†QC:

])]k [
D(y∗)−D(y0)

]
.
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Note that the convergence rate is exactly the same with the rate of the RBK under the same
assumptions (see (4.25)).

This algorithm is a randomized variant of the Newton method applied to the problem of
maximizing the quadratic function D(y) defined in (4.43). Indeed, in each iteration we perform
the update yk+1 = yk + IC:λ

k, where λk is chosen greedily so that D(yk+1) is maximized. In
doing so, we invert a random principal submatrix of the Hessian of D, whence the name.

Randomized Newton Method (RNM) was first proposed by Qu et al. [162]. RNM was first
analyzed as an algorithm for minimizing smooth strongly convex functions. In [74] it was also
extended to the case of a smooth but weakly convex quadratics. This method was not previously
associated with any gossip algorithm.

The most important distinction of RNM compared to existing gossip algorithms is that
it operates with values that are associated to the edges of the network. To the best of our
knowledge, it is the first randomized dual gossip method. In particular, instead of iterating over
values stored at the nodes, RNM uses these values to update “dual weights” yk ∈ Rm that
correspond to the edges E of the network. However, deterministic dual distributed averaging
algorithms were proposed before [164, 64]. Edge-based methods have also been proposed before;
in particular in [195] an asynchronous distributed ADMM algorithm presented for solving the
more general consensus optimization problem with convex functions.

Natural Interpretation. In iteration k, RNM (Algorithm (4.46)) executes the following
steps: 1) Select a random set of edges Sk ⊆ E , 2) Form a subgraph Gk of G from the selected
edges, 3) The values of the edges in each connected component of Gk are updated: their new
values are a linear combination of the private values of the nodes belonging to the connected
component and of the adjacent edges of their connected components. (see also example of
Figure 4.4).

Dual Variables as Advice. The weights yk of the edges have a natural interpretation as
advice that each selected node receives from the network in order to update its value (to one
that will eventually converge to the desired average).

Consider RNM performing the kth iteration and let Vr denote the set of nodes of the
selected connected component that node i belongs to. Then, from Theorem 34 we know that
xk+1
i =

∑
i∈Vr x

k
i /|Vr|. Hence, by using (4.45), we obtain the following identity:

(A>yk+1)i = 1
|Vr|

∑
i∈Vr (ci + (A>yk)i)− ci. (4.47)

Thus in each step (A>yk+1)i represents the term (advice) that must be added to the initial
value ci of node i in order to update its value to the average of the values of the nodes of the
connected component i belongs to.

Importance of the dual perspective: It was shown in [162] that when RNM (and as a
result, RBK, through the affine mapping (4.45)) is viewed as a family of methods indexed by
the size τ = |S| (we choose S of fixed size in the experiments), then τ → 1/(1 − ρ), where ρ
is defined in (4.5), decreases superlinearly fast in τ . That is, as τ increases by some factor, the
iteration complexity drops by a factor that is at least as large. Through preliminary numerical
experiments in Section 4.7.2 we experimentally show that this is true for the case of AC systems
as well.

4.6 Further Connections Between Methods for Solving
Linear Systems and Gossip Algorithms

In this section we highlight some further interesting connections between linear systems solvers
and gossip protocols for average consensus:

• Eavesdrop gossip as special case of Kaczmarz-Motzkin method. In [193] greedy
gossip with eavesdropping (GGE), a novel randomized gossip algorithm for distributed
computation of the average consensus problem was proposed and analyzed. In particular
it was shown that that greedy updates of GGE lead to rapid convergence. In this proto-
col, the greedy updates are made possible by exploiting the broadcast nature of wireless
communications. During the operation of GGE, when a node decides to gossip, instead of
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Figure 4.4: Example of how the RNM method works as gossip algorithm. In this specific case 3 edges are
selected and form a sub-graph with two connected components. Then the values at the edges update their values
using the private values of the nodes belonging to their connected component and the values associate to the
adjacent edges of their connected components.

choosing one of its neighbors at random, it makes a greedy selection, choosing the node
which has the value most different from its own. In particular the method behaves as
follows:

At the kth iteration of GGE, a node ik is chosen uniformly at random from [n]. Then, ik
identifies a neighboring node jk ∈ Ni satisfying:

jk ∈ max
j∈Ni

{
1

2
(xki − xkj )2

}
which means that the selected node ik identifies a neighbor that currently has the most
different value from its own. This choice is possible because each node i ∈ V maintains not
only its own local variable xki , but also a copy of the current values at its neighbors xkj for
j ∈ Ni. In the case that node ik has multiple neighbors whose values are all equally (and
maximally) different from its current value, it chooses one of these neighbors at random.
Then node ik and jk update their values to:

xk+1
i = xk+1

j =
1

2
(xki + xkj ).

In the area of randomized methods for solving large linear system there is one particular
method, the Kaczmarz-Motzkin algorithm [32, 78] that can work as gossip algorithm with
the same update as the GGE when is use to solve the homogeneous linear system with
matrix the Incidence matrix of the network.

Update rule of Kaczmarz-Motzkin algorithm (KMA) [32, 78]:

1. Choose sample of dk constraints, Pk, uniformly at random from among the rows of
matrix A.

2. From among these dk constraints, choose tk = argmaxi∈Pk
Ai:x

k − bi.

3. Update the value: xk+1 = xk − Atk:x
k−bi

‖Atk:‖2 A>tk:.

It is easy to verify that when the Kaczmarz-Motzkin algorithm is used for solving the
AC system with A = Q (incidence matrix) and in each step of the method the chosen
constraints dk of the linear system correspond to edges attached to one node it behaves
exactly like the GGE. From numerical analysis viewpoint an easy way to choose the
constraints dk that are compatible to the desired edges is in each iteration to find the

118



indexes of the non-zeros of a uniformly at random selected column (node) and then select
the rows corresponding to these indexes.

Therefore, since GGE [193] is a special case of the KMA (when the later applied to special
AC system with Incidence matrix) it means that we can obtain the convergence rate of
GGE by simply use the tight conergence analysis presented in [32, 78] 7. In [193] it was
mentioned that analyzing the convergence behavior of GGE is non-trivial and not an easy
task. By establishing the above connection the convergence rates of GGE can be easily
obtained as special case of the theorems presented in [32].

In Section 4.4 we presented provably accelerated variants of the pairwise gossip algorithm
and of its block variant. Following the same approach one can easily develop accelerated
variants of the GGE using the recently proposed analysis for the accelerated Kaczmarz-
Motzkin algorithm presented in [126].

• Inexact Sketch and Project Methods:

In Chapter 3, several inexact variants of the sketch and project method (8) have been
proposed. As we have already mentioned the sketch and project method is a two step
procedure algorithm where first the sketched system is formulated and then the last
iterate xk is exactly projected into the solution set of the sketched system. In Chapter 3,
we replace the exact projection with an inexact variant and we suggest to run a different
algorithm (this can be the sketch and project method itself) in the sketched system to
obtain an approximate solution. It was shown that in terms of time the inexact updates
can be faster than their exact variants.

In the setting of randomized gossip algorithms for the AC system with Incidence matrix
(A = Q) , B = I and ω = 1 a variant of the inexact sketch and project method will work
as follows (similar to the update proved in Theorem 34):

1. Select a random set of edges C ⊆ E .

2. Form subgraph Gk of G from the selected edges.

3. Run the pairwise gossip algorithm of [16] (or any variant of the sketch and project
method) on the subgraph Gk until an accuracy ε is achieved (reach a neighborhood
of the exact average).

• Non-randomized gossip algorithms as special cases of Kaczmarz methods:

In the gossip algorithms literature there are efficient protocols that are not randomized[127,
82, 108, 208]. Typically, in these algorithms the pairwise exchanges between nodes it hap-
pens in a deterministic, such as predefined cyclic, order. For example, T -periodic gossiping
is a protocol which stipulates that each node must interact with each of its neighbours
exactly once every T time units. It was shown that under suitable connectivity assump-
tions of the network G, the T -periodic gossip sequence will converge at a rate determined
by the magnitude of the second largest eigenvalue of the stochastic matrix determined by
the sequence of pairwise exchanges which occurs over a period. It has been shown that
if the underlying graph is a tree, the mentioned eigenvalue is constant for all possible
T -periodic gossip protocols.

In this work we focus only on randomized gossip protocols. However we speculate that
the above non-randomized gossip algorithms would be able to express as special cases
of popular non-randomized projection methods for solving linear systems [159, 144, 45].
Establishing connections like that is an interesting future direction of research and can
possibly lead to the development of novel block and accelerated variants of many non-
randomized gossip algorithms, similar to the protocols we present in Sections 4.3 and
4.4.

7Note that the convergence theorems of [32, 78] use dk = d. However, with a small modification in the
original proof the theorem can capture the case of different dk.
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Figure 4.5: Performance of ScaledRK in a 2-dimension grid, random geometric graph (RGG) and a cycle
graph for solving the weighted average consensus problem. The weight matrix is chosen to be B = D, the
degree matrix of the network. The n in the title of each plot indicates the number of nodes of the network. For
the grid graph this is n× n.

4.7 Numerical Evaluation

In this section, we empirically validate our theoretical results and evaluate the performance of
the proposed randomized gossip algorithms. The section is divided into four main parts, in
each of which we highlight a different aspect of our contributions.

In the first experiment, we numerically verify the linear convergence of the Scaled RK
algorithm (see equation (4.9)) for solving the weighted average consensus problem presented in
Section 4.3.1. In the second part, we explain the benefit of using block variants in the gossip
protocols where more than two nodes update their values in each iteration (protocols presented
in Section 4.3.4). In the third part, we explore the performance of the faster and provably
accelerated gossip algorithms proposed in Section 4.4. In the last experiment, we numerically
show that relaxed variants of the pairwise randomized gossip algorithm converge faster than the
standard randomized pairwise gossip with unit stepsize (no relaxation). This gives a specific
setting where the phenomenon of over-relaxation of iterative methods for solving linear systems
is beneficial.

In the comparison of all gossip algorithms we use the relative error measure ‖xk−x∗‖2B/‖x0−
x∗‖2B where x0 = c ∈ Rn is the starting vector of the values of the nodes and matrix B is
the positive definite diagonal matrix with weights in its diagonal (recall that in the case of
standard average consensus this can be simply B = I). Depending on the experiment, we
choose the values of the starting vector c ∈ Rn to follow either a Gaussian distribution or
uniform distribution or to be integer values such that ci = i ∈ R. In the plots, the horizontal
axis represents the number of iterations except in the figures of subsection 4.7.2, where the
horizontal axis represents the block size.

In our implementations we use three popular graph topologies from the area of wireless
sensor networks. These are the cycle (ring graph), the 2-dimension grid and the random geo-
metric graph (RGG) with radius r =

√
log(n)/n. In all experiments we formulate the average

consensus problem (or its weighted variant) using the incidence matrix. That is, A = Q is used
as the AC system. Code was written in Julia 0.6.3.

4.7.1 Convergence on weighted average consensus

As we explained in Section 4.3, the sketch and project method (Algorithm 8) can solve the
more general weighted AC problem. In this first experiment we numerically verify the linear
convergence of the Scaled RK algorithm (4.9) for solving this problem in the case of B = D.
That is, the matrix B of the weights is the degree matrix D of the graph (Bii = di, ∀i ∈ [n]).
In this setting the exact update rule of the method is given in equation (4.12), where in order
to have convergence to the weighted average the chosen nodes are required to share not only
their private values but also their weight Bii (in our experiment this is equal to the degree of
the node di). In this experiment the starting vector of values x0 = c ∈ Rn is a Gaussian vector.
The linear convergence of the algorithm is clear in Figure 4.5.
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4.7.2 Benefit of block variants

We devote this experiment to evaluate the performance of the randomized block gossip algo-
rithms presented in Sections 4.3.4 and 4.5. In particular, we would like to highlight the benefit
of using larger block size in the update rule of randomized Kaczmarz method and as a re-
sult through our established connection of the randomized pairwise gossip algorithm [16] (see
equation (4.13)).

Recall that in Section 4.5 we show that both RBK and RNM converge to the solution of the
primal and dual problems respectively with the same rate and that their iterates are related via
a simple affine transform (4.45). In addition note that an interesting feature of the RNM [162],
is that when the method viewed as algorithm indexed by the size τ = |C|, it enjoys superlinear
speedup in τ . That is, as τ (block size) increases by some factor, the iteration complexity drops
by a factor that is at least as large (see Section 4.5.2). Since RBK and RNM share the same
rates this property naturally holds for RBK as well.

We show that for a connected network G, the complexity improves superlinearly in τ = |C|,
where C is chosen as a subset of E of size τ , uniformly at random (recall the in the update rule
of RBK the random matrix is S = I:C). Similar to the rest of this section in comparing the
number of iterations for different values of τ , we use the relative error ε = ‖xk−x∗‖2/‖x0−x∗‖2.
We let x0

i = ci = i for each node i ∈ V (vector of integers). We run RBK until the relative
error becomes smaller than 0.01. The blue solid line in the figures denotes the actual number
of iterations (after running the code) needed in order to achieve ε ≤ 10−2 for different values of
τ . The green dotted line represents the function f(τ) := `

τ , where ` is the number of iterations
of RBK with τ = 1 (i.e., the pairwise gossip algorithm). The green line depicts linear speedup;
the fact that the blue line (obtained through experiments) is below the green line points to
superlinear speedup. In this experiment we use the Cycle graph with n = 30 and n = 100
nodes (Figure 4.6) and the 4 × 4 two dimension grid graph (Figure 4.7). Note that, when
|C| = m the convergence rate of the method becomes ρ = 0 and as a result it converges in one
step.

(a) Cycle, n = 30 (b) Cycle, n = 100

Figure 4.6: Superlinear speedup of RBK on cycle graphs.

