
FAST DISTRIBUTED COORDINATE DESCENT FOR NON-STRONGLY CONVEX LOSSES∗

Olivier Fercoq Zheng Qu Peter Richtárik Martin Takáč

School of Mathematics, University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom

ABSTRACT
We propose an efficient distributed randomized coordinate
descent method for minimizing regularized non-strongly con-
vex loss functions. The method attains the optimal O(1/k2)
convergence rate, where k is the iteration counter. The core of
the work is the theoretical study of stepsize parameters. We
have implemented the method on Archer—the largest super-
computer in the UK—and show that the method is capable of
solving a (synthetic) LASSO optimization problem with 50
billion variables.

Index Terms— Coordinate descent, distributed algo-
rithms, acceleration.

1. INTRODUCTION

In this paper we are concerned with solving regularized
convex optimization problems in huge dimensions in cases
when the loss being minimized is not strongly convex. That
is, we consider the problem

min
x∈Rd

L(x) := f(x) +R(x), (1)

where f : Rd → R is a convex differentiable loss func-
tion, d is huge, and R(x) ≡

∑d
i=1Ri(x

i), where Ri : R →
R∪{+∞} are (possibly nonsmooth) convex regularizers and
xi denotes the i-th coordinate of x. We make the following
technical assumption about f : there exists a n-by-d matrix A
such that for all x, h ∈ Rd,

f(x+ h) 6 f(x) + (f ′(x))>h+ 1
2h
>A>Ah. (2)

For examples of regularizers R and loss functions f sat-
isfying the above assumptions, relevant to machine learning
applications, we refer the reader to [1, 2, 3].

It is increasingly the case in modern applications that the
data describing the problem (encoded in A andR in the above
model) is so large that it does not fit into the RAM of a single
computer. In such a case, unless the application at hand can
tolerate slow performance due to frequent HDD reads/writes,
it is often necessary to distribute the data among the nodes of
a cluster and solve the problem in a distributed manner.

∗THANKS TO EPSRC FOR FUNDING VIA GRANTS EP/K02325X/1,
EP/I017127/1 AND EP/G036136/1.

While efficient distributed methods exist in cases when
the regularized loss L is strongly convex (e.g., Hydra [3]),
here we assume that L is not strongly convex. Problems of
this type arise frequently: for instance, in the SVM dual, f is
typically a non-strongly convex quadratic, d is the number of
examples, n is the number of features, A encodes the data,
and R is a 0-∞ indicator function encoding box constraints
(e.g., see [2]). If d > n, then L will not be strongly convex.

In this paper we propose “Hydra2” (Hydra “squared”; Al-
gorithm 1) – the first distributed stochastic coordinate de-
scent (CD) method with fast O(1/k2) convergence rate for
our problem. The method can be seen both as a specialization
of the APPROX algorithm [4] to the distributed setting, or
as an accelerated version of the Hydra algorithm [3] (Hydra
converges as O(1/k) for our problem). The core of the paper
forms the development of new stepsizes, and new efficiently
computable bounds on the stepsizes proposed for distributed
CD methods in [3]. We show that Hydra2 is able to solve a
big data problem with d equal to 50 billion.

2. THE ALGORITHM

Assume we have c nodes/computers available. In Hydra2

(Algorithm 1), the coordinates i ∈ [d] := {1, 2, . . . , d} are
first partitioned into c sets {Pl, l = 1, . . . , c}, each of size
|Pl| = s := d/c. The columns of A are partitioned accord-
ingly, with those belonging to partition Pl stored on node l.
During one iteration, all computers l ∈ {1, . . . , c}, in paral-
lel, pick a subset Ŝl of τ coordinates from those they own,
i.e., from Pl, uniformly at random, where 1 6 τ 6 s is a
parameter of the method (Step 6). From now on we denote by
Ŝ the union of all these sets, Ŝ := ∪lŜl, and refer to it by the
name distributed sampling.

