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Abstract

We develop distributed iterative fixed point methods which address the communication
bottleneck by compressing their iterates before communication. Our work is motivated by the
practice of federated learning, where model compression is a common practice, albeit without
theoretical guarantees, and where various gradient-type local update methods are applied, which
we model via the application of local operators on each device. We develop standard and variance
reduced methods, and establish communication complexity bounds. Our algorithms are the first
theoretically justified distributed methods with compressed iterates, and the first fixed point
methods with compressed iterates.
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1 Introduction

Communication efficiency and memory issues often arise in machine learning algorithms dealing
with large models. This is particularly true in federated learning [6, 26,27,33], where a network of
a very large number (n) of computing devices, such as mobile phones or hospitals, is required to
jointly train a machine learning model from the private data stored on these devices, and more so
if these models are large. To train such a model, various distributed training methods have been
devised, and all necessarily need to communicate model updates if a globally optimal model is to be
found. However, communication in federated learning is very expensive [26], and forms a major
bottleneck of existing systems. To overcome this issue, standard techniques proceed by compressing
the communicated messages, typically gradients or stochastic gradients [1, 5, 28,46].

In this paper we consider the case where the iterates themselves need to be compressed. This
case is relevant even in the n = 1 regime, where there is only one computing agent, provided that
the model is too large to keep in memory and needs to be compressed. Training with compressed
iterates was only considered in one recent work [24], which introduced the gradient descent algorithm
with compressed iterates (GDCI). In this paper we improve the results of [24] and generalize them
in two ways. First, in the case n = 1, we consider iterate compression in any algorithm that can
be formulated as a (stochastic) fixed point iteration. This covers gradient descent and stochastic
gradient descent, among others. Second, we consider the distributed case n ≥ 2, where the network
has to jointly find a fixed point of some map, in a distributed manner over the nodes, and using
iterate compression. This distributed fixed point problem covers many applications of federated
learning [26], including distributed minimization or distributed saddle point problems. We remark
that while both gradient compression and iterate compression are used by practicioners of federated
learning, iterate compression is much less well-understood [23] and our work aims to fill this gap.

1.1 Summary of contributions

To address these problems we first study a naive approach that relies on compressing the iterates after
each iteration. This iterates compression introduces an extra source of variance in the algorithms.
We then propose a variance reduced approach that allows to remove the variance induced by the
compression. In summary, we make the following contributions:

• We propose new distributed algorithms (non variance reduced and variance reduced) to learn
with compressed iterates in a stochastic fixed point framework, which we show captures
gradient descent as well as a variety of other methods such as (stochastic) gradient descent-
ascent, Davis-Yin splitting, and others. These are the first federated fixed point methods with
compression.

• We derive non-asymptotic convergence rates for these methods, and our theory allows improved
rates when specialized to GDCI compared to prior work.

• We show our variance reduced algorithm is able to retain the linear convergence of gradient
descent on strongly convex objectives despite iterate compression: this is new, and it shows we
can guarantee the fast convergence of gradient descent despite communicating only compressed
iterates.
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• We conduct extensive numerical experiments (55 figures, each with multiple plots) with the
developed algorithms on synthetic and real datasets and report our findings, highlighting
many of their properties in tandem with our theory.

1.2 Related work

Communication-Efficiency. In distributed optimization, the communication cost is the bottleneck.
In order to reduce it, many methods have been suggested, including the use of intermittent
communication and decentralization [44], or exchanging only compressed or quantized information
between the computing units [42]. Usually, the exchanged information is some compressed gradient [1,
5,40] or compressed model update [2,37] in a distributed master-worker setting. We note that in the
setting of gradient compression, various methods have also been developed to reduce the noise from
gradient compression and the method we develop is similar in spirit to some of them, like [22,34].
As noted before, iterate compression is also used in Federated Learning, see e.g., [6, 23,26], where
concerns of communication efficiency and memory usage are particularly important.

Decentralized Methods. In decentralized settings, one can distinguish between exact and
approximate methods. Among inexact methods, some compute (sub)gradients at compressed
iterates: [35,36]. Exact methods usually exchange compressed gradients or iterates [4,16,25,29,38,48].
Our focus in this work is on centralized methods, and we leave an extension to decentralized settings
to future work.

Beyond Compression Operators. In the n = 1 case, our method can also be seen as an
analysis of fixed point methods with perturbed iterates in a similar spirit to [15], who analyze
gradient descent methods given access to an inexact oracle.

The remainder is organized as follows. In the next section we provide some background on
distributed fixed point problems and compression operators, and make our assumptions. In Section 3,
we consider the case n = 1, where there is only one computing unit. We describe our algorithms,
state the main results and instantiate the algorithms to practical (stochastic) fixed point iterations.
The case n = 1 is generalized in Section 4 where a network of computing units is considered.
We describe our distributed algorithms, state the main results and instantiate the distributed
algorithms to practical distributed (stochastic) fixed point iterations. Finally, we experiment on
several federated learning tasks in Section 5. The proofs and additional numerical experiments are
postponed to the appendix.

2 The Setting

In this section we introduce our key problem, a distributed fixed point problem, and establish
notation and assumptions that we will use in the rest of the paper. We also define the notion of a
randomized compression operator that will be used to compress the iterates.

2.1 Distributed fixed point framework

Let T1, T2, . . . , Tn be operators on Rd, i.e., Ti : Rd → Rd. We consider the so-called finite-sum
optimization setting and set

T (x) :=
1

n

n∑
i=1

Ti(x); (1)
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our goal is to find a fixed point x? of T ; that is,

T (x?) = x?. (2)

Consider a probability space (Ω,F ,P), a family s := (si)i∈{1,...,n} of random variables defined on
(Ω,F ,P) with values in some measurable space (Ξ,G ). Denote by Si the distribution of si and by
S the distribution (over Ξn) of s. We allow each Ti to have the following stochastic representation:

Ti(x) := Esi [Ti(x, si)] , (3)

where, with a small abuse of notation, Ti(x, ·) denotes an Si-integrable function for every x ∈ Rd.
We also set

T (x, s) :=
1

n

n∑
i=1

Ti(x, si), (4)

for every x ∈ Rd. Note that T (x, ·) is S-integrable and that Es [T (x, s)] = T (x).
We assume the following contraction property for the stochastic map T (·, s).