(a) 2D-Grid, 4× 4 (b) Speedup in τ

Figure 4.7: Superlinear speedup of RBK on a 4× 4 two dimension grid graph.
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Figure 4.8: Performance of mRK for fixed step-size ω = 1 and several momentum parameters β in a 2-
dimension grid, random geometric graph (RGG) and a cycle graph. The choice β = 0 corresponds to the
randomized pairwise gossip algorithm proposed in [16]. The starting vector x0 = c ∈ Rn is a Gaussian vector.
The n in the title of each plot indicates the number of nodes of the network. For the grid graph this is n× n.

4.7.3 Accelerated gossip algorithms

We devote this subsection to experimentally evaluate the performance of the proposed acceler-
ated gossip algorithms: mRK (Algorithm 10), mRBK (Algorithm 11) and AccGossip with the
two options of the parameters (Algorithm 13). In particular we perform four experiments. In
the first two we focus on the performance of the mRK and how the choice of stepsize (relaxation
parameter) ω and heavy ball momentum parameter β affect the performance of the method.
In the next experiment we show that the addition of heavy ball momentum can be also bene-
ficial for the performance of the block variant mRBK. In the last experiment we compare the
standard pairwise gossip algorithm (baseline method) from [16], the mRK and the AccGossip
and show that the probably accelerated gossip algorithm, AccGossip outperforms the other
algorithms and converge as predicted from the theory with an accelerated linear rate.

Impact of momentum parameter on mRK

As we have already presented in the standard pairwise gossip algorithm (equation (4.13)) the
two selected nodes that exchange information update their values to their exact average while
all the other nodes remain idle. In our framework this update can be cast as special case of
mRK when β = 0 and ω = 1.

In this experiment we keep the stepsize fixed and equal to ω = 1 which means that the pair
of the chosen nodes update their values to their exact average and we show that by choosing a
suitable momentum parameter β ∈ (0, 1) we can obtain faster convergence to the consensus for
all networks under study. The momentum parameter β is chosen following the suggestions made
in Chapter 2 for solving general consistent linear systems. See Figure 4.8 for more details. It is
worth to point out that for all networks under study the addition of a heavy ball momentum
term is beneficial in the performance of the method.

Comparison of mRK and shift-Register algorithm [106]

In this experiment we compare mRK with the shift register gossip algorithm (pairwise momen-
tum method, abbreviation: Pmom) analyzed in [106]. We choose the parameters ω and β of
mRK in such a way in order to satisfy the connection established in Section 4.4.1. That is, we
choose β = ω − 1 for any choice of ω ∈ (1, 2). Observe that in all plots of Figure 4.9 mRK
outperforms the corresponding shift-register algorithm.
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Figure 4.9: Comparison of mRK and the pairwise momentum method (Pmom), proposed in [106] (shift-register
algorithm of Section 4.4.1). Following the connection between mRK and Pmom established in Section 4.4.1 the
momentum parameter of mRK is chosen to be β = ω − 1 and the stepsizes are selected to be either ω = 1.2
or ω = 1.3. The baseline method is the standard randomized pairwise gossip algorithm from [16]. The starting
vector x0 = c ∈ Rn is a Gaussian vector. The n in the title of each plot indicates the number of nodes of the
network. For the grid graph this is n× n.

Impact of momentum parameter on mRBK

In this experiment our goal is to show that the addition of heavy ball momentum accelerates
the RBK gossip algorithm presented in Section 4.3.4. Without loss of generality we choose the
block size to be equal to τ = 5. That is, the random matrix Sk ∼ D in the update rule of
mRBK is a m × 5 column submatrix of the indetity m × m matrix. Thus, in each iteration
5 edges of the network are chosen to form the subgraph Gk and the values of the nodes are
updated according to Algorithm 11. Note that similar plots can be obtained for any choice of
block size. We run all algorithms with fixed stepsize ω = 1. From Figure 4.10, it is obvious
that for all networks under study, choosing a suitable momentum parameter β ∈ (0, 1) gives
faster convergence than having no momentum, β = 0.

Performance of AccGossip

In the last experiment on faster gossip algorithms we evaluate the performance of the proposed
provably accelerated gossip protocols of Section 4.4.2. In particular we compare the standard
RK (pairwise gossip algorithm of [16]) the mRK (Algorithm 10) and the AccGossip (Algo-
rithm 13) with the two options for the selection of the parameters presented in Section 4.4.2.

The starting vector of values x0 = c is taken to be a Gaussian vector. For the implementation
of mRK we use the same parameters with the ones suggested in the stochastic heavy ball (SGB)
setting in Chapter 2. For the AccRK (Option 1) we use λ = λ+

min(A>A) and for AccRK (Option
2) we select ν = m8. From Figure 4.11 it is clear that for all networks under study the two
randomized gossip protocols with Nesterov momentum are faster than both the pairwise gossip
algorithm of [16] and the mRK/SHB (Algorithm 10). To the best of our knowledge Algorithm 13
(Option 1 and Option 2) is the first randomized gossip protocol that converges with provably
accelerated linear rate and as we can see from our experiment its faster convergence is also
obvious in practice.

8For the networks under study we have m < 1

λ+
min(W)

. Thus, by choosing ν = m we select the pessimistic

upper bound of the parameter (4.42) and not its exact value (4.37). As we can see from the experiments, the
performance is still accelerated and almost identical to the performance of AccRK (Option 1) for this choice of
ν.
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Figure 4.10: Comparison of mRBK with its no momentum variant RBK (β = 0). The stepsize for all methods
is ω = 1 and the block size is τ = 5. The baseline method in the plots denotes the standard randomized pairwise
gossip algorithm (block τ = 1) and is plotted to highlight the benefits of having larger block sizes (at least in
terms of iterations). The starting vector x0 = c ∈ Rn is a Gaussian vector. The n in the title of each plot
indicates the number of nodes. For the grid graph this is n× n.

4.7.4 Relaxed randomized gossip without momentum

In the area of randomized iterative methods for linear systems it is know that over-relaxation
(using of larger step-sizes) can be particularly helpful in practical scenarios. However, to the
best of our knowledge there is not theoretical justification of why this is happening.

In our last experiment we explore the performance of relaxed randomized gossip algorithms
(ω 6= 1) without momentum and show that in this setting having larger stepsize can be partic-
ularly beneficial.

As we mentioned before (see Theorem 30) the sketch and project method (Algorithm 8)
converges with linear rate when the step-size (relaxation parameter) of the method is ω ∈ (0, 2)
and the best theoretical rate is achieved when ω = 1. In this experiment we explore the
performance of the standard pairwise gossip algorithm when the step-size of the update rule is
chosen in (1, 2). Since there is no theoretical proof of why over-relaxation can be helpful we
perform the experiments using different starting values of the nodes. In particular we choose
the values of vector c ∈ Rn to follow (i) Gaussian distribution, (ii) Uniform Distribution and
(iii) to be integers values such that ci = i ∈ R. Our findings are presented in Figure 4.12. Note
that for all networks under study and for all choices of starting values having larger stepsize,
ω ∈ (1, 2) can lead to better performance. Interesting observation from Figure 4.12 is that
the stepsizes ω = 1.8 and ω = 1.9 give the best performance (among the selected choices of
stepsizes) for all networks and for all choices of starting vector x0 = c.

4.8 Conclusion

In this chapter, we present a general framework for the analysis and design of randomized
gossip algorithms. Using tools from numerical linear algebra and the area of randomized pro-
jection methods for solving linear systems we propose novel serial, block and accelerated gossip
protocols for solving the average consensus and weighted average consensus problems.

We believe that this work could open up several future avenues for research. Using similar
approach with the one presented in this manuscript, many popular projection methods can
be interpreted as gossip algorithms when used to solve linear systems encoding the underlying
network. This can lead to the development of novel distributed protocols for average consensus.

In addition, we speculate that the gossip protocols presented in this work can be extended
to the more general setting of multi-agent consensus optimization where the goal is to minimize
the average of convex or non-convex functions 1

n

∑n
i=1 fi(x) in a decentralized way [131].
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Figure 4.11: Performance of AccGossip (Option 1 and Option 2 for the parameters) in a 2-dimension grid,
random geometric graph (RGG) and a cycle graph. The Baseline method corresponds to the randomized
pairwise gossip algorithm proposed in [16] and the SHB represents the mRK (Algorithm 10) with the best
choice of parameters as proposed in Chapter 2 ; The n in the title of each plot indicates the number of nodes of
the network. For the grid graph this is n× n.

4.9 Missing Proofs

4.9.1 Proof of Theorem 33

Proof. Let zk := ‖xk − x∗‖ , x0 = c is the starting point and ρ is as defined in (4.5). From
Theorem 30 we know that sketch and project method converges with

E[‖xk − x∗‖2B] ≤ ρk‖x0 − x∗‖2B, (4.48)

where x∗ is the solution of (1.22). Inequality (4.48), together with Markov inequality can be
used to give the following bound

P(zk/z0 ≥ ε2) ≤ E(zk/z0)

ε2
≤ ρk

ε2
. (4.49)

Therefore, as long as k is large enough so that ρk ≤ ε3, we have P
(
zk/z0 ≥ ε2

)
≤ ε. That is, if

ρk ≤ ε3 ⇔ k ≥ 3 log ε

log ρ
⇔ k ≥ 3 log(1/ε)

log(1/ρ)
,

then:

P
(
‖xk − c̄1‖
‖x0 − c̄1‖

≥ ε
)
≤ ε.

Hence, an upper bound for value Tave(ε) can be obtained as follows,

Tave(ε) = sup
c∈Rn

inf
{
k : P

(
zk > εz0

)
≤ ε
}
≤ sup
c∈Rn

inf

{
k : k ≥ 3 log(1/ε)

log(1/ρ)

}
= sup

c∈Rn

3 log(1/ε)

log(1/ρ)
=

3 log(1/ε)

log(1/ρ)
≤ 3 log(1/ε)

1− ρ
, (4.50)

where in last inequality we use 1/ log(1/ρ) ≤ 1/1− ρ which is true because ρ ∈ (0, 1).

4.9.2 Proof of Theorem 34

Proof. The following notation conventions are used in this proof. With qk we indicate the
number of connected components of subgraph Gk, while with Vr we denote the set of nodes of
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Figure 4.12: Performance of Relaxed randomized pairwise Gossip algorithm in a 2-dimension grid, random
geometric graph (RGG) and a cycle graph. The case of ω = 1 corresponds to the randomized pairwise gossip
algorithm proposed in [16] ; The n in the title of each plot indicates the number of nodes of the network. For
the grid graph this is n× n. The title of each plot indicates the vector of starting values that is used.

each connected component qk (r ∈ {1, 2, . . . , qk}). Finally, |Vr| shows the cardinality of set Vr.

Notice that, if V is the set of all nodes of the graph then V = ∪
r={1,2,...q}

Vr and |V| =
q∑
r=1
|Vr|.

Note that from equation (4.24), the update of RBK for A = Q(Incidence matrix) can be
expressed as follows:

minimize
x

φk(x) := ‖x− xk‖2

subject to I>:CQx = 0
(4.51)

Notice that I>:CQ is a row submatrix of matrix Q with rows those that correspond to the random
set C ⊆ E of the edges. From the expression of matrix Q we have that

(I>:CQ)>e: = fi − fj , ∀e = (i, j) ∈ C ⊆ E .

Now, using this, it can be seen that the constraint I>:CQx = 0 of problem (1.22) is equivalent
to q equations (number of connected components) where each one of them forces the values
xk+1
i of the nodes i ∈ Vr to be equal. That is, if we use zr to represent the value of all nodes

that belong in the connected component r then:

xk+1
i = zr ∀i ∈ Vr, (4.52)

and the constrained optimization problem (1.22) can expressed as unconstrained as follows:

minimize
z

φk(z) =
∑
i∈V1

(z1 − xki )2 + ...+
∑
i∈Vq

(zq − xki )2, (4.53)

where z = (z1, z2, . . . , zq) ∈ Rq is the vector of all values zr when r ∈ {1, 2, . . . , q}. Since our
problem is unconstrained the minimum of equation (4.53) is obtained when ∇φk(z) = 0.
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By evaluating partial derivatives of (4.53) we obtain:

∂φk(z)

∂zr
= 0⇐⇒

∑
i∈Vr

2(zr − xki ) = 0.

As a result,

zr =

∑
i∈Vr

xki

|Vr|
, ∀r ∈ {1, 2, . . . , q}.

Thus from (4.52), the value of each node i ∈ Vr will be updated to

xk+1
i = zr =

∑
i∈Vr

xki

|Vr|
.

.
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Chapter 5

Privacy Preserving Randomized
Gossip Algorithms

5.1 Introduction

In this chapter, similar to Chapter 4, we consider the average consensus (AC) problem. In
particular, we focus on randomized gossip algorithms for solving the AC problem and propose
techniques for protecting the information of the initial values ci, as these may be sensitive.
We develop and analyze three privacy preserving variants of the randomized pairwise gossip
algorithm (“randomly pick an edge (i, j) ∈ E and then replace the values stored at vertices i
and j by their average”) first proposed in [16] for solving the average consensus problem. While
we shall not formalize the notion of privacy preservation in this work, it will be intuitively clear
that our methods indeed make it harder for nodes to infer information about the private values
of other nodes, which might be useful in practice.

5.1.1 Background

The literature on decentralized protocols for solving the average consensus problem is vast and
has long history [191, 190, 10, 93]. In particular, the algorithms for solving this problem can
be divided into two broad categories: the average consensus algorithms [201] which work in
a synchronous setting and the gossip algorithms [16, 176] which they consider ideal protocols
for the asynchronous time model [16]. In the average consensus algorithms, all nodes of the
network update their values simultaneously by communicating with a set of their neighbours
and in each iteration of the algorithmic procedure the same update occurs. On the other hand,
in gossip protocols only one edge of the whole network is selected at each iteration and only
the nodes, that this edge connects, exchange their private information and update their values
to their average.

In this chapter, we focus on modifying the basic algorithm of [16], which we refer to as
“Standard Gossip” algorithm. In the following, we review some of the most important gossip
protocols for solving the average consensus proposed in the last decade. While we do not
address any privacy considerations for these protocols, they can serve as inspiration for further
work. For a survey of relevant work, we refer the interested reader to [42, 147, 165, 131].