Hydra2 maintains two sequences of iterates: uk, zk ∈
Rd. Note that this is usually the case with accelerated/fast
gradient-type algorithms [5, 6, 7]. Also note that the output
of the method is a linear combination of these two vectors.
These iterates are stored and updated in a distributed way,
with the i-th coordinate stored on computer l if i ∈ Pl. Once
computer l picks Ŝl, it computes for each i ∈ Ŝl an update
scalar tik, which is then used to update zik and uik, in parallel
(using the multicore capability of computer l).

The main work is done in Step 8 where the update scalars

Algorithm 1 Hydra2

1 INPUT: {Pl}cl=1, 1 6 τ 6 s, {Dii}di=1, z0 ∈ Rd
2 set θ0 = τ/s and u0 = 0
3 for k > 0 do
4 zk+1 ← zk, uk+1 ← uk
5 for each computer l ∈ {1, . . . , c} in parallel do
6 pick a random set of coordinates Ŝl ⊆ Pl, |Ŝl| = τ
7 for each i ∈ Ŝl in parallel do
8 tik = argmin

t
f ′i(θ

2
kuk+zk)t+

sθkDii

2τ t2+Ri(z
i
k+t)

9 zik+1 ← zik + tik, uik+1 ← uik − (1
θ2k
− s

τθk
)tik

10 end parallel for
11 end parallel for
12 θk+1 = 1

2 (
√
θ4k + 4θ2k − θ2k)

13 end for
14 OUTPUT: θ2kuk+1 + zk+1

tik are computed. The partial derivatives are computed at
(θ2kuk+zk). For the algorithm to be efficient, the computation
should be performed without computing the sum θ2kuk + zk
(see [4] for details on how this can be done).

Steps 8 and 9 depend on a deterministic scalar sequence
θk, which is being updated in Step 12 as in [6]. Note that by
taking θk = θ0 for all k, uk remains equal to 0, and Hydra2

reduces to Hydra [3].
The output of the algorithm is xk+1 = (θ2kuk+1 + zk+1).

We only need to compute this vector sum at the end of the
execution and when we want to track L(xk). Note that one
should not evaluate xk and L(xk) at each iteration since these
computations have a non-negligible cost.

3. CONVERGENCE RATE

The magnitude of Dii > 0 directly influences the size of
the update tik. In particular, note that when there is no reg-
ularizer (Ri = 0), then tik = 2τf ′i(θ

2
kuk + zk)(sθkDii)

−1.
That is, small Dii leads to a larger “step” tik which is used
to update zik and uik. For this reason we refer to {Dii}di=1 as
stepsize parameters. Naturally, some technical assumptions
on {Dii}di=1 should be made in order to guarantee the conver-
gence of the algorithm. The so-called ESO (Expected Sepa-
rable Overapproximation) assumption has been introduced in
this scope. For h ∈ Rd, denote hŜ :=

∑
i∈Ŝ h

iei, where ei is
the ith unit coordinate vector.

Assumption 3.1 (ESO). Assume that for all x ∈ Rd and h ∈
Rd we have

E
[
f(x+ hŜ)

]
6 f(x)+

E[|Ŝ|]
d

(
(f ′(x))>h+ 1

2h
>Dh

)
, (3)

where D is a diagonal matrix with diag. elements Dii > 0
and Ŝ is the distributed sampling described above.

The above ESO assumption involves the smooth function
f , the sampling Ŝ and the parameters {Dii}di=1. It has been
first introduced by Richtárik and Takáč [2] for proposing a
generic approach in the convergence analysis of the Paral-
lel Coordinate Descent Methods (PCDM). Their generic ap-
proach boils down the convergence analysis of the whole class
of PCDMs to the problem of finding proper parameters which
make the ESO assumption hold. The same idea has been ex-
tended to the analysis of many variants of PCDM, including
the Accelerated Coordinate Descent algorithm [4] (APPROX)
and the Distributed Coordinate Descent method [3] (Hydra).