Assumption 1. There exist x? ∈ Rd, B ≥ 0 and ρ ∈ (0, 1) such that, for every x ∈ Rd,

Es
[
‖T (x, s)− x?‖2

]
≤ (1− ρ) ‖x− x?‖2 +B. (5)

This assumption is satisfied by many maps T (·, s) describing (stochastic) optimization algorithms
under some strong convexity and smoothness assumptions; see Sections 3 and 4. We shall also use
the expected Lipschitz continuity of Ti(x, s) defined as follows.

Assumption 2. For every i ∈ {1, . . . , n}, there exists ci ≥ 0 such that for every x, y ∈ Rd:

Es
[
‖Ti(x, s)− Ti(y, s)‖2

]
≤ ci‖x− y‖2, (6)

and we denote c2 := 1
n

∑n
i=1 c

2
i .

2.2 Compression operators

To apply randomized compression to the iterates, we require access to a stochastic compression
operator and we formalize our assumptions on this operator next. Consider a family ξ := (ξi)i∈{1,...,n}
of random variables defined on (Ω,F ,P) with values (Ξ,G ). If n = 1, we shall prefer the notation ξ
for ξ1. We consider a measurable map C : Rd × Ξ→ Rd such that, for every i ∈ {1, . . . , n},

x = Eξi [C(x, ξi)] . (7)

The map C is called a compression operator. We make the following assumption on C.

Assumption 3. There exists ω ≥ 0 such that, for every i ∈ {1, . . . , n} and x ∈ Rd,

Eξi
[
‖C(x; ξi)− x‖2

]
≤ ω‖x‖2. (8)

Assumption 3 has been used before, either in this general form or in special cases, in the analysis
of gradient methods with compressed gradients [22, 25] and compressed iterates [24]. Many practical
compression operators satisfy this assumption; e.g., natural compression and natural dithering [21],
standard dithering, sparsification, and quantization [1, 22,24,41].
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3 Results in the Single Node Case (n = 1)

In this section, we present two algorithms to solve (2) in the case when n = 1 and state two theorems
related to these algorithms. While this simplified setting may be of interest on its own, we consider
it first as it will allow for a more gradual exposition into our methods. However, keeping in mind
that we are primarily interested in the distributed setting, our methods should still be understood
as performing communication with a server performing (in this case dummy) aggregation over all
(in this case 1) devices.

3.1 Fixed Point Method with Compressed Iterates

Consider stochastic fixed point iterations of the form

xk+1 = T (xk, sk), (9)

where sk is a sequence of i.i.d. copies of s. Our first algorithm (FPMCI) applies the stochastic fixed
point operator to xk (this step leads to T (xk, sk)), applies compression C (this step leads to the
compressed vector C(T (xk, sk), ξk)), and subsequently performs a relaxation step with relaxation
parameter η. If C is the identity map, FPMCI is a stochastic fixed point method with relaxation.

Algorithm 1 FPMCI: Fixed Point Method with Compressed Iterates

Initialization: x0 ∈ Rd, (ξk) i.i.d. copies of ξ, (sk) i.i.d. copies of s, stepsize η ∈ (0, 1].
for k = 0, 1, 2, . . . do

xk+1 = (1− η)xk + ηC(T (xk, sk), ξk).

end for

Our first result characterizes the convergence of Algorithm 1.

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. Set rk :=
∥∥xk − x?∥∥2. Suppose that the

stepsize η > 0 is chosen such that η ≤ min
(
1, ρ

4ωc2

)
. Then the iterates of Algorithm 1 satisfy

E
[
rk
]
≤
(

1− ηρ

2

)k
r0 +

2B

ρ
+

4ηωσ2

ρ
,

where σ2 := Es
[
‖T (x?, s)‖2

]
.

The convergence rate is linear up to a ball of squared radius 2B
ρ + 4ηωσ2

ρ . The first term 2B
ρ comes

from Assumption 1 and is inherent to the mapping T . This first term is also proportional to B,
and the value of B is usually zero for deterministic fixed point maps T and nonzero for stochastic

mappings; see the next subsection. The presence of the second term 4ηωσ2

ρ is a consequence of the
variance of the compression operator. If ω = 0 (no compression), then the second term is equal to
zero.1 Also notice that the second term is proportional to η and can be made small if η is chosen
small.

1Having σ2 = 0 is hopeless, except in particular cases like T deterministic and x? = 0.
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3.2 Variance Reduced Fixed Point Method with Compressed Iterates

We now address the presence of the second term by reducing the variance introduced by the
compression operator. This leads to a new method called Variance Reduced (VR) FPMCI, described
in Algorithm 1.

Algorithm 2 VR-FPMCI: Variance Reduced Fixed Point Method with Compressed Iterates

Initialization: x0, h0 ∈ Rd, (ξk) i.i.d. copies of ξ, (sk) i.i.d. copies of s, stepsizes η ∈ (0, 1] and
α > 0.
for k = 0, 1, 2, . . . do

δk+1 = C(T (xk, sk)− hk, ξk)
hk+1 = hk + αδk+1

xk+1 = (1− η)xk + η
(
hk + δk+1

)
.

end for

The improved convergence rate of Algorithm 2 is stated in the next theorem.

Theorem 2. Let Ψk be the following Lyapunov function:

Ψk :=
∥∥∥xk − x?∥∥∥2 +

4η2ω

α
Es
[∥∥∥hk − T (x?, sk)

∥∥∥2] .
Suppose that Assumptions 1, 2 and 3 hold. Choose the stepsizes α, η such that α ≤ 1

ω+1 and

η = min
{

1, ρ
12ωc2

}
. Then the iterates defined by Algorithm 2 satisfy

E
[
Ψk
]
≤
(

1− min {α, ηρ}
2

)k
E
[
Ψ0
]

+
2ηB

min {α, ηρ}
. (10)

Note that, as promised, there is no additive term depending on ω in the r.h.s. of (10), thanks
to the variance reduction property of our method. In particular, Algorithm 2 converges linearly if
B = 0, and allows for arbitrarily large compression variance factor ω.