The Geographic Gossip algorithm was proposed in [43], in which the authors combine the
gossip approach with a geographic routing towards a randomly chosen location with the main
goal to improve the convergence rate of Standard Gossip algorithm. In each step, a node is
activated, assuming that it is aware of its geographic location and some additional assumptions
on the network topology, it chooses another node from the rest of the network (not necessarily
one of its neighbours) and performs a pairwise averaging with this node. Later, using the
same assumptions, this algorithm was extended into Geographic Gossip Algorithm with Path
Averaging [8], in which connected sequences of nodes were chosen in each step and they averaged
their values. More recently, in [57] and [58] authors propose a geographic and path averaging
methods which converge to the average consensus without the assumption that nodes are aware
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of their geographic location. Recall that, in Section 4.3.4 we show how the path averaging
gossip algorithm can be seen as special case of the Randomized Block Kaczmarz method for
solving consistent linear systems.

Another important randomized gossip algorithm is the Broadcast Gossip algorithm, first
proposed in [7] and then extended in [55, 200, 90]. The idea of this algorithm is simple: In
each step, a node in the network is activated uniformly at random, following the asynchronous
time model, and broadcasts its value to its neighbours. The neighbours receive this value and
update their own values. It was experimentally shown that this method converges faster than
the pairwise and geographic randomized gossip algorithms.

Alternative gossip protocols are the so-called non-randomized Gossip algorithms [127, 82,
108, 208]. Typically, this class of algorithms executes the pairwise exchanges between nodes
in a deterministic, such as predefined cyclic, order. T -periodic gossiping is a protocol which
stipulates that each node must interact with each of its neighbours exactly once every T time
units. Under suitable connectivity assumptions of the network G, the T -periodic gossip sequence
will converge at a rate determined by the magnitude of the second largest eigenvalue of the
stochastic matrix determined by the sequence of pairwise exchanges which occurs over a period.
It has been shown that if the underlying graph is a tree, the mentioned eigenvalue is constant
for all possible T -periodic gossip protocols.

Accelerated Gossip algorithms have also been proposed for solving the average consensus
problem. In this setting, the nodes of the network incorporate additional memory to accelerate
convergence. In particular, the nodes update their value using an update rule that involves
not only the current values of the sampled nodes but also their previous values. This idea is
closely related to the shift register methods studied in numerical linear algebra for improving
the convergence rate of linear system solvers. The works [19, 106] have shown theoretically
and numerically, that under specific assumptions this idea can improve the performance of the
Standard Gossip algorithm. For more details on these gossip protocols check also Section 4.4.1
of this thesis.

Randomized Kaczmarz-type Gossip algorithms. In Chapter 4 of this thesis we presented
how popular randomized Kaczmarz-type methods for solving large linear systems can also solve
the AC problem. We explained how these methods can be interpreted as randomized gossip
algorithms when applied to special systems encoding the underlying network structure and
present in detail their decentralized nature.

Asynchronous Time Model: In this chapter, we are interested in the asynchronous time
model [16, 10]. More precisely, we assume that each node of our network has a clock which ticks
at a rate of 1 Poisson process. This is equivalent of having available a global clock which ticks
according to a rate n Poisson process and selects an edge of the network uniformly at random.
In general, the synchronous setting (all nodes update the values of their nodes simultaneously
using information from a set of their neighbours) is convenient for theoretical considerations
but is not representative of some practical scenarios, such as the distributed nature of sensor
networks. For more details on clock modeling we refer the reader to [16], as the contribution
of this chapter is orthogonal to these considerations.

Privacy and Average Consensus: Finally, the introduction of notions of privacy within the
AC problem is relatively recent in the literature, and the existing works consider two different
ideas.

1. In [86], the concept of differential privacy [47] is used to protect the output value c̄
computed by all nodes. In this work, an exponentially decaying Laplacian noise is added
to the consensus computation. This notion of privacy refers to protection of the final
average, and formal guarantees are provided.

2. A different approach with a more stricter goal is the design of privacy-preserving average
consensus protocols that guarantee protection of the initial values ci of the nodes [142,
123, 124]. In this setting each node should be unable to infer a lot about the initial
values ci of any other node. In the existing works, this is mainly achieved with the clever
addition of noise through the iterative procedure that guarantees preservation of privacy
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and at the same time converges to the exact average. We shall however mention, that
none of these works address any specific notion of privacy (no clear measure of privacy is
presented) and it is still not clear how the formal concept of differential privacy [47] can
be applied in this setting.

It is worth to highlight that all of the above-mentioned privacy preserving average consensus
papers propose protocols which work on the synchronous setting (all nodes update their values
simultaneously). To the best of our knowledge our proposed protocols are the first that solve the
AC problem and at the same time protect the initial values of the nodes using the asynchronous
time model (by having gossip updates).

5.1.2 Main contributions

In this chapter, we present three different approaches for solving the Average Consensus problem
while at the same time protecting the information about the initial values. To the best of our
knowledge, this work is the first which combines the gossip framework with the privacy concept
of protection of the initial values. It is important to stress that, we provide tools for protection
of the initial values, but we do not address any specific notion of privacy or a threat model, nor
how these quantitatively translate to any explicit measure. These would be highly application
dependent, and we only provide theoretical convergence rates for the techniques we propose.

The methods we propose are all dual in nature. The dual setting of this chapter will be
explained in detail in Section 5.2. Recall that in Chapters 1, 2 and 3 of this thesis, we have
shown how duality and dual algorithms can be used for solving consistent linear systems. In
addition, in Chapter 4, the dual viewpoint was extended to the concept of the average consensus
problem and the first dual gossip algorithms were presented. As we have seen, the dual updates
correspond to updates of the primal variables, via an affine mapping. Using this relationship
of the primal and the dual spaces the convergence analysis of the dual methods can be easily
obtained once the analysis of the primal methods is available (see for example the proof of
Theorem 6 in the introduction of this thesis). In this chapter, one of our contributions is a
novel dual analysis of randomized pairwise gossip (without the use of rates that obtain first
through a primal analysis) which exactly recovers existing convergence rates for the primal
iterates.

We now outline the three different techniques we propose in this chapter, which we refer to as
“Binary Oracle”, “ε-Gap Oracle” and “Controlled Noise Insertion”. The first two are, to best of
our knowledge, the first proposals of weakening the oracle used in the gossip framework. Privacy
preservation is attained implicitly, as the nodes do not exchange the full information about their
values. The last technique is inspired by the addition of noise proposed in [101, 142, 123, 124] for
the synchronous setting. We extend this technique by providing explicit finite time convergence
guarantees.

Binary Oracle. We propose to reduce the amount of information transmitted in each
iteration to a single bit1. More precisely, when an edge is selected, each corresponding node
will only receive information whether the value on the other node is smaller or larger. Instead
of setting the value on the selected nodes to their average, each node increases or decreases its
value by a pre-specified step.

ε-Gap Oracle. In this case, we have an oracle that returns one of three options and is
parametrized by ε. If the difference in values of sampled nodes is larger than ε, an update similar
to the one in Binary Oracle is taken. Otherwise, the values remain unchanged. An advantage
compared to the Binary Oracle is that this approach will converge to a certain accuracy and
stop there, determined by ε (Binary Oracle will oscillate around optimum for a fixed stepsize).
However, in general, it will disclose more information about the initial values.

Controlled Noise Insertion. This approach is inspired by the works of [123, 124], and
protects the initial values by inserting noise in the process. Broadly speaking, in each iteration,
each of the sampled nodes first adds a noise to its current value, and an average is computed

1We do not refer to the size of the object being transmitted over the network, but the binary information that
can be inferred from the exchange. In practice, this might be achieved using secure multiparty protocols [26],
causing the overall network bandwidth to slightly increase compared to the usual implementation of standard
gossip algorithm.

131



Main Results

Randomized Gossip Methods Convergence Rate Success Measure Thm

Standard Gossip [16]
(

1− α(G)
2m

)k
E
[

1
2‖c̄1− x

k‖2
]

42

New: Private Gossip with
Binary Oracle

1/
√
k mint≤k E

[
1
m

∑
e |xti − xtj |

]
44

New: Private Gossip with
ε-Gap Oracle

1/(kε2) E
[

1
k

∑k−1
t=0 ∆t(ε)

]
47

New: Private Gossip with
Controlled Noise Insertion

(
1−min

(
α(G)
2m , γm

))k
E
[
D(y∗)−D(yk)

]
49

Table 5.1: Complexity results of all proposed privacy preserving randomized gossip algorithms.

afterward. Convergence is guaranteed due to the correlation in the noise across iterations. Each
node remembers the noise it added last time it was sampled, and in the following iteration, the
previously added noise is first subtracted, and a fresh noise of smaller magnitude is added.
Empirically, the protection of initial values is provided by first injecting noise into the system,
which propagates across the network, but is gradually withdrawn to ensure convergence to the
true average.

Convergence Rates of our Methods: In Table 5.1, we present the summary of convergence
guarantees for the above three techniques. By ‖ · ‖ we denote the standard Euclidean norm.

The two approaches which restrict the amount of information disclosed, Binary Oracle and
ε-Gap Oracle, converge slower than the standard Gossip. In particular, these algorithms have
sublinear convergence rate. At first sight, this should not be surprising, since we indeed use
much less information. However, in Theorem 45, we show that if we had in a certain sense
perfect global information, we could use it to construct a sequence of adaptive stepsizes, which
would push the capability of the binary oracle to a linear convergence rate. However, this rate
is still m-times slower than the standard rate of the binary gossip algorithm. We note, however,
that having the global information at hand is an impractical assumption. Nevertheless, this
result highlights that there is a potentially large scope for improvement, which we leave for
future work.

The approach of Controlled Noise Insertion yields a linear convergence rate which is driven
by the minimum of two factors. Without going into details, which of these is bigger depends on
the speed by which the magnitude of the inserted noise decays. If the noise decays fast enough,
we recover the convergence rate of the standard the gossip algorithm. In the case of slow decay,
the convergence is driven by this decay. By α(G) we denote the algebraic connectivity of graph
G [52]. The parameter γ controls the decay speed of the inserted noise, see Corollary 50.

Measures of Success: Note that the convergence of each randomized gossip algorithm in
Table 5.1 naturally depends on a different measure of suboptimality. All of them converge to 0
as we approach the optimal solution. The details of these measures will be described later in the
main body of this chapter. In particular a lemma that formally describes the key connections
between these measures is presented in Section 5.3.1. For now lets us give a brief description
of these results. The standard Gossip and Controlled Noise Insertion essentially depend on the
same quantity, but we present the latter in terms of dual values as this is what our proofs are
based on. Lemma 43 formally specifies this equivalence. The binary oracle depends on the
average difference among directly connected nodes. The measure for the ε-Gap Oracle depends
on quantities ∆t(ε) = 1

m

∣∣{(i, j) ∈ E : |xti − xtj | ≥ ε}
∣∣, which is the number of edges that the

values of their connecting nodes differ by more than ε.

5.1.3 Structure of the chapter

The remainder of this chapter is organized as follows: Section 5.2 introduces the basic setup
that is used through the chapter. A detailed explanation of the duality behind the randomized
pairwise gossip algorithm is given. We also include a novel and insightful dual analysis of
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this method as it will make it easier for the reader to parse later development. In Section 5.3
we present our three private gossip algorithms as well as the associated iteration complexity
results. Section 5.4 is devoted to the numerical evaluation of our methods. Finally, conclusions
are drawn in Section 5.5.

5.2 Dual Analysis of Randomized Pairwise Gossip

As we outlined in the introduction of this chapter, our approach for extending the (standard)
randomized pairwise gossip algorithm to privacy preserving variants utilizes duality. The pur-
pose of this section is to formalize this duality. In addition, we provide a novel and self-contained
dual analysis of randomized pairwise gossip. While this is of an independent interest, we include
the proofs as their understanding aids in the understanding of the more involved proofs of our
private gossip algorithms developed in the remainder of the chapter.

The main problems under study are the best approximation problem (1.22) and its dual
(1.26) that we have seen multiple times throughout the thesis. However, similar to Chapter 4
we focus on the more specific setting of the average consensus. To keep the chapter self-
contained and for the benefit of the reader we present the definitions of these problems and we
explain again how they are related to the average consensus problem.

5.2.1 Primal and dual problems

Consider solving the (primal) problem of projecting a given vector c = x0 ∈ Rn onto the
solution space of a linear system:

min
x∈Rn

P (x) :=
1

2
‖x− x0‖2 subject to Ax = b, (5.1)

where A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn. Note that this the best approximation problem (1.22)
with B = I (Identity matrix). We assume the problem is feasible, i.e., that the system Ax = b
is consistent. With the above optimization problem we associate the dual problem

max
y∈Rm

D(y) := (b−Ax0)>y − 1

2
‖A>y‖2. (5.2)

As we have explained in the previous chapters, the dual is an unconstrained concave (but not
necessarily strongly concave) quadratic maximization problem. It can be seen that as soon as
the system Ax = b is feasible, the dual problem is bounded. Moreover, all bounded concave
quadratics in Rm can be written in the as D(y) for some matrix A and vectors b and x0 (up to
an additive constant).

With any dual vector y we associate the primal vector via an affine transformation: φ(y) =
x0 + A>y. It can be shown that if y∗ is dual optimal, then x∗ = φ(y∗) is primal optimal
[74]. Hence, any dual algorithm producing a sequence of dual variables yt → y∗ gives rise to
a corresponding primal algorithm producing the sequence xt := φ(yt) → x∗. We shall now
consider one such dual algorithm.