In particular, the following complexity result, under the
ESO assumption 3.1, can be deduced from [4, Theorem 3]
using Markov inequality:

Theorem 3.2 ([4]). Let x∗ ∈ Rd be any optimal point of (1),

C1 :=
(
1− τ

s

)
(L(x0)− L(x∗)),

C2 := 1
2 (x0 − x∗)

>D(x0 − x∗),

and choose 0 < ρ < 1, ε < L(x0)− L(x∗) and

k >
2s

τ

(√
C1 + C2

ρε
− 1

)
+ 1. (4)

Then under Assumption 3.1, the iterates {xk}k>1 of Algo-
rithm 1 satisfy Prob(L(xk)− L(x∗) 6 ε) > 1− ρ .

The bound on the number of iterations k in (4) suggests
to choose the smallest possible {Dii}di=1 satisfying the ESO
assumption 3.1.

4. STEPSIZES

In this section we will study stepsize parameters Dii for
which the ESO assumption is satisfied.

4.1. New stepsizes

For any matrix G ∈ Rd×d, denote by DG the diagonal
matrix such that DG

ii = Gii for all i and DG
ij = 0 for i 6= j.

We denote by BG ∈ Rd×d the block matrix associated with
the partition {P1, . . . ,Pc} such that BG

ij = Gij whenever
{i, j} ⊂ Pl for some l, and BG

ij = 0 otherwise.
Let ωj be the number of nonzeros in the jth row of A

and ω′j be the number of “partitions active at row j”, i.e., the
number of indexes l ∈ {1, . . . , c} for which the set {i ∈ Pl :
Aji 6= 0} is nonempty. Note that since A does not have an
empty row or column, we know that 1 6 ωj 6 n and 1 6
ω′j 6 c. Moreover, we have the following characterization of
these two quantities. For notational convenience we denote
Mj = A>j:Aj: for all j ∈ {1, . . . , n}.

Lemma 4.1. For j ∈ {1, . . . , n} we have:

ωj = max{x>Mjx : x>DMjx 6 1}, (5)

ω′j = max{x>Mjx : x>BMjx 6 1}. (6)

Proof. For l ∈ {1, . . . , c} and y ∈ Rd, denote y(l) :=
(yi)i∈Pl

. That is, y(l) is the subvector of y composed of
coordinates belonging to partition Pl. Then we have:

x>Mjx = (

c∑
l=1

A
(l)
j: x

(l))2, x>BMjx =

c∑
l=1

(A
(l)
j: x

(l))2.

Let S′ = {l : A(l)
j: 6= 0}, then ω′j = |S′| and by Cauchy-

Schwarz we have

(
∑
l∈S′

A
(l)
j: x

(l))2 6 ω′j
∑
l∈S′

(A
(l)
j: x

(l))2.

Equality is reached when A
(l)
j: x

(l) = α for some constant α
for all l ∈ S′ (this is feasible since the subsets {P1, . . . ,Pc}
are disjoint). Hence, we proved (6). The characterization (5)
follows from (6) by setting c = d.

We shall also need the following lemma.

Lemma 4.2 ([3]). Fix arbitrary G ∈ Rd×d and x ∈ Rd and
let s1 = max{1, s− 1}. Then E[(xŜ)>GxŜ] is equal to

τ
s

[
α1x

>DGx+ α2x
>Gx+ α3x

>(G−BG)x
]
, (7)

where α1 = 1− τ−1
s1

, α2 = τ−1
s1

, α3 = τ
s −

τ−1
s1

.

Below is the main result of this section.

Theorem 4.1. For a convex differentiable function f satisfy-
ing (2) and a distributed sampling Ŝ described in Section 2,
the ESO assumption 3.1 is satisfied for

D1
ii ≡ Dii =

n∑
j=1

α∗jA
2
ji, i = 1, . . . , d , (8)

where

α∗j := α∗1,j + α∗2,j , α
∗
1,j = 1 +

(τ−1)(ωj−1)
s1

,

α∗2,j = (τs −
τ−1
s1

)
ω′

j−1
ω′

j
ωj .