3.3 Examples

We give several examples of operators T to which our analysis of Algorithms 1 and 2 applies.

Gradient Descent. Consider an L-smooth µ-strongly convex objective function F : Rd → R and
a stepsize γ ∈

(
0, 1

L

]
. Then

TGD : x 7→ x− γ∇F (x) (11)

satisfies Assumption 1 with ρ = γµ and B = 0, and Assumption 2 with c = 1, see [3]. As a result,
for any compression operator C satisfying Assumption 3, Theorem 1 states that

E
[
rk
]
≤
(

1− γµη

2

)k
r0 +

4ηωσ2

γµ
,
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where rk :=
∥∥xk − x?∥∥2. Without relaxation (i.e. with η = 1), this result improves upon the result

obtained in [24] by requiring ω < 1
2κ rather than ω < 1

76κ , while still guaranteeing convergence. By
properly choosing the relaxation parameter η, we can guarantee convergence to a neighborhood
for any ω > 0. Moreover, Theorem 2 shows that E

[
rk
]

converges linearly to zero, rather than to a
neighborhood of the solution, if Algorithm 2 is applied.

Stochastic Gradient Descent (SGD). Consider a µ-strongly convex function F : Rd → R
written as F (x) = Es [f(x, s)], where f(·, s) is convex and L-smooth for every s. Then, g(x, s) :=
∇f(x, s) is an unbiased estimate of ∇F ; that is, for every x ∈ Rd,Es [g(x, s)] = ∇F (x). Moreover,
Assumption 2 is satisfied by the map

TSGD : (x, s) 7→ x− γg(x, s),

with c = 1, for the same reason as above. Finally, Assumption 1 is satisfied with ρ = γµ and B > 0
in general, see e.g. [20].

Proximal SGD. One can generalize the previous example to the map

Tprox-SGD : (x, s) 7→ proxγH(x− γg(x, s)),

where H is a convex, lower semicontinuous and proper function Rd → (−∞,+∞], and proxγH is
the proximity operator of γH defined as

proxγH(x) := arg min
y∈Rd

{
1

2
‖x− y‖2 + γH(y)

}
.

The map Tprox-SGD also satisfies the Assumption 2, see [3]. Besides, Assumption 1 is satisfied with
ρ = γµ and B > 0 in general, see e.g. [19].

Note that a fixed point of Tprox-SGD is a minimizer of F +H.

Douglas–Rachford splitting. The Douglas–Rachford splitting (or ADMM) [31] is an algorithm
allowing to minimize G + H, where G and H are convex nonsmooth functions. More precisely,
assume that G,H : Rd → (−∞,+∞] are lower semicontinuous and proper, and denote CG(x) =
2 proxG(x)− x. Given γ > 0, Douglas–Rachford corresponds to iterations of the map

TDR : x 7→ 1

2
CγH(CγG(x)) +

1

2
x.

A fixed point of the Douglas–Rachford algorithm is an element x ∈ Rd such that proxγG(x) ∈
arg minG+H. Moreover, TDR satisfies Assumption 2 with c = 1, see [3]. The map TDR also satisfies
Assumption 1 with B = 0 under various assumptions, for instance if G is strongly convex and H is
smooth.

Proximal Alternating Predictor–Corrector (PAPC). The PAPC algorithm [10, 17, 32] is an
algorithm for minimizing F +H ◦ L, where F is smooth and convex, H is nonsmooth and convex
and L is a linear operator. The PAPC algorithm corresponds to iterations of a map TPAPC, whose
fixed points are minimizers of F +H ◦L. The map TPAPC satisfies Assumption 2 with c = 1, see [17].
Moreover, this map satisfies Assumption 1 with B = 0 if F is strongly convex and H the function
equal to +∞ everywhere except at one point b, see [39]. In this case, minimizing F + H ◦ L is
equivalent to minimizing F under the affine constraints Lx = b.
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Primal–Dual Hybrid Gradient (PDHG). The PDHG algorithm [7,8], a.k.a Chambolle–Pock,
allows to minimize G+H ◦L, where G,H are nonsmooth convex functions and L is a linear operator.
If L is the identity, then the PDHG algorithm boils down to the Douglas–Rachford algorithm. The
PDHG algorithm corresponds to iterations of a map TPDHG satisfying Assumption 2. Moreover, the
map TPDHG satisfies Assumption 1 with B = 0 if G is strongly convex and H is smooth.

Davis–Yin splitting. Davis-Yin splitting [14] is an optimization algorithm to minimize a sum of
three convex functions F +G+H. It is a generalization of Gradient Descent, Proximal Gradient
Descent, and Douglas Rachford algorithms, and it corresponds to iterations of a map TDY. The
map TDY satisfies Assumptions 1. Moreover, Assumption 2 is satisfied with B = 0 if at least one of
F,G or H is strongly convex and at least one of G or H is smooth, see [14].

Condat–Vũ splitting. Condat–Vũ splitting [11, 12, 43] is an optimization algorithm to minimize
a sum of three convex functions F +G+H ◦L where L is a linear operator. It is a generalization of
Proximal Gradient Descent and PDHG algorithms, and it corresponds to iterations of a map TCV.
The map TCV satisfies Assumptions 1 and 2 with B = 0 if G is strongly convex and H is smooth.

Primal–Dual 3 Operators (PD3O) and Primal–Dual Davis–Yin (PDDY) splitting The
PD3O [47] and the PDDY [39] algorithms are similar to the Condat–Vũ algorithm to tackle the
minimization of F +G+H ◦ L [13]. They satisfy our assumptions under various hypotheses on the
functions F,G and H. Interestingly, PD3O and PDDY admit stochastic versions, also satisfying
our assumptions. In these stochastic versions, the gradient of F is replaced by a stochastic gradient
∇f(x, s) at each iteration [39].