5.2.2 Stochastic dual subspace ascent

Stochastic dual subspace ascent (SDSA) is a stochastic method for solving the dual problem
(5.2). In Section 1.4 we have already described how by choosing appropriately the main param-
eters of SDSA we can recover many known algorithms as special cases. In this chapter we focus
only on one special case of the general algorithm. For the more general update rule of SDSA
check equations (1.29) and (1.30). In particular, following the notation of the rest of the thesis,
we select ω = 1 (stepsize of the method) and B = I (positive definite matrix that defines the
geometry of the space). If we further use the fact that AC linear systems (see Definition 31)
have zero right hand side (b = 0), then the update rule of SDSA takes the form:

yt+1 = yt − St(S
>
t AA>St)

†S>t A(x0 + A>yt), (5.3)
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where St is a random matrix drawn independently at each iteration t from an arbitrary but
fixed distribution D, and † denotes the Moore-Penrose pseudoinverse.

The corresponding primal iterates are defined via:

xt := φ(yt) = x0 + A>yt. (5.4)

The relevance of this all to average consensus follows through the observation that for a
specific choice of matrix A and distribution D, the primal method produced by combining (5.4)
and (5.3) is equivalent to the (standard) randomized pairwise gossip method (see discussion in
Chapter 4). In that case, SDSA is a dual variant of randomized pairwise gossip. In particular,
in this chapter, we define D as follows: St is a unit basis vector in Rm, chosen uniformly at
random from the collection of all such unit basis vectors, denoted {fe | e ∈ E}. In this case,
SDSA is the randomized coordinate ascent method applied to the dual problem.

5.2.3 Randomized gossip setup: choosing A

We wish (A, b) to be an average consensus (AC) system (see Definition 31). As we explained
in Chapter 4 if Ax = b is an AC system, then the solution of the primal problem (5.1) is
necessarily x∗ = c̄ ·1, where c̄ = 1

n

∑n
i=1 x

0
i is the value that each node needs to compute in the

standard average consensus problem (x∗i = c̄ for all i ∈ V).

In the rest of this chapter we focus on a specific AC system; the one in which the matrix A
is the incidence matrix of the graph G. In particular, we let A ∈ Rm×n be the matrix defined
as follows. Row e = (i, j) ∈ E of A is given by Aei = 1, Aej = −1 and Ael = 0 if l /∈ {i, j}.
Notice that the system Ax = 0 encodes the constraints xi = xj for all (i, j) ∈ E , as desired.

5.2.4 Randomized pairwise gossip

We provide both primal and dual form of the (standard) randomized pairwise gossip algorithm.

The primal form is standard and needs no lengthy commentary. At the beginning of the
process, node i contains private information ci = x0

i . In each iteration we sample a pair of
connected nodes (i, j) ∈ E uniformly at random, and update xi and xj to their average. We let
the values at the remaining nodes intact.

Algorithm 14 (Primal form)

Input: Vector of private values c ∈ Rn.
Initialize: Set x0 = c.

1: for t = 0, 1, . . . , k − 1 do
2: Choose edge e = (i, j) ∈ E uniformly at random.
3: Update the primal variable:

xt+1
l =

{
xt
i+x

t
j

2 , l ∈ {i, j}
xtl , l /∈ {i, j}.

4: end for
5: Return xk

The dual form of the standard randomized pairwise gossip method is a specific instance of
SDSA, as described in (5.3), with x0 = c and St being a randomly chosen standard unit basis
vector fe in Rm (e is a randomly selected edge). It can be seen [74] that in that case, (5.3)
takes the following form:
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Algorithm 14 (Dual form)

Input: Vector of private values c ∈ Rn.
Initialize: Set y0 = 0 ∈ Rm.

1: for t = 0, 1, . . . , k − 1 do
2: Choose edge e = (i, j) ∈ E uniformly at random.
3: Update the dual variable:

yt+1 = yt + λtfe where λt = argmaxλ′D(yt + λ′fe).

4: end for
5: Return yk

The following lemma is useful for the analysis of all our methods. It describes the increase
in the dual function value after an arbitrary change to a single dual variable e.

Lemma 40. Define z = yt + λfe, where e = (i, j) and λ ∈ R. Then

D(z)−D(yt) = −λ(xti − xtj)− λ2. (5.5)

Proof. The claim follows by direct calculation:

D(yt + λfe)−D(yt) = −(Ac)>(yt + λfe)−
1

2
‖A>(yt + λfe)‖2 + (Ac)>yt +

1

2
‖A>yt‖2

= −λf>e A (c+ A>yt)︸ ︷︷ ︸
xt

−1

2
λ2 ‖A>fe‖2︸ ︷︷ ︸

=2

= −λ(xti − xtj)− λ2.

The maximizer in λ of the expression in (5.5) leads to the exact line search formula λt =
(xtj − xti)/2 used in the dual form of the method.

5.2.5 Complexity results

With graph G = {V, E} we now associate a certain quantity, which we shall denote β = β(G). It
is the smallest nonnegative number β such that the following inequality2 holds for all x ∈ Rn:∑

(i,j)

(xj − xi)2 ≤ β
∑

(i,j)∈E

(xj − xi)2. (5.6)

The Laplacian matrix of graph G is given by L = A>A. Let λ1(L) ≥ λ2(L) ≥ · · · ≥
λn−1(L) ≥ λn(L) be the eigenvalues of L. The algebraic connectivity of G is the second smallest
eigenvalue of L:

α(G) = λn−1(L). (5.7)

We have λn(L) = 0. Since we assume G to be connected, we have α(G) > 0. Thus, α(G) is
the smallest nonzero eigenvalue of the Laplacian: α(G) = λ+

min(L) = λ+
min(A>A). As the next

result states, the quantities β(G) and α(G) are inversely proportional.

Lemma 41. β(G) = n
α(G) .

Proof. See Section 5.6.1.

The following theorem gives a complexity result for (standard) randomized gossip. Our
analysis is dual in nature.

2We write
∑

(i,j) to indicate sum over all unordered pairs of vertices. That is, we do not count (i, j) and

(j, i) separately, only once. By
∑

(i,j)∈E we denote a sum over all edges of G. On the other hand, by writing∑
i

∑
j , we are summing over all (unordered) pairs of vertices twice.
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Theorem 42. Consider the randomized gossip algorithm (Algorithm 14) with uniform edge-
selection probabilities: pe = 1/m. Then:

E
[
D(y∗)−D(yk)

]
≤
(

1− α(G)

2m

)k
[D(y∗)−D(y0)].

Proof. See Section 5.6.2

Theorem 42 yields the complexity estimate O
(

2m
α(G) log(1/ε)

)
, which exactly matches the

complexity result obtained from the primal analysis (see (4.22) in Chapter 4). Hence, the primal
and dual analyses give the same rate.

Randomized coordinate descent methods were first analyzed in [104, 139, 166, 167]. For a
recent treatment, see [160, 161]. Duality in randomized coordinate descent methods was studied
in [178, 163]. Acceleration was studied in [102, 51, 2]. These methods extend to nonsmooth
problems of various flavours [50, 22].

With all of this preparation, we are now ready to formulate and analyze our private gossip
algorithms; we do so in Section 5.3.

5.3 Private Gossip Algorithms

In this section, we introduce three novel private gossip algorithms, complete with iteration
complexity guarantees. In Section 5.3.1 the key relationships between the measures of success
(see Table 5.1) of all proposed algorithms are presented. In Section 5.3.2 the privacy is protected
via a binary communication protocol. In Section 5.3.3 we communicate more: besides binary
information, we allow for the communication of a bound on the gap, introducing the ε-gap
oracle. In Section 5.3.4 we introduce a privacy-protection mechanism based on a procedure we
call controlled noise insertion.

5.3.1 Measures of success

We devote this subsection to present Lemma 43 that formally specifies the connections between
the different measures of suboptimality of the privacy preserving algorithms, firstly presented
in Table 5.1.

Lemma 43. (Relationship between convergence measures) Suppose that x is primal variable
corresponding to the dual variable y as defined in (5.4). Dual suboptimality can be expressed as
the following [74]:

D(y∗)−D(y) =
1

2
‖c̄1− x‖2. (5.8)

Moreover, for any x ∈ Rn we have :

1

2n

n∑
i=1

n∑
j=1

(xj − xi)2 = ‖c̄1− x‖2 (5.9)

∑
e=(i,j)∈E

|xi − xj | ≤
√
mn‖c̄1− x‖, (5.10)

∑
e=(i,j)∈E

|xi − xj | ≥
√
α(G)‖c̄1− x‖, (5.11)

∑
e=(i,j)∈E

|xi − xj | ≥ ε |{(i, j) ∈ E : |xi − xj | ≥ ε}| . (5.12)

Proof. See Section 5.6.3.

5.3.2 Private gossip via binary oracle

We now present the gossip algorithm with Binary Oracle in detail and provide theoretical
convergence guarantee. The information exchanged between sampled nodes is constrained to a
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single bit, describing which of the nodes has the higher value. As mentioned earlier, we only
present the conceptual idea, not how exactly would the oracle be implemented within a secure
multiparty protocol between participating nodes [26].

We will first introduce the dual version of the algorithm.

Algorithm 15 (Dual form)

Input: Vector of private values c ∈ Rn, sequence of positive stepsizes {λt}∞t=0

Initialize: Set y0 = 0 ∈ Rm, x0 = c.
1: for t = 0, 1, . . . , k − 1 do
2: Choose edge e = (i, j) ∈ E uniformly at random.
3: Update the dual variable:

yt+1 =

{
yt + λtfe, xti < xtj ,

yt − λtfe, xti ≥ xtj .

4: Set

xt+1
i =

{
xti + λt, xti < xtj ,

xti − λt, xti ≥ xtj .

xt+1
j =

{
xtj − λt, xti < xtj ,

xtj + λt xti ≥ xtj .

xt+1
l = xtl l 6∈ {i, j}

5: end for
6: Return yk

The update of primal variables above is equivalent to set xt+1 as primal point corresponding
to dual iterate: xt+1 = c+ A>yt+1 = xt + A>(yt+1 − yt). In other words, the primal iterates
{xt} associated with the dual iterates {yt} can be written in the form:

xt+1 =

{
xt + λtA>e:, xti < xtj ,

xt − λtA>e:, xti ≥ xtj .

It is easy to verify that due to the structure of A, this is equivalent to the updates above.

Since the evolution of dual variables {yk} serves only the purpose of the analysis, the method
can be written in the primal-only form as follows:

Algorithm 15 (Primal form)

Input: Vector of private values c ∈ Rn, sequence of positive stepsizes {λt}∞t=0

Initialize: Set x0 = c.
1: for t = 0, 1, . . . , k − 1 do
2: Choose edge e = (i, j) ∈ E uniformly at random.
3: Set

xt+1
i =

{
xti + λt, xti < xtj ,

xti − λt, xti ≥ xtj .

xt+1
j =

{
xtj − λt, xti < xtj ,

xtj + λt xti ≥ xtj .

xt+1
l = xtl l 6∈ {i, j}

4: end for
5: Return xk
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Given a sequence of stepsizes {λt}, it will be convenient to define αk :=
∑k
t=0 λ

t and

βk :=
∑k
t=0 (λt)

2
. In the following theorem, we study the convergence of the quantity

Lt :=
1

m

∑
e=(i,j)∈E

|xti − xtj |. (5.13)

Theorem 44. For all k ≥ 1 we have

min
t=0,1,...,k

E
[
Lt
]
≤

k∑
t=0

λt

αk
E
[
Lt
]
≤ Uk :=

D(y∗)−D(y0)

αk
+
βk

αk
. (5.14)

Moreover:

(i) If we set λt = λ0 > 0 for all t, then Uk = D(y∗)−D(y0)
λ0(k+1) + λ0.

(ii) Let R be any constant such that R ≥ D(y∗) − D(y0). If we fix k ≥ 1, then the choice
of stepsizes {λ0, . . . , λk} which minimizes Uk correspond to the constant stepsize rule

λt =
√

R
k+1 for all t = 0, 1, . . . , k, and Uk = 2

√
R
k+1 .

(iii) If we set λt = a/
√
t+ 1 for all t = 0, 1, . . . , k, then

Uk ≤ D(y∗)−D(y0) + a2 (log(k + 3/2) + log(2))

2a
(√
k + 2− 1

) = O
(

log(k)√
k

)

Proof. See Section 5.6.4

The part (ii) of Theorem 44 is useful in the case that we know exactly the number of iter-
ations before running the algorithm, providing in a sense optimal stepsizes and rate O(1/

√
k).

However, this might not be the case in practice. Therefore part (iii) is also relevant, which
yields the rate O(log(k)/

√
k). These bounds are significantly weaker than the standard bound

in Theorem 42. This should not be surprising though, as we use significantly less information
than the Standard Gossip algorithm.

Nevertheless, there is a potential gap in terms of what rate can be practically achievable.
The following theorem can be seen as a form of a bound on what convergence rate is possible
to be attained by the Binary Oracle. However, this rate can be attained with access to very
strong information. It requires a specific sequence of stepsizes λt which is likely unrealistic in
practical scenarios. This result points to a gap in the analysis which we leave open. We do not
know whether the sublinear convergence rate in Theorem 44 is necessary or improvable without
additional information about the system.

Theorem 45. For Algorithm 15 with stepsizes chosen in iteration t adaptively to the current
values of xt as λt = 1

2m

∑
e∈E |xti − xtj |, we have

E
[
‖c1− xk‖2

]
≤
(

1− α(G)

2m2

)k
‖c1− x0‖2

Proof. See Section 5.6.5

Comparing Theorem 45 with the result for standard Gossip in Theorem 42, the convergence
rate is worse by factor of m, which is the price we pay for the weaker oracle.

An alternative to choosing adaptive stepsizes is the use of adaptive probabilities [28]. We
leave such a study for future work.

5.3.3 Private gossip via ε-gap oracle

Here we present the gossip algorithm with ε-Gap Oracle in detail and provide theoretical con-
vergence guarantees. The information exchanged between the sampled nodes is restricted to
be one of three cases, based on the difference of their values. As mentioned earlier, we only
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present the conceptual idea, not how exactly would the oracle be implemented within a secure
multiparty protocol between participating nodes [26].

We will first introduce the dual version of the algorithm.