(9)

Proof. Fix any h ∈ Rd. It is easy to see that E[(f ′(x))>hŜ] =
E[|Ŝ|]
d (f ′(x))>h); this follows by noting that Ŝ is a uniform

sampling (we refer the reader to [2] and [8] for more identities
of this type). In view of (2), we only need to show that

E
[
(hŜ)>A>AhŜ

]
6 E[|Ŝ|]

d h>Dh . (10)

By applying Lemma 4.2 with G = Mj and using Lemma 4.1,
we get:

E
[
(hŜ)>Mjh

Ŝ
]

6 τ
s [α1h

>DMjh+ α2ωjh
>DMjh+ α3(1− 1

ω′
j
)h>Mjh]

6 τ
s [α1 + α2ωj + α3(1− 1

ω′
j
)ωj]h

>DMjh

= E[|Ŝ|]
d α∗jh

>DMjh. (11)

Since E[(hŜ)>A>AhŜ] =
∑n
j=1 E[(hŜ)>Mjh

Ŝ], (10) can
be obtained by summing up (11) over j from 1 to n.

4.2. Existing stepsizes

For simplicity, let M := A>A. Define:

σ := max{x>Mx : x ∈ Rd;x>DMx 6 1},
σ′ := max{x>Mx : x ∈ Rd;x>BMx 6 1}.

(12)

The quantities σ and σ′ are identical to those defined in [3]
(although the definitions are slightly different). The following
stepsize parameters have been introduced in [3]:

Lemma 4.3 ([3]). The ESO assumption 3.1 is satisfied for

D2
ii ≡ Dii = β∗

n∑
j=1

A2
ji, i = 1, . . . , d , (13)

where

β∗ := β∗1 + β∗2

β∗1 = 1 + (τ−1)(σ−1)
s1

, β∗2 =
(
τ
s −

τ−1
s1

)
σ′−1
σ′ σ.

(14)

4.3. Known bounds on existing stepsizes

In general, the computation of σ and σ′ can be done using
the Power iteration method [9]. However, the number of op-
erations required in each iteration of the Power method is at
least twice as the number of nonzero elements in A. Hence
the only computation of the parameters σ and σ′ would al-
ready require quite a few number of passes through the data.
Instead, if one could provide some easily computable upper
bound for σ and σ′, where by ’easily computable’ we mean
computable by only one pass through the data, then we can
run Algorithm 1 immediately without spending too much time
on the computation of σ and σ′. Note that the ESO assump-
tion will still hold when σ and σ′ in (13) are replaced by some
upper bounds.

In [3], the authors established the following bound

β∗ 6 2β∗1 = 2(1 + (τ−1)(σ−1)
s1

) , (15)

which is independent of the partition {Pl}l=1,...,c. This bound
holds for τ > 2. Further, they showed that

σ 6 max
j
ωj . (16)

Then in view of (15), (16) and Lemma 4.3, the ESO assump-
tion 3.1 is also satisfied for the following easily computable
parameters:

D3
ii ≡ Dii = 2

(
1 + τ−1

s1
(max

j
ωj − 1)

) n∑
j=1

A2
ji. (17)

4.4. Improved bounds on existing stepsizes

In what follows, we show that both (15) and (16) can be
improved so that smaller parameters {Dii}di=1 are allowed in
the algorithm.

Lemma 4.4. Suppose τ > 2 (note that then s > τ > 2). For
all 1 6 η 6 s the following holds(

τ
s −

τ−1
s−1

)
η 6 1

τ−1

(
1 + (τ−1)(η−1)

s−1

)
(18)

Proof. Both sides of the inequality are linear functions of η. It
therefore suffices to verify that the inequality holds for η = 1
and η = s, which can be done.

The following result is an improvement on (15), which
was shown in [3, Lemma 2].

Lemma 4.5. If τ > 2, then β∗ 6 (1 + 1
τ−1)β

∗
1 .

Proof. We only need to apply Lemma 4.4 to (14) with η = σ,
and additionally use the bound σ′−1

σ′ 6 1. This gives β∗2 6
β∗1/(τ − 1), from which the result follows.

Remark 4.1. Applying the same reasoning to the new step-
sizes α∗j we can show that α∗j 6 (1+1/(τ−1))α∗1,j for all j ∈
{1, . . . , n}. Remark that this is not as useful as Lemma 4.5
sinceα∗2,j does not need to be approximated (ω′j is easily com-
putable). However, the same conclusion holds for the new
stepsize parameters: whatever the partition {Pl}l=1,...,c is,
each parameter Dii is at most 1 + 1/(τ − 1) times than the
smallest one we can use by choosing an optimal partition, if
the latter one exists.