(Stochastic) Gradient Descent Ascent. Consider a µ-strongly convex-concave function F :
Rd×Rd → R (strongly convex in x and strongly concave in y) with L-Lipschitz continuous gradient.
Then, the map

TGDA(x, y) =

(
x
y

)
− γ

(
∇xF (x, y)
−∇yF (x, y)

)
(12)

satisfies Assumption 2 and Assumption 1 with B = 0 if γ is small enough. Moreover, a fixed
point of TGDA is a saddle point (x?, y?) of F . This example can be generalized to the case where
(∇xF (x, y),−∇yF (x, y))T is replaced by an unbiased estimate (similarly to SGD), in which case
Assumption 1 holds with B ≥ 0 in general.

4 Results in the Distributed Case (n > 1)

We now consider the case where n computing agents are required to compute a fixed point of T ,
under the restriction that each node i only has access to the local random map Ti(·, ξi). This is the
standard setup in distributed finite-sum optimization problems where a dataset is divided among
several nodes, and is crucial in the setting of federated learning [23].

We solve this problem in a distributed master/slave setting, where each iteration is divided into
a computation step and a communication step. During the computation step, every node i uses
Ti(·, ξi) to update some variables only locally. Then, during the communication step, each node
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sends its local variable to the master node of the network that aggregates the variables and sends
back the result to the other nodes.

We extend Algorithm 1 (resp. Algorithm 2) to this setting, as well as Theorem 1 (resp. Theorem 2).

4.1 Distributed Fixed Point Method with Compressed Iterates

Extension of Algorithm 1 to the distributed (i.e., n > 1) setting is formulated as Algorithm 3.

Algorithm 3 Distributed Fixed Point Method with Compressed Iterates

Initialization: x0 ∈ Rd, (ξk) i.i.d. copies of ξ, (sk) i.i.d. copies of s, stepsize η > 0.
for k = 0, 1, 2, . . . do

Broadcast xk to all nodes
for i = 1, . . . , n in parallel do

Compute the compressed iterate

δk+1
i = C

(
Ti(xk, ski ); ξki

)
Communicate the compressed vector δk+1

i to the master node
end for
Compute the average of the communicate messages:

xk+1 = (1− η)xk +
η

n

n∑
i=1

δk+1
i (13)

Broadcast the new iterate xk+1 to the workers
end for

The convergence rate of this method is a direct generalization of Theorem 1.

Theorem 3. Let Assumptions 1, 2 and 3 hold. Assume moreover that s1, . . . , sn are independent.

Let rk :=
∥∥xk − x?∥∥2. Let stepsize η > 0 satisfy η ≤ min

(
1, ρn/(4ωc2)

)
. Then the iterates of

Algorithm 3 satisfy

E
[
rk
]
≤
(

1− ηρ

2

)k
r0 +

2B

ρ
+

4ηωσ2

ρn
,

where σ2 := 1
n

∑n
i=1 Esi

[
‖Ti(x?, si)‖2

]
.

4.2 Distributed Variance-Reduced Fixed Point Method with Compressed Iter-
ates

Once again, the rate suffers from the variance term 4ηωσ2

ρn , which is removed by our variance reduced
approach summarized in Algorithm 4. Finally, the next result is the analogue of Theorem 2 in the
distributed setting.

10



By Assumption 1, when compression is not used and the iterate x+ = T (x, s) for some s ∼ S is
used, we have

E
[
‖x+ − x?‖2

]
≤ (1− ρ)E

[
‖x− x?‖2

]
+B. (14)

Here we can gain insight as to what compression does by comparing this with the result of Theorem 3:
we see that rate at which the initial distance is forgotten is reduced by a factor 2ωc2/n and that
convergence is only guaranteed to a neighborhood O(ωσ2/n). Thus, to guarantee convergence and
that the neighborhood is small enough we must take ω = O(εn/σ2). Depending on the accuracy,this
may allow only very small levels of compression that makes using Algorithm 3 undesirable from a
theoretical point of view. To allow larger values ω and still guarantee similar convergence properties
as (14), we introduce a variance-reduced method that generalizes Algorithm (2). It is given by
Algorithm 4.

Algorithm 4 Distributed Variance-Reduced Fixed Point Method with Compressed Iterates

Initialization: x0, h01, h
0
2, . . . , h

0
n ∈ Rd, stepsize η ∈ (0, 1], stepsize α > 0, h0 = 1

n

∑n
i=1 h

0
i

for k = 0, 1, 2, . . . do
Broadcast xk to all nodes.
for i = 1, . . . , n in parallel do

Compute

δk+1
i = C(Ti(xk, ski )− hki ; ξki )

hk+1
i = hki + αδk+1

i

Communicate the compressed vector δk+1
i to the master node

end for
At the master node, compute:

δk+1 =
1

n

n∑
i=1

δk+1
i

hk+1 = hk + αδk+1

∆k+1 = δk+1 + hk

xk+1 = (1− η)xk + η∆k+1

Broadcast the new iterate xk+1 to the workers
end for

Theorem 4. Define the Lyapunov function

Ψk :=
∥∥∥xk − x?∥∥∥2 +

4η2ω

αn2

n∑
i=1

Esi
[∥∥∥hki − Ti(x?, ski )∥∥∥2] .

Suppose that Assumptions 1, 2 and 3 hold. Assume moreover that s1, . . . , sn are independent. Then
the iterates defined by Algorithm 4 satisfy

E
[
Ψk
]
≤
(

1− min {α, ηρ}
2

)k
E
[
Ψ0
]

+
2ηB

min {α, ηρ}
, (15)
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if the stepsizes α, η satisfy α ≤ 1
ω+1 and η = min

{ ρn
12ωc2

, 1
}
.

Algorithm 4 converges linearly if B = 0. Hence, it trades off some local storage cost (by keeping
the variables hki ) for faster convergence while still minimizing the cost of communication. We
further note that in the special case α ' 1 the algorithm reduces to compressing the model update
in expectation, a practice that is already common in practice. This further mirrors the results
of [22, 34] where compressing gradient differences rather than gradients enables several benefits over
compressing gradients. The message of Theorem 4, therefore, is that compressing iterate differences
rather than iterates also leads to better convergence properties.