Algorithm 16 (Dual form)

Input: Vector of private values c ∈ Rn; error tolerance ε > 0
Initialize: Set y0 = 0 ∈ Rm; x0 = c.

1: for t = 0, 1, . . . , k − 1 do
2: Choose edge e = (i, j) ∈ E uniformly at random.
3: Update the dual variable:

yt+1 =


yt + ε

2fe, xti − xtj < −ε
yt − ε

2fe, xtj − xti < −ε,
yt, otherwise.

4: If xti ≤ xtj − ε then xt+1
i = xti + ε

2 and xt+1
j = xtj − ε

2

5: If xtj ≤ xti − ε then xt+1
i = xti − ε

2 and xt+1
j = xtj + ε

2
6: end for
7: Return yk

Note that the primal iterates {xt} associated with the dual iterates {yt} can be written in
the form:

xt+1 =


xt + ε

2A>e:, xti − xtj < −ε
xt − ε

2A>e:, xtj − xti < −ε,
xt, otherwise.

The above is equivalent to setting xt+1 = xt + A>(yt+1 − yt) = c+ A>yt+1.
Since the evolution of dual variables {yt} serves only the purpose of the analysis, the method

can be written in the primal-only form as follows:

Algorithm 16 (Primal form)

Input: Vector of private values c ∈ Rn; error tolerance ε > 0
Initialize: Set x0 = c.

1: for t = 0, 1, . . . , k − 1 do
2: Set xt+1 = xt

3: Choose edge e = (i, j) ∈ E uniformly at random.
4: If xti ≤ xtj − ε then xt+1

i = xti + ε
2 and xt+1

j = xtj − ε
2

5: If xtj ≤ xti − ε then xt+1
i = xti − ε

2 and xt+1
j = xtj + ε

2
6: end for
7: Return xk

Before stating the convergence result, let us define a quantity the convergence will naturally
depend on. For each edge e = (i, j) ∈ E and iteration t ≥ 0 define the random variable

∆t
e(ε) :=

{
1, |xti − xtj | ≥ ε,
0, otherwise.

Moreover, let

∆t(ε) :=
1

m

∑
e∈E

∆t
e(ε). (5.15)

The following Lemma bounds the expected increase in dual function value in each iteration.

Lemma 46. For all t ≥ 0 we have E
[
D(yt+1)−D(yt)

]
≥ ε2

4 E [∆t(ε)].

Proof. See Section 5.6.6
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Our complexity result will be expressed in terms of the quantity:

δk(ε) := E

[
1

k

k−1∑
t=0

∆t(ε)

]
=

1

k

k−1∑
t=0

E
[
∆t(ε)

]
. (5.16)

Theorem 47. For all k ≥ 1 we have

δk(ε) ≤
4
(
D(y∗)−D(y0)

)
kε2

.

Proof. See Section 5.6.7

Note that if ∆k(ε) = 0, it does not mean the primal iterate xk is optimal. This only implies
that the values of all pairs of directly connected nodes differ by less than ε.

5.3.4 Private gossip via controlled noise insertion

In this section, we present the gossip algorithm with Controlled Noise Insertion. As mentioned in
the introduction of this chapter, the approach is similar to the technique proposed in [123, 124].
Those works, however, address only algorithms in the synchronous setting, while our work is
the first to use this idea in the asynchronous setting. Unlike the above, we provide finite time
convergence guarantees and allow each node to add the noise differently, which yields a stronger
result.

In our approach, each node adds noise to the computation independently of all other nodes.
However, the noise added is correlated between iterations for each node. We assume that every
node owns two parameters — the initial magnitude of the generated noise σ2

i and rate of decay
of the noise φi. The node inserts noise wtii to the system every time that an edge corresponding
to the node was chosen, where variable ti carries an information how many times the noise was
added to the system in the past by node i. Therefore, if we denote by t the current number of
iterations, we have

∑n
i=1 ti = 2t.

In order to ensure convergence to the optimal solution, we need to choose a specific structure
of the noise in order to guarantee the mean of the values xi converges to the initial mean. In
particular, in each iteration a node i is selected, we subtract the noise that was added last time,
and add a fresh noise with smaller magnitude:

wtii = φtii v
ti
i − φ

ti−1
i vti−1

i , (5.17)

where 0 ≤ φi < 1, v−1
i = 0 and vtii ∼ N(0, σ2

i ) for all iteration counters ki ≥ 0 is independent to
all other randomness in the algorithm. This ensures that all noise added initially is gradually
withdrawn from the whole network.

After the addition of noise, a standard Gossip update is made, which sets the values of
sampled nodes to their average. Hence, we have

lim
t→∞

E

(c− 1

n

n∑
i=1

xti

)2
 = lim

t→∞
E

( 1

n

n∑
i=1

φti−1
i vti−1

i

)2


≤ lim
t→∞

E

[
1

n

n∑
i=1

(
φti−1
i vti−1

i

)2]

=
1

n
lim
t→∞

n∑
i=1

E
[(
φti−1
i vti−1

i

)2]
=

1

n
lim
t→∞

n∑
i=1

E
[
φ2ti−2
i

]
E
[(
vti−1
i

)2]
=

1

n
lim
t→∞

n∑
i=1

E
[
φ2ti−2
i

]
σ2
i =

1

n

n∑
i=1

σ2
i lim
t→∞

E
[
φ2ti−2
i

]
= 0,
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as desired.
It is not the purpose of this work to define any quantifiable notion of protection of the initial

values formally. However, we note that it is likely the case that the protection of private value
ci will be stronger for bigger σi and for φi closer to 1.

For simplicity, we provide only the primal algorithm below.

Algorithm 17 (Primal form)

Input: Vector of private values c ∈ Rn; initial variances σ2
i ∈ R+ and variance decrease rate

φi such that 0 ≤ φi < 1 for all nodes i.
Initialize: Set x0 = c; t1 = t2 = · · · = tn = 0, v−1

1 = v−1
2 = · · · = v−1

n = 0.
1: for t = 0, 1, . . . , k − 1 do
2: Choose edge e = (i, j) ∈ E uniformly at random.

3: Generate vtii ∼ N(0, σ2
i ) and v

tj
j ∼ N(0, σ2

j )
4: Set

wtii = φtii v
ti
i − φ

ti−1
i vti−1

i

w
tj
j = φ

tj
j v

tj
j − φ

tj−1
j v

tj−1
j

5: Update the primal variable:

xt+1
i = xt+1

j =
xti + wtii + xtj + w

tj
j

2
, ∀ l 6= i, j : xt+1

l = xtl

6: Set ti = ti + 1, tj = tj + 1
7: end for
8: Return xk

We now provide results of dual analysis of Algorithm 17. The following lemma provides us
the expected decrease in dual suboptimality for each iteration.

Lemma 48. Let di denote the number of neighbours of node i. Then,

E
[
D(y∗)−D(yt+1)

]
≤
(

1− α(G)

2m

)
E
[
D(y∗)−D(yt)

]
+

1

4m

n∑
i=1

diσ
2
i E
[
φ2ti
i

]
− 1

2m

∑
e∈E

E
[(
φti−1
i vti−1

i xtj + φ
tj−1
j v

tj−1
j xti

)]
.

(5.18)

Proof. See Section 5.6.8

We use the lemma to prove our main result, in which we show linear convergence for the
algorithm. For notational simplicity, we decided to have ρt = (ρ)t, i.e. superscript of ρ denotes
its power, not an iteration counter.

Theorem 49. Let us define the following quantities:

ρ := 1− α(G)

2m
,

ψt :=
1∑n

i=1 (diσ2
i )

n∑
i=1

diσ
2
i

(
1− di

m

(
1− φ2

i

))t
.

Then for all k ≥ 1 we have the following bound

E
[
D(y∗)−D(yk)

]
≤ ρk

(
D(y∗)−D(y0)

)
+

∑(
diσ

2
i

)
4m

k∑
t=1

ρk−tψt.

Proof. See Section 5.6.9
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Note that ψt is a weighted sum of t-th powers of real numbers smaller than one. For large
enough t, this quantity will depend on the largest of these numbers. This brings us to define
M as the set of indices i for which the quantity 1− di

m

(
1− φ2

i

)
is maximized:

M = arg max
i

{
1− di

m

(
1− φ2

i

)}
.

Then for any imax ∈M we have

ψt ≈ 1∑n
i=1 (diσ2

i )

∑
i∈M

diσ
2
i

(
1− di

m

(
1− φ2

i

))t
=

∑
i∈M diσ

2
i∑n

i=1 (diσ2
i )

(
1− dimax

m

(
1− φ2

imax

))t
,

which means that increasing φj for j 6∈M will not substantially influence convergence rate.
Note that as soon as we have

ρ > 1− di
m

(
1− φ2

i

)
(5.19)

for all i, the rate from theorem 49 will be driven by ρk (as k →∞) and we will have

E
[
D(y∗)−D(yk)

]
= Õ

(
ρk
)

(5.20)

One can think of the above as a threshold: if there is i such that φi is large enough so that
the inequality (5.19) does not hold, the convergence rate is driven by φimax

. Otherwise, the rate
is not influenced by the insertion of noise. Thus, in theory, we do not pay anything in terms of
performance as long as we do not hit the threshold. One might be interested in choosing φi so
that the threshold is attained for all i, and thus M = {1, . . . , n}. This motivates the following
result:

Corollary 50. Let us choose

φi :=

√
1− γ

di
(5.21)

for all i, where γ ≤ dmin. Then

E
[
D(y∗)−D(yk)

]
≤

(
1−min

(
α(G)

2m
,
γ

m

))k(
D(y∗)−D(y0) +

∑n
i=1

(
diσ

2
i

)
4m

k

)
.

As a consequence, φi =
√

1− α(G)
2di

is the largest decrease rate of noise for node i such that

the guaranteed convergence rate of the algorithm is not violated.

Proof. See Section 5.6.10

While the above result clearly states the important threshold, it is not always practical
as α(G) might not be known. However, note that if we choose ndmin

2(n−1) ≤ γ ≤ dmin, we have

min
(
α(G)
2m , γm

)
= α(G)

2m since α(G)
2 ≤ n

n−1
dmin

2 ≤ γ, where e(G) denotes graph edge connectivity:

the minimal number of edges to be removed so that the graph becomes disconnected. Inequality
α(G) ≤ n

n−1dmin is a well known result in spectral graph theory [52]. As a consequence, if for
all i we have

φi ≤

√
1− (n− 1)dmin

2ndi
,

then the convergence rate is not driven by the noise.

5.4 Numerical Evaluation

We devote this section to experimentally evaluate the performance of the Algorithms 15, 16
and 17 we proposed in the previous sections, applied to the Average Consensus problem. In
the experiments, we used two popular graph topologies the cycle graph (ring network) and the
random geometric graph (see Figure 5.1 for an illustration of the two graphs).
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(a) Cycle Graph: C(10)

(b) Random Geometric Graph: G(n, r)

Figure 5.1: Illustration of the two graph topologies we use in this section.

• Cycle graph with n nodes: C(n). In our experiments we choose n = 10. This small simple
graph with regular topology is chosen for illustration purposes.

• Random geometric graph with n nodes and radius r: G(n, r). Random geometric graphs
[152] are very important in practice because of their particular formulation which is ideal
for modeling wireless sensor networks [76, 16]. In our experiments we focus on a 2-
dimensional random geometric graph G(n, r) which is formed by placing n nodes uniformly
at random in a unit square with edges between nodes which are having euclidean distance
less than the given radius r. We set this to be to be r = r(n) =

√
log(n)/n — it is well

know that the connectivity is preserved in this case [76]. We set n = 100.

Setup: In all experiments we generate a vector with of initial values ci from a uniform
distribution over [0, 1]. We run several experiments and present two kinds of figures that help
us to understand how the algorithms evolve and verify the theoretical results of the previous
sections. These figures are:

1. The evolution of the initial values of the nodes. In these figures, we plot how the trajectory
of the values xti of each node i evolves throughout iterations. The black dotted horizontal
line represents the exact average consensus value which all nodes should approach, and
thus all other lines should approach this level.

2. The evolution of the relative error measure ‖xt − x∗‖2/‖x0 − x∗‖2 where x0 = c ∈ Rn
is the starting vector of the values of the nodes. In these figures we choose to have the
relative error, both in normal and logarithmic scale on the vertical axis and the number
of iterations on the horizontal axis.

For our evaluation we run each privacy preserving algorithm for several parameters and for a
pre-specified number of iterations not necessarily the same for each experiment.

To illustrate the first concept (trajectories of the values xti) , we provide a simple example
of the evolution of the initial values xti for the case of the Standard Gossip algorithm [16] in
Figure 5.2. The horizontal black dotted line represents the average consensus value. It is the
exact average of the initial values ci of the nodes in the network.
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(a) Cycle Graph (b) Random Geometric Graph

Figure 5.2: Trajectories of the values xti for the Standard Gossip algorithm for Cycle Graph
and a random geometric graph. Each line corresponds to value xi of node i ∈ V.

In the rest of this section we evaluate the performance of the three privacy preserving
randomized gossip algorithms of Section 5.3, and contrast with the above Standard Gossip
algorithm, which we refer to as “Baseline” in the following figures labels.

5.4.1 Private gossip via binary oracle

In this section, we evaluate the performance of Algorithm 15 presented in Section 5.3.2. In the
algorithm, the input parameters are the positive stepsizes {λt}∞t=0. The goal of the experiments
is to compare the performance of the proposed algorithm using different choices of λt.

In particular, we use decreasing sequences of stepsizes λt = 1/t and λt = 1/
√
t, and three

different fixed values for the stepsizes λt = λ ∈ {0.001, 0.01, 0.1}. We also include the adaptive
choice λt = 1

4m

∑
e∈E |xti−xtj | which we have proven to converge with linear rate in Theorem 45.

We compare these choices in Figures 5.4 and 5.6, along with the Standard Gossip algorithm for
clear comparison.