4.3 Examples

Distributed (Stochastic) Gradient Descent. Consider a µ-strongly convex objective function
F : Rd → R expressed as a finite-sum problem,

F (x) =
1

n

n∑
i=1

fi(x),

where each fi is Li-smooth and convex. Then one can check that the map TGD defined in (11)
takes the form (1) and that Assumptions 1 and 2 are satisfied by this map if γ is small enough, see
e.g. [20]. Algorithm 4 is then a distributed gradient descent algorithm with iterates compression
that converges linearly. More generally, if the fi are themselves written as expectations and have
the expected Lipschitz continuity property and convexity, one can check that Assumptions 1 and 2
are still satisfied.

Distributed (Stochastic) Gradient Descent Ascent. Example (12) can be extended to the
case where F is expressed as an empirical mean over the nodes of the network, if each term has
a Lipschitz continuous gradient. In this case, the distributed Algorithm 4 converges linearly to a
saddle point x? of F .

5 Experimental Results

In this section we present numerical results that demonstrate the conclusions of the theoretical
convergence results for Algorithms FPMCI (Algorithm 3) and VR-FPMCI (Algorithm 4) on LibSVM
datasets [9]. We summarize the essential characteristics of these datasets in the appendix. Let us
remark that we selected both smaller and larger datasets to demonstrate various aspects of the
algorithms.

Datasets of the main paper. We experiment with four datasets from the LibSVM library; see
Table 1.

Three Problems. We solve three different problems:

• Regression (R),

F (x) :=
1

n

n∑
i=1

1

2
(aTi x− bi)2,
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Table 1: The basic characteristics of datasets used in our experiments. Datasets can be downloaded
from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

Name # samples d Source

breast-cancer 683 10 [18]
webspam uni 350,000 254 [45]
rcv1 20,242 47,236 [30]
real-sim 72,309 20,958 [18]

• Ridge-Regression (RR),

F (x) :=
λ

2
‖x‖2 +

1

n

n∑
i=1

1
2(aTi x− bi)2,

• and Logistic Regression (LR):

F (x) :=
1

n

n∑
i=1

log(1 + exp(−yiaTi x),

where a1, a2, . . . , an ∈ Rd are data points, b1, . . . , bn ∈ R and y1, . . . , yn ∈ {−1, 1}. In order to
compute ‖xk − x∗‖2, we generated b such that we know the true value of x∗. This process is more
challenging for larger datasets and hence we run RR exclusively for the breast-cancer dataset. On
each plot we clearly note the Problem (R/RR/LR), the dataset used, and also some setting of
algorithms. Unless explicitly stated otherwise, we solve all of the problems with the gradient descent
fixed point operator.

Compression operators. In the experiments, we use two compression operators: Standard
Dithering and Natural Dithering, as described in [21]. When we refer to b-bit precision, the
compression operator is using 1 bit to encode the sign and b − 1 bits to encode the compressed
value. Hence we have 2b−1 possible positive and 2b−1 negative values the compression operator can
produce.

Hardware. The experiments were conduced on a CentOS Linux (release 7.6.1810) Linux machine
with Intel(R) Xeon(R) CPU E5-2670, 2.60GHz CPUs, with 128GB of RAM.

Software. We used Python 3.7.0 with numpy (version 1.17.3) and scipy (version 1.3.1).

More experiments. We have performed many additional experiments which can be found in the
appendix.

Details for Ridge Regression experiments. The choice of γ for a gradient fixed point operator
was 1/L, where L is the maximum eigenvalue of the hessian. The code which generate the Ridge
Regression problem will compute the constant L. The choince of other parameters η, λ is described
in figures. We have run each algorithm 10x and we are reporting the mean and confidence intervals
using seaborn lineplot function with default settings.

13
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Details for Regression experiments. For rcv1 we have chosen γ = 22.286873 and run the
algorithm 10× and report mean and confidence intervals using seaborn lineplot function with default
settings.

Details for Logistic Regression experiments. For the experiments run the algorithm 5x for
each setting of n and report mean and confidence intervals using seaborn lineplot function with
default settings. For webspam and real-sim we choose n ∈ {2, 4, 8, 16, 32, 64, 128} and for rcv1
we choose n ∈ {2, 4, 8, 16, 32, 64}. For all datasets we have chosen γ = 1. Other parameters are
described in the main paper.
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5.1 Effect of the relaxation parameter η on convergence

For a gradient descent fixed-point operator, we have B = 0. From Theorem 1 we can see that for a
given fixed-point operator, we have a fixed decrease factor guarantee of 1− ρ. The smaller the value
η is, the slower the convergence. On the other hand, with the same compression (with variance ω),
we get a smaller error at convergence with smaller η.

In Figure 1 we compare various compression levels of Natural Dithering with different values of
ω for two values of η ∈ {1.0, 0.1}. Note that for some compression precisions, the algorithm is not
convergent because η is chosen larger than required by the theory.

Figure 1: Comparison of convergence of FPMCI for two choices of η ∈ {1.0, 0.1}. The smaller
the value of η, the slower the convergence gets, but smaller error can be achieved. E.g. the 3-bit
precision for η = 1.0 is divergent; for 4-bit precision, η = 0.1 achieves a much better error.
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5.2 Effect of ρ on convergence

Theorem 1 states that for a fixed η, the convergence speed is faster for a fixed point operator with a
larger value of ρ. For the Ridge-Regression problem with a gradient descent operator, this translates
to a smaller condition number (i.e. better conditioning). Smaller condition number (larger λ) implies
larger ρ and hence faster convergence. Moreover, Theorem 1 also implies that the larger ρ gets, the
smaller the radius of ‖xk − x∗‖2 gets at convergence.

In Figure 2 we compare FPMCI algorithm for Ridge-Regression problem with two values of
λ ∈ {0.1, 0.001}. The convergence speed for λ = 0.1 is faster than in case of λ = 0.001. Moreover,
for the same precision level, the FPMCI achieves better accuracy for larger λ.

Figure 2: Convergence of FPMCI for Ridge-Regression with varying regularization parameter
λ. The larger λ, the smaller the condition number of the problem and the larger the value of ρ.
Theorem 1 implies that larger ρ would lead to faster convergence and lower the threshold achievable
by ‖xk − x∗‖2.
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5.3 Effect of the compression operator C on convergence

Theorem 1 implies that FPMCI converges linearly up to a neighborhood whose radius is proportional
to ω (in case of B = 0). The smaller the ω, the smaller the size of the neighborhood to which the
algorithm converges. In Figure 3, we compare the evolution of F (xk)− F (x∗) on the rcv1 dataset
for both the Standard and Natural Dithering compression operators with various levels of precision
(3-bit, 4-bit, 5-bit, 9-bit, and 17-bit). Natural Dithering achieves much smaller ω than Standard
Dithering, and we can see that FPMCI is already convergent with 4-bit precision. In contrast,
FPMCI with Standard Dithering is not convergent even with 5-bit precision. Note that for some
precision levels, FPMCI diverges because η is larger than required by the theory. This shows that
the relaxation parameter η is necessary for aggressive compression.

Figure 3: Comparison of convergence speed of FPMCI with Standard and Natural Dithering
compressions. The smaller the variance of the compression operator, the smaller the radius of the
neighborhood FPMCI converges to. Natural Dithering (right) has a much smaller variance (ω) for
the same number of bits.
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5.4 Variance reduced FPMCI

FPMCI can suffer from a large variance induced by the randomness of the compression operator ω.
VR-FPMCI is designed to improve the convergence speed by reducing the effect of the variance
of the compression operator. In Figure 4, we compare FPMCI with its variance reduced variant
VR-FPMCI on a Ridge Regression problem. Note that Standard Dithering Compression has a large
variance, and for 3-, 4-, and 5-bit precision runs, FPMCI converges slower, and the radius of the ball
where it gets stuck is large. On the other hand, the trajectories of variance reduced VR-FPMCI are
very close to each other for all levels of precision. When counting the number of bits communicated,
the low precision compressions are superior.

Figure 4: Comparison of FPMCI (left) with VR-FPMCI (right) for Ridge Regression with λ = 0.001.
For both algorithms, we choose η = 0.1 and the Standard Dithering compression operator. The
low precision runs converge slowly, and the radius they approach is significantly visible. On the
other hand, for the variance-reduced methods all runs, with various compression levels, behave very
similarly.
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5.5 Distributed FPMCI

For Distributed FPMCI and VR-FPMCI, Theorems 3 and 4 indicates that both convergence speed
and the radius of the neighborhood of convergence depends on the number of nodes n, with larger n
corresponding to a faster convergence, a smaller radius, larger values of η to make convergence faster.
In Figure 5, we show Distributed FPMCI for solving logistic regression problem with stochastic
gradient descent. The plots clearly show that the size of the radius gets smaller as we increase the
number of nodes n.

Figure 5: Distributed FPMCI for Logistic Regression with stochastic gradient as the number of
nodes n varies. Having more nodes increases the accuracy achievable by FPMCI.
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[13] L. Condat, G. Malinovsky, and P. Richtárik. Distributed proximal splitting algorithms with
rates and acceleration. preprint arXiv:2010.00952, 2020.

[14] D. Davis and W. Yin. A three-operator splitting scheme and its optimization applications.
Set-Valued and Variational Analysis, 25(4):829–858, 2017.

20



[15] Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth convex
optimization with inexact oracle. Mathematical Programming, 146(1):37–75, Aug 2014.

[16] Thinh T. Doan, Siva Theja Maguluri, and Justin Romberg. Fast Convergence Rates of
Distributed Subgradient Methods with Adaptive Quantization. arXiv preprint arXiv:1810.13245,
2018.

[17] Y. Drori, S. Sabach, and M. Teboulle. A simple algorithm for a class of nonsmooth convex
concave saddle-point problems. Oper. Res. Lett., 43(2):209–214, 2015.

[18] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[19] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of sgd: Variance
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[28] Jakub Konečný and Peter Richtárik. Randomized distributed mean estimation: accuracy vs
communication. Frontiers in Applied Mathematics and Statistics, 4(62):1–11, 2018.
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Appendix

A Basic Facts

We recall the following fact about the variance of a random variable: Given a fixed Y ∈ Rd and a
random variable X ∈ Rd, we have

E
[
‖X − Y ‖2

]
= E

[
‖X − E [X]‖2

]
+ ‖E [X]− Y ‖2. (16)

If X1, X2, . . . , Xn are independent random variables then

E

∥∥∥∥∥
n∑
i=1

Xi − E [Xi]

∥∥∥∥∥
2
 =

n∑
i=1

E
[
‖Xi − E [Xi]‖2

]
. (17)

We also recall the following inequality from linear algebra: for any a, b ∈ Rd we have,

‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. (18)

We will also use the following fact: which follows from the convexity of the squared Euclidean norm:
for η ∈ [0, 1] we have,

‖ηa+ (1− η) b‖2 ≤ η‖a‖2 + (1− η) ‖b‖2. (19)

Moreover, we shall use the following lemma without mention.

Lemma 1. Let 0 < A < 1 and B > 0 and let {rk}k≥0 be a sequence of real numbers with r0 > 0
satisfying the recursion

rk+1 ≤ Ark +B.

Then

rk ≤ Akr0 +
B

1−A
.
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B Proof of Theorems 1 and 3

Since Theorem 1 is a particular case of Theorem 3, we only prove Theorem 3.

Proof of Theorem 3. From (13), conditionally on (xk, sk) we get

E
[∥∥∥xk+1 − x?

∥∥∥2] = E

[∥∥∥∥∥(1− η)xk + η
1

n

n∑
i=1

C
(
Ti(xk, ski ); ξki

)
− x?

∥∥∥∥∥
2]

(16)
= E

[∥∥∥∥∥η 1

n

n∑
i=1

C
(
Ti(xk, ski ); ξki

)
− η 1

n

n∑
i=1

Ti(xk, ski )

∥∥∥∥∥
2]

+

∥∥∥∥∥(1− η)xk + η
1

n

n∑
i=1

Ti(xk, ski )− x?
∥∥∥∥∥
2

(1)
=

η2

n2
E

[∥∥∥∥∥
n∑
i=1

(
C
(
Ti(xk, ski ); ξki

)
− Ti(xk, ski )

)∥∥∥∥∥
2]

+
∥∥∥(1− η)xk + ηT (xk, sk)− x?