(a) λt = λ = 0.001 (b) λt = λ = 0.01 (c) λt = λ = 0.1

(d) λt = 1
t

(e) λt = 1√
t

(f) λt = Adaptive

Figure 5.3: Trajectories of the values of xti for Binary Oracle run on the cycle graph.
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(a) Linear Scale (b) Logarithmic Scale

Figure 5.4: Convergence of the Binary Oracle run on the cycle graph.

In general, we clearly see what is expected with the constant stepsizes — that they converge
to a certain neighbourhood and oscillate around optimum. With smaller stepsize, this neigh-
bourhood is more accurate, but it takes longer to reach. With decreasing stepsizes, Theorem 44
suggests that λt of order 1/

√
t should be optimal. Figure 5.6 demonstrates this, as the choice of

λt = 1/t decreases the stepsizes too quickly. However, this is not the case in Figure 5.4 in which
we observe the opposite effect. This is due to the cycle graph being small and simple, and hence
the diminishing stepsize becomes a problem only after a relatively large number of iterations.
With the adaptive choice of stepsizes, we recover the linear convergence rate as predicted by
Theorem 45.

The results in Figure 5.6 show one surprising comparison. The adaptive choice of stepsizes
does not seem to perform better than λt = 1/

√
t. However, we verified that when running for

more iterations, the linear rate of adaptive stepsize is present and converges significantly faster
to higher accuracies. We chose to present the results for 6000 iterations since we found it overall
cleaner.

(a) λt = λ = 0.001 (b) λt = λ = 0.01 (c) λt = λ = 0.1

(d) λt = 1
t

(e) λt = 1√
t

(f) λt = Adaptive

Figure 5.5: Trajectories of the values of xti for Binary Oracle run on the random geometric
graph.
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(a) Linear Scale (b) Logarithmic Scale

Figure 5.6: Convergence of the Binary Oracle run on the random geometric graph.

5.4.2 Private gossip via ε-gap oracle

In this section, we evaluate the performance of the Algorithm 16 presented in Section 5.3.3. In
the algorithm, the input parameter is the positive error tolerance variable ε. For experimental
evaluation. we choose three different values for the input, ε ∈ {0.2, 0.02, 0.002}, and again use
the same cycle and random geometric graphs. The trajectories of the values xti are presented
in Figures 5.7 and 5.9, respectively. The performance of the algorithm in terms of the relative
error is presented in Figures 5.8 and 5.10.

The performance is exactly matching the expectation — with larger ε, the method converges
very fast to a wide neighbourhood of the optimum. For a small value, it converges much closer
to the optimum, but it requires more iterations.

(a) ε = 0.002 (b) ε = 0.02 (c) ε = 0.2

Figure 5.7: Trajectories of the values of xti for ε-Gap Oracle run on the cycle graph.

(a) Linear Scale (b) Logarithmic Scale

Figure 5.8: Convergence of the ε-Gap Oracle run on the cycle graph.
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(a) ε = 0.002 (b) ε = 0.02 (c) ε = 0.2

Figure 5.9: Trajectories of the values of xti for ε-Gap Oracle run on the random geometric graph.

(a) Linear Scale (b) Logarithmic Scale

Figure 5.10: Convergence of the ε-Gap Oracle run on the random geometric graph.

5.4.3 Private gossip via controlled noise insertion

In this section, we evaluate the performance of Algorithm 17 presented in Section 5.3.4. This
algorithm has two different parameters for each node i. These are the initial variance σ2

i ≥ 0
and the rate of decay, φi, of the noise.

To evaluate the impact of these parameters, we perform several experiments. As earlier,
we use the same graph structures for evaluation: cycle graph and random geometric graph.
The algorithm converges with a linear rate depending on the minimum of two factors — see
Theorem 49 and Corollary 50. We will verify that this is indeed the case, and for values of
φi above a certain threshold, the convergence is driven by the rate at which the noise decays.
This is true for both identical values of φi for all i, and for varying values as per (5.21). We
further demonstrate the latter is superior in the sense that it enables insertion of more noise,
without sacrificing the convergence speed. Finally, we study the effect of various magnitudes of
the noise inserted initially.

Fixed variance, identical decay rates

In this part, we run Algorithm 17 with σi = 1 for all i, and set φi = φ for all i and some φ. We
study the effect of varying the value of φ on the convergence of the algorithm.

In both Figures 5.12b and 5.14b, we see that for small values of φ, we eventually recover
the same rate of linear convergence as the Standard Gossip algorithm. If the value of φ is
sufficiently close to 1 however, the rate is driven by the noise and not by the convergence of
the Standard Gossip algorithm. This value is φ = 0.98 for cycle graph, and φ = 0.995 for the
random geometric graph in the plots we present.

Looking at the individual runs for small values of φ in Figure 5.14b, we see some variance
in terms of when the asymptotic rate is realized. We would like to point out that this does
not provide additional insight into whether specific small values of φ are in general better for
the following reason. The Standard Gossip algorithm is itself a randomized algorithm, with an
inherent uncertainty in the convergence of any particular run. If we ran the algorithms multiple
times, we observe variance in the evolution of the suboptimality of similar magnitude, just as
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what we see in the figure. Hence, the variance is expected, and not significantly influenced by
the noise.

(a) φ = 0.001 (b) φ = 0.01 (c) φ = 0.1

(d) φ = 0.5 (e) φ = 0.9 (f) φ = 0.98

Figure 5.11: Trajectories of the values of xti for Controlled Noise Insertion run on the cycle
graph for different values of φ.

(a) Linear Scale (b) Logarithmic Scale

Figure 5.12: Convergence of the Controlled Noise Insertion run on the cycle graph for different
values of φ.
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(a) φ = 0.001 (b) φ = 0.01 (c) φ = 0.1

(d) φ = 0.5 (e) φ = 0.9 (f) φ = 0.995

Figure 5.13: Trajectories of the values of xti for Controlled Noise Insertion run on the random
geometric graph for different values of φ.

(a) Linear Scale (b) Logarithmic Scale

Figure 5.14: Convergence of the Controlled Noise Insertion run on the random geometric graph
for different values of φ.

Variance 1 and different decay rates

In this section, we perform a similar experiment as above, but the values φi are not all the
same. We rather control them by the choice of γ as in (5.21). Note that by decreasing γ, we
increase φi, and thus smaller γ means the noise decays at a slower rate. Here, due to the regular
structure of the cycle graph, we present only results for the random geometric graph.

It is not straightforward to compare this setting with the setting of identical φi, and we
return to it in the next section. Here we only remark that we again see the existence of a
threshold predicted by theory, beyond which the convergence is dominated by the inserted
noise. Otherwise, we recover the rate of the Standard Gossip algorithm.
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(a) γ = 0.1 (b) γ = 0.2 (c) γ = 0.3

(d) γ = 0.5 (e) γ = 1 (f) γ = 2

Figure 5.15: Trajectories of the values of xti for Controlled Noise Insertion run on the random
geometric graph for different values of φi, controlled by γ.

(a) Normal Scale (b) Logarithmic Scale

Figure 5.16: Convergence of the Controlled Noise Insertion run on the random geometric graph
for different values of φi, controlled by γ.

Impact of varying φi

In this experiment, we demonstrate the practical utility of letting the rate of decay φi to be
different on each node i. In order to do so, we run the experiment on the random geometric
graph and compare the settings investigated in the previous two sections — the noise decay
rate driven by φ, or by γ.

In first place, we choose the values of φi such that that the two factors in Corollary 50 are

equal. For the particular graph we used, this corresponds to γ ≈ 0.17 with φi =
√

1− α(G)
2di

.

Second, we make the factors equal, but with constraint of having φi to be equal for all i. This
corresponds to φi ≈ 0.983 for all i.

The performance for a large number of iterations is displayed in the left side of Figure 5.17.
We see that the above two choices indeed yield very similar practical performance, which also
eventually matches the rate predicted by theory. For a complete comparison, we also include
the performance of the Standard Gossip algorithm.

The important message is conveyed in the histogram in the right side of Figure 5.17. The
histogram shows the distribution of the values of φi for different nodes i. The minimum of
these values is what we needed in the case of identical φi for all i. However, most of the values
are significantly higher. This means, that if we allow the noise decay rates to depend on the
number of neighbours, we are able to increase the amount of noise inserted, without sacrificing
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practical performance. This is beneficial, as more noise will likely be beneficial for any formal
notion of protection of the initial values.

Figure 5.17: Left: Performance of the noise oracle with noise decrease rate chosen according to
Corollary 50. Right: Histogram of of distribution of φi

5.5 Conclusion

In this chapter, we addressed the Average Consensus problem via novel asynchronous privacy
preserving randomized gossip algorithms. In particular, we propose three different algorithmic
tools for the protection of the initial private values of the nodes.

The first two proposed algorithms “Private Gossip via Binary Oracle” and “Private Gossip
via ε-Gap Oracle” are based on the same idea of weakening the oracle used in the gossip update
rule. In these two protocols the chosen pair of nodes of each gossip step instead of share their
exact values they provide only categorical (or even binary) information to each other.

In the third protocol “Private Gossip via Controlled Noise Insertion”, we systematically
inject and withdraw noise throughout the iterations, so as to ensure convergence to the average
consensus value and at the same time protect the private information of the nodes.

In all cases, we provide explicit convergence rates and evaluate practical convergence on
common simulated network topologies.

Future work inludes the design of privacy preserving variants of several popular and fast gos-
sip protocols [7, 127, 82, 19, 106]. One can also investigate more challenging types of consensus
problems like the finite step consensus or consensus on networks with time-varying topology,
and design gossip protocols that preserve the privacy of the participating agents. Designing the
optimal network structure for information preservation is also an interesting research direction.

As we have already mentioned the gossip algorithms of this chapter do not address any
specific notion of privacy (no clear measure of privacy is presented) and it is still not clear
how the formal concept of differential privacy [47] can be applied in protocols for solving the
average consensus problem. Propose efficient differential privacy guarantees for gossip protocols
in general graphs is an interesting open problem.

5.6 Proofs of Main Results

5.6.1 Proof of Lemma 41

Let us first present a lemma that we use in the proof of Lemma 41.

Lemma 51. The eigenvalues of L̃ = nI− 11> are {0, n, n, . . . , n}

Proof. Clearly, L̃1 = 0. Consider some vector x such that 〈x,1〉 = 0. Then, L̃x = nIx−11>x =
nx + 11>x = nx thus x is an eigenvector corresponding to eigenvalue n. Thus, we can pick
n − 1 linearly independent eigenvectors of L̃ corresponding to eigenvalue n, which concludes
the proof.

Having established the above lemma let us present the proof Lemma 41.
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The Laplacian matrix of G is the matrix L = A>A. We have Lii = di (degree of vertex i),
Lij = Lji = −1 if (i, j) ∈ E and Lij = 0 otherwise. A simple computation reveals that for any
x ∈ Rn we have

x>Lx =
∑

e=(i,j)∈E

(xi − xj)2.

Let Ã be the n(n − 1)/2 × n matrix corresponding to the complete graph G̃ on V. Let
L̃ = Ã>Ã be its Laplacian. We have L̃ii = n − 1 for all i and L̃ij = −1 for i 6= j. So,

L̃ = nI− 11>. Then

x>L̃x = n‖x‖2 −

(
n∑
i=1

xi

)2

=
∑
(i,j)

(xi − xj)2.

Inequality (5.6) can therefore be recast as follows:

x>(nI− 11>)x ≤ x>β(G)Lx, x ∈ Rn.

Let β = β(G). Note that both L̃ and βL are Hermitian thus have real eigenvalues and there
exist an orthonormal basis of their eigenvectors. Suppose that {x1, . . . xn} are eigenvectors of
βL corresponding to eigenvalues λ1(βL), λ2(βL) . . . , λn(βL). Without loss of generality assume
that these eigenvectors form an orthonormal basis and λ1(βL) ≥ · · · ≥ λn(βL).

Clearly, λn(βL) = 0, xn = 1/
√
n, and λn−1(βL) = n. Lemma 51 states that eigenvalues of

L̃ are {0, n, n, . . . , n}.
One can easily see that eigenvector corresponding to zero eigenvalue of L̃ is xn. Note that

eigenvectors x1, . . . , xn−1 generate an eigenspace corresponding to eigenvalue n of L̃.

Consider some x =
∑n
i=1 cixi, ci ∈ R for all i. Then we have

x>L̃x =

n∑
i=1

λi

(
L̃
)
c2i ≤

n∑
i=1

λi (βL) c2i = x>βLx,

which concludes the proof.

5.6.2 Proof of Theorem 42

We first establish two lemmas which will be needed to prove Theorem 42.

Lemma 52. Assume that edge e = (i, j) is selected in iteration t of Algorithm 14. Then

D(yt+1)−D(yt) =
1

4
(xti − xtj)2. (5.22)

Proof. We have yt+1 = yt + λtfe where λt is chosen so that D(yt+1) − D(yt) is maximized.
Applying Lemma 40, we have

D(yt+1)−D(yt) = max
λ
−λ(xti − xtj)− λ2 =

1

4
(xti − xtj)2.

Lemma 53. Let x ∈ Rn such that 1
n

∑
i xi = c̄. Then

1

2
‖c̄1− x‖2 ≤ 1

2α(G)

∑
e=(i,j)∈E

(xi − xj)2. (5.23)
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Proof.

1

2
‖c̄1− x‖2 (5.9)

=
1

4n

n∑
i=1

n∑
j=1

(xj − xi)2 =
1

2n

∑
(i,j)

(xj − xi)2

(5.6)

≤ β(G)

2n

∑
e=(i,j)∈E

(xi − xj)2 Lemma 41
=

1

2α(G)

∑
e=(i,j)∈E

(xi − xj)2

Having established Lemmas 52 and 53, we can now proceed with the proof of Theorem 42:

E
[
D(y∗)−D(yt+1) | yt

]
= D(y∗)−D(yt)− E

[
D(yt+1)−D(yt) | yt

]
(5.22)

= D(y∗)−D(yt)−
∑

e=(i,j)∈E

1

4m
(xti − xtj)2

(5.8)
=

1

2
‖c̄1− xt‖2 −

∑
e=(i,j)∈E

1

4m
(xti − xtj)2

(5.23)

≤
(

1− α(G)

2m

)
1

2
‖c̄1− xt‖2

(5.8)
=

(
1− α(G)

2m

)(
D(y∗)−D(yt)

)
.