∥∥∥2
(17)
=

η2

n2

n∑
i=1

E
[∥∥∥C (Ti(xk, ski ); ξki

)
− Ti(xk, ski )

∥∥∥2]︸ ︷︷ ︸
A1

+
∥∥∥(1− η)xk + ηT (xk, sk)− x?

∥∥∥2︸ ︷︷ ︸
A2

. (20)

The first term in (20) can be bounded using Assumption 3 as follows:

A1 ≤ η2ω

n2

n∑
i=1

∥∥∥Ti(xk, ski )
∥∥∥2

(18)

≤ 2η2ω

n2

n∑
i=1

∥∥∥Ti(xk, ski )− Ti(x?, ski )
∥∥∥2 +

2η2ω

n2

n∑
i=1

∥∥∥Ti(x?, ski )
∥∥∥2

(6)

≤ 2η2ω

n2

n∑
i=1

c2i

∥∥∥xk − x?∥∥∥2 +
2η2ω

n2

n∑
i=1

∥∥∥Ti(x?, ski )
∥∥∥2

=
2η2ωc2

n

∥∥∥xk − x?∥∥∥2 +
2η2ω

n2

n∑
i=1

∥∥∥Ti(x?, ski )
∥∥∥2. (21)

The second term in (20) can be bounded using the convexity of the squared norm:

A2 =
∥∥∥(1− η)xk + ηT (xk, sk)− x?

∥∥∥2 ≤ (1− η)
∥∥∥xk − x∗∥∥∥2 + η

∥∥∥T (xk, sk)− x∗
∥∥∥2. (22)

Plugging (21) and (22) in (20), we get

E
[∥∥∥xk+1 − x?

∥∥∥2] ≤ 2η2ωc2

n

∥∥∥xk − x?∥∥∥2 +
2η2ω

n2

n∑
i=1

∥∥∥Ti(x?, ski )
∥∥∥2 + (1− η)

∥∥∥xk − x∗∥∥∥2 + η
∥∥∥T (xk, sk)− x∗

∥∥∥2.
Therefore, conditionally on xk,

E
[∥∥∥xk+1 − x?

∥∥∥2] ≤
(

1− η +
2η2ωc2

n

)∥∥∥xk − x?∥∥∥2 +
2η2ω

n2

n∑
i=1

E
[∥∥∥Ti(x?, ski )

∥∥∥2]+ η · E
[∥∥∥T (xk, sk)− x?

∥∥∥2]
(5)

≤
(

1− η + η(1− ρ) +
2η2ωc2

n

)∥∥∥xk − x?∥∥∥2 + ηB +
2η2ω

n2

n∑
i=1

E
[∥∥∥Ti(x?, ski )

∥∥∥2]

=

(
1− ηρ+

2η2ωc2

n

)∥∥∥xk − x?∥∥∥2 + ηB +
2η2ω

n2

n∑
i=1

E
[∥∥∥Ti(x?, ski )

∥∥∥2] .
Recall that we assume the stepsize η > 0 satisfies η ≤ min

(
1, ρn

4ωc2

)
. Using this we get

E
[∥∥∥xk+1 − x?

∥∥∥2] ≤
(

1− ηρ

2

)∥∥∥xk − x?∥∥∥2 + ηB +
2η2ω

n2

n∑
i=1

E
[∥∥∥Ti(x?, ski )

∥∥∥2] .
Finally, taking unconditional expectations yields the theorem’s claim.
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C Proof of Theorems 2 and 4

Since Theorem 2 is a particular case of Theorem 4, we only prove Theorem 4.

C.1 Two lemmas for Algorithm 4

Lemma 2. Under Assumption 3, if 0 < α ≤ 1
ω+1 , then for every i = {1, . . . , n} the iterates of

Algorithm 4 satisfy conditionally on xk and hki :

E
[∥∥∥hk+1

i − Ti(x?, ski )
∥∥∥2] ≤ (1− α)E

[∥∥∥hki − Ti(x?, ski )∥∥∥2]+ αE
[∥∥∥Ti(xk, ski )− Ti(x?, ski )∥∥∥2] .

(23)

Proof. Conditionally on xk, hk1 , . . . , h
k
n, s

k
1 , . . . , s

k
n we have

E
[∥∥∥hk+1

i − Ti(x?, ski )
∥∥∥2] = E

[∥∥∥hki − Ti(x?, ski ) + αδki

∥∥∥2]
=

∥∥∥hki − Ti(x?, ski )
∥∥∥2 + 2α

〈
hki − Ti(x?, ski ),E

[
δki

]〉
+ α2E

[∥∥∥δki ∥∥∥2]
≤

∥∥∥hki − Ti(x?, ski )
∥∥∥2 + 2α

〈
hki − Ti(x?, ski ), Ti(xk, ski )− hki

〉
+ α2 (ω + 1)

∥∥∥Ti(xk, ski )− hki
∥∥∥2

≤
∥∥∥hki − Ti(x?, ski )

∥∥∥2 + 2α
〈
hki − Ti(x?, ski ), Ti(xk, ski )− hki

〉
+ α

∥∥∥Ti(xk, ski )− hki
∥∥∥2

= α
〈

2hki − 2Ti(x?, ski ) + Ti(xk, ski )− hki , Ti(xk, ski )− hki
〉

︸ ︷︷ ︸
I

+
∥∥∥hki − Ti(x?, ski )

∥∥∥2.
For the inner product I in the last inequality, we have

I =
〈
hki − Ti(x?, ski ) + Ti(xk, ski )− Ti(x?, ski ), Ti(xk, ski )− Ti(x?, ski )−

(
hki − Ti(x?, ski )

)〉
= −

∥∥∥hki − Ti(x?, ski )
∥∥∥2 +

∥∥∥Ti(xk, ski )− Ti(x?, ski )
∥∥∥2.

Using this in the previous inequality, we get

E
[∥∥∥hk+1

i − Ti(x?, ski )
∥∥∥2] = (1− α)

∥∥∥hki − Ti(x?, ski )
∥∥∥2 + α

∥∥∥Ti(xk, ski )− Ti(x?, ski )
∥∥∥2.