Taking expectation again, we get the recursion

E
[
D(y∗)−D(yt+1)

]
≤

(
1− α(G)

2m

)
E
[
D(y∗)−D(yt)

]
.

5.6.3 Proof of Lemma 43

Let us first present a Lemma that we use in the proof of Lemma 43.

Lemma 54.
n∑
i=1

 n∑
j=1

(xj − xi)

2

=
n

2

n∑
i=1

n∑
j=1

(xj − xi)2 (5.24)

Proof. Using simple algebra we have

n∑
i=1

 n∑
j=1

(xj − xi)

2

=

n∑
i=1

 n∑
j=1

xj − nxi

2

=

n∑
i=1


 n∑
j=1

xj

2

+ n2x2
i − 2nxi

 n∑
j=1

xj




= n

 n∑
j=1

xj

2

+ n2
n∑
i=1

x2
i − 2n

 n∑
j=1

xj

2

= n2
n∑
i=1

x2
i − n

(
n∑
i=1

xi

)2

.
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Manipulating right hand side of (5.24) we obtain

n

2

n∑
i=1

n∑
j=1

(xj − xi)2 =
n

2

n∑
i=1

n∑
j=1

(
x2
j + x2

i − 2xixj
)

= n2
n∑
i=1

x2
i − n

n∑
i=1

n∑
j=1

xixj = n2
n∑
i=1

x2
i − n

(
n∑
i=1

xi

)2

.

Clearly, LHS and RHS of (5.24) are equal.

In order to show (5.9) it is enough to notice that

‖c̄1− x‖2 =

n∑
i=1

(c̄− xi)2 =

n∑
i=1

 1

n

n∑
j=1

xj − xi

2

=

n∑
i=1

 n∑
j=1

1

n
(xj − xi)

2

(5.24)
=

1

2

n∑
i=1

n∑
j=1

1

n
(xj − xi)2

=
1

2n

n∑
i=1

n∑
j=1

(xj − xi)2.

Note that we have

1

nm

 ∑
e=(i,j)∈E

|xi − xj |

2

≤ 1

n

∑
e∈E

(xi − xj)2 ≤ 1

n

∑
(i,j)

(xi − xj)2 (5.9)
= ‖c̄1− x‖2,

which proves (5.10). On the other hand, we have

1

α(G)

 ∑
e=(i,j)∈E

|xi − xj |

2

≥ 1

α(G)

∑
e∈E

(xi − xj)2
(5.23)

≥ ‖c̄1− x‖2,

which concludes (5.11). Inequality (5.12) holds trivially.

5.6.4 Proof of Theorem 44

The following lemma is used in the proof of Theorem 44.

Lemma 55. Fix k ≥ 0 and let R > 0. Then

min
λ=(λ0,...,λk)∈Rk+1

R+ βk

αk
= 2

√
R

k + 1
,

and the optimal solution is given by λt =
√

R
k+1 for all t.

Proof. Define φ(λ) = R+βk

αk . If we write λ = rx, where r = ‖λ‖ and x is of unit norm, then

φ(tx) = R+r2

r〈1,x〉 . Clearly, for any fixed r, the x ∈ Rk+1 minimizing x 7→ φ(rx) is x = 1/‖1‖,
where 1 is the vector of ones in Rk+1. It now only remains to minimize the function r 7→ R+r2

r‖1‖ .

This function is convex and differentiable. Setting the derivative to zero leads to r =
√
R.

Combining the above, we get the optimal solution λ = r
‖1‖1 =

√
R
‖1‖1.

Let e = (i, j) be the edge selected at iteration t ≥ 0. Applying Lemma 40, we see that

D(yt+1) −D(yt) = λt|xti − xtj | − (λt)
2
. Taking expectation with respect to edge selection, we

154



get

E
[
D(yt+1)−D(yt) | yt

]
= −

(
λt
)2

+ λt · 1

m

∑
e=(i,j)∈E

|xti − xtj |,

and taking expectation again and using the tower property, we get the identity

E
[
D(yt+1)−D(yt)

]
= −

(
λt
)2

+ λt · E
[
Lt
]
.

Therefore,

D(y∗)−D(y0) ≥ E
[
D(yk+1)−D(y0)

]
= E

[
k∑
t=0

D(yt+1)−D(yt)

]

=

k∑
t=0

E
[
D(yt+1)−D(yt)

]
= −

k∑
t=0

(
λt
)2

+

k∑
t=0

λt · E
[
Lt
]
.

It remains to reshuffle the resulting inequality to obtain (5.14).

We can see that part (i) follows directly. Optimality of stepsizes in (ii) is due to Lemma 55.
To show (iii) we should state that

αk =

k∑
t=0

λk =

k+1∑
1

a√
t
≥ a

∫ k+2

t=1

t−1/2dt = 2a
(√

k + 2− 1
)

βk =

k∑
t=0

(
λk
)2

=

k+1∑
t=1

a2

t
≤ a2

∫ k+3/2

1/2

t−1dt = a2 (log(k + 3/2) + log(2))

The inequality above holds due to the fact that for t > 1/2 we have t−1 ≤
∫ t+1/2

t−1/2
x−1dx since

x−1 is convex function.

5.6.5 Proof of Theorem 45

Using Lemma 40 with we have

E
[
D(yt+1)−D(yt) | yt

]
= −

(
λt
)2

+ λt
1

m

∑
e∈E
|xti − xtj |

=
1

4m2

(∑
e∈E
|xti − xtj |

)2

≥ 1

4m2

∑
e∈E

(
xti − xtj

)2
.

Taking the expectation again we obtain

E
[
D(yt+1)−D(yt)

]
≥ 1

4m2
E

[∑
e∈E

(
xti − xtj

)2]
. (5.25)
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On the other hand, we have

D(yt+1)−D(yt) =
(
D(yt+1)−D(y∗)

)
+
(
D(y∗)−D(yt)

)
=

1

2
‖c1− xt‖2 − 1

2
‖c1− xt+1‖2

=
α(G)

4m2
‖c1− xt‖2 +

(
1− α(G)

2m2

)
1

2
‖c1− xt‖2

− 1

2
‖c1− xt+1‖2

(5.23)

≤ 1

4m2

∑
e=(i,j)∈E

(
xti − xtj

)2
+

(
1− α(G)

2m2

)
1

2
‖c1− xt‖2

− 1

2
‖c1− xt+1‖2.

Taking the expectation of the above and combining with (5.25) we obtain the desired recursion

E
[
‖c1− xt+1‖2

]
≤

(
1− α(G)

2m2

)
E
[
‖c1− xt‖2

]
.

5.6.6 Proof of Lemma 46

Let e = (i, j) be the edge selected at iteration t. Applying Lemma 40, we see that

D(yt+1)−D(yt) =


− ε

2 (xti − xtj)− ε2

4 , xti − xtj ≤ −ε
ε
2 (xti − xtj)− ε2

4 , xtj − xti ≤ −ε,
0, otherwise.

This implies that

D(yt+1)−D(yt)

{
≥ ε2

4 , if ∆t
e = 1,

= 0, if ∆t
e = 0.

Taking expectation in the selection of e, we get

E
[
D(yt+1)−D(yt) | yt

]
≥ ε2

4
· P(∆t

e = 1 | yt) + 0 · P(∆t
e = 0 | yt) =

ε2

4
∆t.

It remains to take expectation again.

5.6.7 Proof of Theorem 47

Since for all k ≥ 0 we have D(yk) ≤ D(y∗), it follows that

D(y∗)−D(y0) ≥ E
[
D(yk)−D(y0)

]
= E

[
k−1∑
t=0

D(yt+1)−D(yt)

]
=

k−1∑
t=0

E
[
D(yt+1)−D(yt)

]
.

It remains to apply Lemma 46.

5.6.8 Proof of Lemma 48

Let us first present three lemmas that we use in the proof of Lemma 48.

Lemma 56. Suppose that we run Algorithm 17 for t iterations and ti denotes the number of
times that some edge corresponding to node i was selected during the algorithm.

1. vtii and tj are independent for all (i.e., not necessarily distinct) i, j.

2. vtii and φ
tj
j are independent for all (i.e., not necessarily distinct) i, j.

156



3. wtii and w
tj
j have zero correlation for all i 6= j.

4. xtj and φtii v
ti
i have zero correlation for all (i.e., not necessarily distinct) i, j.

Proof. 1. Follows from the definition of vti .

2. Follows from the definition of vti .

3. Note that we have wtii = φtii v
ti
i − φ

ti−1
i vti−1

i and w
tj
j = φ

tj
j v

tj
j − φ

tj−1
j v

tj−1
j . Clearly, vtii

and w
tj
j have zero correlation. Similarly vti−1

i and w
tj
j have zero correlation. Thus, wtii

and w
tj
j have zero correlation.

4. Clearly, xtj is a function initial state and all instances of random variables up to the

iteration t. Thus, vtii is independent to xtj from the definition. Thus, xtj and φtii v
ti
i have

zero correlation.

Lemma 57.

E
[
φti−1
i vti−1

i xti
]

=
1

2
E
[(
φti−1
i vti−1

i

)2]
. (5.26)

Proof.

E
[
φti−1
i vti−1

i xti
]

= E
[
φti−1
i vti−1

i

((
xti −

φti−1
i vti−1

i

2

)
+
φti−1
i vti−1

i

2

)]
= E

[
φti−1
i vti−1

i

(
xti −

φti−1
i vti−1

i

2

)]
+

1

2
E
[(
φti−1
i vti−1

i

)2]
(∗)
= E

[
φti−1
i vti−1

i

(
xti−1
i + x

t0l
l + wti−1 + wt

0
l − φti−1

i vti−1
i

2

)]
+

1

2
E
[(
φti−1
i vti−1

i

)2]
(5.17)

= E

[
φti−1
i vti−1

i

(
xti−1
i + x

t0l
l + φti−1

i vti−1
i − φti−2

i vti−2
i

2

)]

+E

[
φti−1
i vti−1

i

(
φ
t0l
i v

t0l
l − φ

t0l−1
i v

t0l−1
l − φti−1

i vti−1
i

2

)]

+
1

2
E
[(
φti−1
i vti−1

i

)2]
= E

[
φti−1
i vti−1

i

(
xti−1
i + x

t0l
l + φ

t0l
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where in the first equality we add and subtracting
φ
ti−1

i v
ti−1

i

2 . In step (∗) we denote by l a node

such that that the noise φti−1
i vti−1

i was added to the system when the edge (i, l) was chosen
(we do not consider ti = 0 since in this case the Lemma 57 trivially holds).

Lemma 58.

E
[(
φtii v

ti
i + φ

tj
j v

tj
j

)2

|xt, et
]

= σ2
i φ

2ti
i + σ2

jφ
2tj
j . (5.27)
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Proof. Since we have E
[(
φtii v

ti
i + φ

tj
j v

tj
j

)
|xt, et

]
= 0, and also for any random variable X:

E
[
X2
]

= V (X) + E [X]
2
, we only need to compute the variance:

V
(
φtii v

ti
i + φ

tj
j v

tj
j

)
= V

(
φtii v

ti
i

)
+ V

(
φ
tj
j v

tj
j

)
=
(
φtii
)2 V (vtii )+

(
φ
tj
j

)2

V
(
v
tj
j

)
.

Having presented the above lemmas we can now proceed with the proof of Lemma 48.
Firstly, let us compute the increase of the dual function value at iteration t:

D(yt+1)−D(yt) =
1

2
‖c1− xt‖2 − 1

2
‖c1− xt+1‖2

=
1

2

(
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)
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)

+
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)2

+
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j

)2 − (xt+1
i

)2)
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(
w
tj
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)
+

1
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((
xtj
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(
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4

((
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)(
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1

2

(
xtj + xti

))
− 1

4

(
wtii + w

tj
j

)2

.(5.28)

Our goal is to estimate an upper bound of the quantity E
[
D(yt+1)−D(yt)

]
. There are three

terms in (5.28). Since the expectation is linear, we will evaluate the expectations of these three
terms separately and merge them at the end.

Taking the expectation over the choice of edge and inserted noise in iteration t we obtain

E
[

1

4

(
xti − xtj

)2 |xt] =
1

4m

∑
e∈E

(
xti − xtj

)2
. (5.29)

Thus we have

E
[
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4

(
xti − xtj

)2 | xt]
(5.29)

= E
[
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]
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(
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]
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]
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(
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≤ 1
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[
1

2
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(
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)
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[
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]
.

Taking the full expectation of the above and using tower property, we get

E
[
D(yt+1)−D(yt)− 1

4

(
xti − xtj

)2] ≤ (1− α(G)

2m

)
E
[
D(y∗)−D(yt)
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[
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(5.30)
Now we are going to take the expectation of the second term of (5.28). We will use the
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“tower rule” of expectations in the form

E [E [E [X | Y,Z] | Y ]] = E [X] (5.31)

where X,Y, Z are random variables. In particular, we get

E
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. (5.32)

In equation (5.32), et denotes the edge selected at iteration t.

Let us first calculate the inner most expectation of the right hand side of (5.32):

E
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Now we take the expectation of the last expression above with respect to the choice of an
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edge at t-th iteration. We obtain
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where in the last step we change the summation order.

Taking the expectation with respect to the algorithm we obtain
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Taking an expectation of the third term of (5.28) with respect to lastly added noise, the
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expression E
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Taking the expectation over et we obtain:
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where in the last step we change the summation order.
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Finally, taking the expectation with respect to the algorithm we get
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where in step (*) we change the summation order.

Combining (5.28) with (5.30), (5.33) and (5.34) we obtain
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which concludes the proof.

5.6.9 Proof of Theorem 49

Let us present two lemmas that we use in the proof of Theorem 49.