It remains to take expectation with respect to the randomness in ski .

Lemma 3. Under Assumptions 1 and 3, the iterates of Algorithm 4 satisfy,

E
[∥∥∥xk+1 − x?

∥∥∥2] ≤ (1− ηρ)
∥∥∥xk − x?∥∥∥2 + ηB + E

[∥∥∥Ti(x?, ski )− hki ∥∥∥2]
+

2η2ω

n2

n∑
i=1

E
[∥∥∥Ti(xk, ski )− Ti(x?, ski )∥∥∥2] . (24)
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Proof. Conditionally on xk, hk1 , . . . , h
k
n, s

k
1 , . . . , s

k
n we have,

E
[∥∥∥xk+1 − x?

∥∥∥2] = E

[∥∥∥∥∥(1− η)xk +
η

n

n∑
i=1

(
δki + hki

)
− x?

∥∥∥∥∥
2]

(16)
=

∥∥∥(1− η)xk + ηT (xk, sk)− x?
∥∥∥2 +

η2

n2
E

[∥∥∥∥∥
n∑
i=1

δki − E
[
δki

]∥∥∥∥∥
2]

(17)
=

∥∥∥(1− η)xk + ηT (xk, sk)− x?
∥∥∥2 +

η2

n2

n∑
i=1

E
[∥∥∥δki − E

[
δki

]∥∥∥2]

≤
∥∥∥(1− η)xk + ηT (xk, sk)− x?

∥∥∥2 +
η2ω

n2

n∑
i=1

∥∥∥Ti(xk, ski )− hki
∥∥∥2.

We now take expectation with respect to the randomness in sk1 , . . . , s
k
n and conditionally on xk, hk1 , . . . , h

k
n:

E
[∥∥∥xk+1 − x?

∥∥∥2] ≤ E
[∥∥∥(1− η)xk + ηT (xk, sk)− x?

∥∥∥2]+
η2ω

n2

n∑
i=1

E
[∥∥∥Ti(xk, ski )− hki

∥∥∥2] . (25)

To bound the first term in (25) we use the convexity of the squared norm as follows,

E
[∥∥∥(1− η)xk + ηT (xk, sk)− x?

∥∥∥2] = E
[∥∥∥(1− η)

(
xk − x?

)
+ η

(
T (xk, sk)− x?

)∥∥∥2]
(19)

≤ (1− η)
∥∥∥xk − x?∥∥∥2 + ηE

[∥∥∥T (xk, sk)− x?
∥∥∥2]

(5)

≤ (1− η + η (1− ρ))
∥∥∥xk − x?∥∥∥2 + ηB

= (1− ηρ)
∥∥∥xk − x?∥∥∥2 + ηB. (26)

For the second term in (25) we have,

E
[∥∥∥Ti(xk, ski )− hki

∥∥∥2] (18)

≤ 2E
[∥∥∥Ti(xk, ski )− Ti(x?, ski )

∥∥∥2]+ 2E
[∥∥∥Ti(x?, ski )− hki

∥∥∥2] . (27)

It remains to substitute with (26) and (27) in (25):

E
[∥∥∥xk+1 − x?

∥∥∥2] ≤ (1− ηρ)
∥∥∥xk − x?∥∥∥2 + ηB + E

[∥∥∥Ti(x?, ski )− hki
∥∥∥2]

+
2η2ω

n2

n∑
i=1

E
[∥∥∥Ti(xk, ski )− Ti(x?, ski )

∥∥∥2] .
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C.2 Proof of Theorem 4

Proof of Theorem 4. By Lemmas 3 and 2 taking conditional expectation w.r.t. xk, hk1 , . . . , h
k
n,

E
[
Ψk+1

]
= E

[∥∥∥xk+1 − x?
∥∥∥2]+

4η2ω

αn2

n∑
i=1

E
[∥∥∥hk+1

i − x?
∥∥∥2]

(24)+(23)

≤ (1− ηρ)
∥∥∥xk − x?∥∥∥2 +

6η2ω

n2

n∑
i=1

E
[∥∥∥Ti(xk, ski )− Ti(x?, ski )

∥∥∥2]

+
4η2ω

αn2

(
1− α

2

) n∑
i=1

E
[∥∥∥hki − Ti(x?, ski )

∥∥∥2]+ ηB

(6)

≤ (1− ηρ)
∥∥∥xk − x?∥∥∥2 +

6η2ω

n2

n∑
i=1

c2i ·
∥∥∥xk − x?∥∥∥2

+
4η2ω

αn2

(
1− α

2

) n∑
i=1

E
[∥∥∥hki − Ti(x?, ski )

∥∥∥2]+ ηB

=

(
1− ηρ+

6η2ωc2

n

)∥∥∥xk − x?∥∥∥2 + ηB +
4η2ω

αn2

(
1− α

2

) n∑
i=1

E
[∥∥∥hki − Ti(x?, ski )

∥∥∥2] . (28)

To get the optimal stepsize η ∈ (0, 1] we solve

min
η∈(0,1]

{
1− ηρ+

6η2ωc2

n

}
,

One can observe that the solution of this problem is the value of η in Theorem 4. Using this choice of η we get

1− ηρ+
6η2ωc2

n
= 1− ηρ

2
− ηρ

2

(
1− 12ηωc2

nρ

)
≤ 1− ηρ

2
. (29)

Hence using (29) in (28),

E
[
Ψk+1

]
≤

(
1− ηρ

2

)∥∥∥xk − x?∥∥∥2 + ηB +
4η2ω

αn2

(
1− α

2

) n∑
i=1

E
[∥∥∥hki − Ti(x?, ski )

∥∥∥2]

≤ max
{

1− ηρ

2
, 1− α

2

}
E

[∥∥∥xk − x?∥∥∥2 +
4η2ω

αn2

n∑
i=1

∥∥∥hki − Ti(x?, ski )
∥∥∥2]+ ηB

=

(
1− min {α, ηρ}

2

)
Ψk + ηB. (30)

It remains to take unconditional expectations in (30), yielding (15).
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