Lemma 59. After t iterations of algorithm 17 we have

E
[
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i

]
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(
1− di
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(
1− φ2
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))t
. (5.35)
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Proof.
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Lemma 60. Random variables φti−1
i vti−1

i and xtj are nonegatively correlated, i.e.

E
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i xtj
]
≥ 0. (5.36)

Proof. Denote Ri,j to be a random variable equal to 1 if the noise wtii was added to the system
when edge (i, j) was chosen and equal to 0 otherwise. We can rewrite the expectation in the
following way:
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to xj with the positive sign.

Combining (5.18) with the results of Lemmas 59 and 60 we obtain:
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=
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The recursion above gives us inductively the following
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which concludes the proof of the theorem.
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5.6.10 Proof of Corollary 50

Note that we have
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In view of Theorem 49, this gives us the following:
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

In this thesis we studied the design and analysis of novel efficient randomized iterative methods
for solving large scale linear systems, stochastic quadratic optimization problems, the best
approximation problem and quadratic optimization problems. Using these methods we also
proposed and analyzed efficient gossip protocols for solving the average consensus problem on
large scale networks.

In Chapter 2, we studied the convergence of several stochastic optimization algorithms
enriched with heavy ball momentum for solving stochastic optimization problems of special
structure. We proved global, non-asymptotic linear convergence rates of all of these methods as
well as accelerated linear rate for the case of the norm of expected iterates. We also introduced
a new momentum strategy called stochastic momentum which is beneficial in the case of sparse
data, and proved linear convergence in this setting. We corroborated our theoretical results
with extensive experimental testing.

In Chapter 3, we proposed and analyzed inexact variants of several stochastic algorithms for
solving quadratic optimization problems and linear systems. We provided linear convergence
rate under several assumptions on the inexactness error. The proposed methods require more
iterations than their exact variants to achieve the same accuracy. However, as we show through
our numerical evaluations, the inexact algorithms require significantly less time to converge.

In Chapter 4, we presented a general framework for the analysis and design of random-
ized gossip algorithms for solving the average consensus problem. Using tools from numerical
linear algebra and the area of randomized projection methods for solving linear systems, we
proposed novel serial, block and accelerated gossip protocols for solving the average consensus
and weighted average consensus problems.

In Chapter 5, we addressed the average consensus problem via novel asynchronous privacy
preserving randomized gossip algorithms. In particular, we proposed three different algorithmic
tools for the protection of the initial private values of the nodes. The first two proposed
algorithms “Private Gossip via Binary Oracle” and “Private Gossip via ε-Gap Oracle” are
based on the same idea of weakening the oracle used in the gossip update rule. Instead of
sharing their exact values, in these two protocols the chosen pair of nodes of each gossip step
provide only categorical (or even binary) information to each other. In the third protocol,
“Private Gossip via Controlled Noise Insertion”, we systematically inject and withdraw noise
throughout the iterations, so as to ensure convergence to the average consensus value, and at
the same time protect the private information of the nodes. For all proposed protocols, we
provide explicit convergence rates and evaluate practical convergence on common simulated
network topologies.

6.2 Future Work

Perhaps the most exciting direction for future work is to extend the analysis of the proposed
randomized iterative methods to more general settings. In particular, the more natural exten-
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sion of our results is the analysis of heavy ball momentum variants and inexact variants of the
proposed methods (SGD, SN, SPP, SPM and SDSA) in the case of general convex or strongly
convex functions.

From numerical linear algebra viewpoint, we believe that the proposed randomized iterative
methods of Chapters 2 and 3 could have great potential to make a practical difference to iterative
solvers for large-scale linear systems. In this aspect, a future effort needs to be devoted to the
practical development and implementations of the algorithms. For example, one promising
direction is to use new sophisticated sketching matrices S, such as the Walsh-Hadamard matrix
[155, 119] in the update rules of the proposed methods.

In this thesis we focused on algorithms with a fixed constant step-size. An interesting
extension will be to study the effect of decreasing or adaptive choice for the relaxation parameter.
This might provide novel insights, even in the case of quadratic functions and (not necessarily
consistent) linear systems. As we have mentioned in several parts of the thesis, the obtained
results hold under the exactness condition, which as we explained, is very weak, allowing for
virtually arbitrary distributions D from which the random matrices are drawn. A different
future direction will be the design of optimized distributions in order to improve further the
convergence rates and the overall complexity of the proposed algorithms.

In addition, we believe that the gossip protocols proposed in Chapters 4 and 5 would be
particularly useful in the development of efficient decentralized protocols.

Using the novel framework presented in this thesis, many popular projection methods can
be interpreted as gossip algorithms when used to solve linear systems encoding the underlying
network. This can lead to the development of novel distributed protocols for average consensus.

Our work on gossip algorithms is amenable to further extensions. For instance, the proposed
novel gossip protocols (block, accelerated, privacy-preserving) can be extended to the more
general setting of multi-agent consensus optimization, where the goal is to minimize the average
of convex or non-convex functions (1/n)

∑n
i=1 fi(x) in a decentralized way. Such protocols will

be particularly useful in settings where the data describing a given optimization problem is so
big that it becomes impossible to store it on a single machine. These situations often arise in
modern machine learning and deep learning applications.
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[51] O. Fercoq and P. Richtárik. Accelerated, parallel, and proximal coordinate descent. SIAM
Journal on Optimization, 25(4):1997–2023, 2015.

[52] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal,
23(2):298–305, 1973.

[53] J.P. Fillmore and M.L. Marx. Linear recursive sequences. SIAM Review, 10(3):342–353,
1968.

[54] K. Fountoulakis and R. Tappenden. A flexible coordinate descent method. Computational
Optimization and Applications, 70(2):351–394, 2018.

169



[55] M. Franceschelli, A. Giua, and C. Seatzu. Distributed averaging in sensor networks based
on broadcast gossip algorithms. IEEE Sensors Journal, 11(3):808–817, 2011.

[56] N.M. Freris and A. Zouzias. Fast distributed smoothing of relative measurements. In
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, pages 1411–1416.
IEEE, 2012.

[57] Valerio Freschi, Emanuele Lattanzi, and Alessandro Bogliolo. Accelerating distributed
averaging in sensor networks: Randomized gossip over virtual coordinates. In Sensors
Applications Symposium (SAS), 2016 IEEE, pages 1–6. IEEE, 2016.

[58] Valerio Freschi, Emanuele Lattanzi, and Alessandro Bogliolo. Fast distributed consensus
through path averaging on random walks. Wireless Pers Commun, doi:10.1007/s11277-
017-4451-5:1–15, 2017.

[59] M.P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data
fitting. SIAM Journal on Scientific Computing, 34(3):A1380–A1405, 2012.

[60] S. Gadat, F. Panloup, and S. Saadane. Stochastic heavy ball. Electronic Journal of
Statistics, 12(1):461–529, 2018.

[61] S. Geman. A limit theorem for the norm of random matrices. The Annals of Probability,
pages 252–261, 1980.

[62] E. Ghadimi, H.R. Feyzmahdavian, and M. Johansson. Global convergence of the heavy-
ball method for convex optimization. In Control Conference (ECC), 2015 European, pages
310–315. IEEE, 2015.

[63] E. Ghadimi, I. Shames, and M. Johansson. Multi-step gradient methods for networked
optimization. IEEE Transactions on Signal Processing, 61(21):5417–5429, 2013.

[64] E. Ghadimi, A. Teixeira, M.G. Rabbat, and M. Johansson. The admm algorithm for
distributed averaging: Convergence rates and optimal parameter selection. In 2014 48th
Asilomar Conference on Signals, Systems and Computers, pages 783–787. IEEE, 2014.

[65] S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and
stochastic programming. Mathematical Programming, 156(1-2):59–99, 2016.

[66] M. Ghashami, E. Liberty, J. M. Phillips, and D. P. Woodruff. Frequent directions: Simple
and deterministic matrix sketching. SIAM Journal on Computing, 45(5):1762–1792, 2016.

[67] G.H. Golub and C.F Van Loan. Matrix computations, volume 3. JHU Press, 2012.

[68] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtarik. SGD:
General analysis and improved rates. Proceedings of the 36th International Conference
on Machine Learning (ICML), 2019.
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[168] P. Richtárik and M. Takáč. Stochastic reformulations of linear systems: algorithms and
convergence theory. arXiv:1706.01108, 2017.

[169] H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathe-
matical Statistics, pages 400–407, 1951.

[170] Ohad S. and Tong Z. Stochastic gradient descent for non-smooth optimization: Conver-
gence results and optimal averaging schemes. In Proceedings of the 30th International
Conference on Machine Learning, pages 71–79, 2013.

[171] S. Salzo and S. Villa. Inexact and accelerated proximal point algorithms. Journal of
Convex Analysis, 19(4):1167–1192, 2012.

[172] M. Schmidt, D. Kim, and S. Sra. Projected Newton-type methods in machine learning.
Optimization for Machine Learning, page 305, 2011.

[173] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[174] M. Schmidt, N.L. Roux, and F.R. Bach. Convergence rates of inexact proximal-gradient
methods for convex optimization. In Advances in Neural Information Processing Systems,
pages 1458–1466, 2011.
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Appendix A

Notation Glossary

A.1 Notation used in Chapters 1, 2 and 3

The Basics
A, b m× n matrix and m× 1 vector defining the system Ax = b
L {x : Ax = b} (solution set of the linear system)
B n× n symmetric positive definite matrix

〈x, y〉B x>By (B-inner product)

‖x‖B
√
〈x, x〉B (B-norm)

S a random real matrix with m rows
D distribution from which matrix S is drawn (S ∼ D)
H S(S>AB−1A>S)†S>

Z A>HA
Range (M) range space of matrix M
Null (M) null space of matrix M

E[·] expectation
Projections

ΠL,B(x) projection of x onto L in the B-norm
B−1Z projection matrix, in the B-norm, onto Range

(
B−1A>S

)
Optimization

X set of minimizers of f
x∗ a point in L

fS, ∇fS, ∇2fS stochastic function, its gradient and Hessian
LS {x : S>Ax = S>b} (set of minimizers of fS)
f E[fS]
∇f gradient of f with respect to the B-inner product
∇2f B−1E[Z] (Hessian of f in the B-inner product)

Eigenvalues

W B−1/2E[Z]B−1/2 (psd matrix with the same spectrum as ∇2f)
λ1, . . . , λn eigenvalues of W
λmax, λ

+
min largest and smallest nonzero eigenvalues of W

Algorithms
ω relaxation parameter / stepsize
β heavy ball momentum parameter
γ stochastic heavy ball momentum parameter
εk inexactness error
q inexactness parameter
ρ 1− ω(2− ω)λ+

min

Table A.1: Frequently used notation appeared in Chapters 1, 2 and 3
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A.2 Notation used in Chapter 4

The Basics
A, b m× n matrix and m× 1 vector defining the system Ax = b
L {x : Ax = b} (solution set of the linear system)
B n× n symmetric positive definite matrix

〈x, y〉B x>By (B-inner product)

‖x‖B
√
〈x, x〉B (B-norm)

M† Moore-Penrose pseudoinverse of matrix M
S a random real matrix with m rows
D distribution from which matrix S is drawn (S ∼ D)
H S(S>AB−1A>S)†S>

Z A>HA
Range (M) range space of matrix M
Null(M) null space of matrix M

P(·) probability of an event
E[·] expectation

Projections
ΠL,B(x) projection of x onto L in the B-norm
B−1Z projection matrix, in the B-norm, onto Range

(
B−1A>S

)
Graphs

G = (V, E) an undirected graph with vertices V and edges E
n = |V| (number of vertices)
m = |E| (number of edges)

e = (i, j) ∈ E edge of G connecting nodes i, j ∈ V
di degree of node i

c ∈ Rn = (c1, . . . , cn); a vector of private values stored at the nodes of G
c̄ c̄ =

∑n
i Biici∑n
i Bii

(the weighted average of the private values)

Q ∈ Rm×m Incidence matrix of G
L ∈ Rn×n = Q>Q (Laplacian matrix of G)
D ∈ Rn×n = Diag(d1, d2, . . . , dn) (Degree matrix of G)

Lrw ∈ Rn×n = D−1L (random walk normalized Laplacian matrix of G)
Lsym ∈ Rn×n = D−1/2LD−1/2 (symmetric normalized Laplacian matrix of G)

α(G) = λ+
min(L) (algebraic connectivity of G)

Eigenvalues

W B−1/2E[Z]B−1/2 (psd matrix)
λ1, . . . , λn eigenvalues of W
λmax, λ

+
min largest and smallest nonzero eigenvalues of W

Algorithms
ω relaxation parameter / stepsize
β heavy ball momentum parameter
ρ 1− ω(2− ω)λ+

min

Table A.2: Frequently used notation appeared in Chapter 4.
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A.3 Notation used in Chapter 5

Graphs
G = (V, E) an undirected graph with vertices V and edges E

n = |V| (number of vertices)
m = |E| (number of edges)

e = (i, j) ∈ E edge of G connecting nodes i, j ∈ V
di degree of node i

c ∈ Rn = (c1, . . . , cn); a vector of private values stored at the nodes of G
c̄ c̄ = 1

n

∑
i ci (the average of the private values)

A ∈ Rm×n
L ∈ Rm×m = AA> (Laplacian of G)

α(G) = λ+
min(L) (algebraic connectivity of G)

β(G) = n/α(G)
Randomness

E expectation
P probability
V variance
vki random variable from N(0, σ2

i )
Optimization

P : Rn → R primal objective function
D : Rm → R dual objective function (a concave quadratic)
y ∈ Rm dual variable
y∗ ∈ Rm optimal dual variable
x ∈ Rn primal variable
x∗ ∈ Rn = c̄1 (optimal primal variable)

1 a vector of all ones in Rn
Summation∑

i

∑
j sum through all ordered pairs of i and j∑

(i,j) sum through all unordered pairs of i and j∑
(i,j)∈E sum through all edges of G

Table A.3: Frequently used notation appeared in Chapter 5.
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