We next give a better upper bound of σ than (16).

Lemma 4.6. If we let

vi :=

∑n
j=1 ωjA

2
ji∑n

j=1 A
2
ji

, i = 1, . . . , d, (19)

then σ 6 σ̃ := maxi vi.

Proof. In view of Lemma 4.1, we know that

M =

n∑
j=1

Mj 4
n∑
j=1

ωjD
Mj = Diag(v)DM 4 max

i
viD

M.

The rest follows from the definition of σ.

By combining Lemma 4.3, Lemma 4.5 and Lemma 4.6,
we obtain the following smaller (compared to (17)) admissi-
ble and easily computable stepsize parameters:

D4
ii ≡ Dii =

τ
τ−1

(
1 + (σ̃−1)(τ−1)

s−1

) n∑
j=1

A2
ji. (20)

4.5. Comparison between the new and old stepsizes

So far we have seen four different admissible stepsize pa-
rameters. For ease of reference, let us call {D1

ii}di=1 the new
parameters defined in (8), {D2

ii}di=1 the existing one given
in [3] (see (13)), {D3

ii}di=1 the upper bound of {D2
ii}di=1

used in [3] (see (17)) and {D4
ii}di=1 the new upper bound of

{D2
ii}di=1 defined in (20).
The next lemma compares the four admissible ESO pa-

rameters. The lemma implies that D1 and D2 are uniformly
smaller (i.e., better – see Theorem 3.2) than D4 and D3.
However, D2 involves quantities which are hard to compute
(e.g., σ). Moreover, D4 is always better than D3.

Lemma 4.7. Let τ > 2. The following holds for all i:

D1
ii 6 D4

ii 6 D3
ii (21)

D2
ii 6 D4

ii 6 D3
ii (22)

Proof. We only need to show that D1
ii 6 D4

ii, the other rela-
tions are already proved. It follows from (19) that for all i we
have ∑n

j=1(ωj − σ̃)A2
ji 6 0 . (23)

Moreover, letting
σ̃′ = max

j
ω′j (24)

and using Lemma 4.4 with η = σ̃, we get

(τs −
τ−1
s−1)

σ̃′−1
σ̃′ σ̃ 6 1

τ−1 (1 +
(σ̃−1)(τ−1)

s−1). (25)

Now, for all i, we can write

D1
ii −D4

ii

(8)+(9)+(20)
=

n∑
j=1

A2
ji

(
τ−1
s−1 (ωj − σ̃) +

(τs −
τ−1
s−1)

ω′
j−1
ω′

j
ωj − 1

τ−1 (1 +
(σ̃−1)(τ−1)

s−1)
)

(23)
6

n∑
j=1

(
(τs −

τ−1
s−1)

ω′
j−1
ω′

j
ωj − 1

τ−1 (1 +
(σ̃−1)(τ−1)

s−1)
)
A2
ji

(24)+(25)
6 (τs −

τ−1
s1

) σ̃
′−1
σ̃′

n∑
j=1

(ωj − σ̃)A2
ji

(23)
6 0 .

Note that we do not have a simple relation between
{D1

ii}di=1 and {D2
ii}di=1. Indeed, for some coordinates i

the new stepsize parameters {D1
ii}di=1 could be smaller than

{D2
ii}di=1, see Figure 1. in the next section for an illustration.

5. NUMERICAL EXPERIMENTS

In this section we will show some preliminary computa-
tional result and demonstrate that Hydra2 can, indeed, out-
perform (non-accelerated) Hydra. We also show that the run-
time of Hydra2 is (as expected) less than twice more expen-
sive when compared with Hydra, but the convergence speed
is significantly better on non-strongly convex problems.

The experiments were performed on two problems:

1. Dual of SVM: This problem can be formulated as find-
ing x ∈ [0, 1]d that minimizes

L(x) =
1

2λd2

n∑
j=1

(

d∑
i=1

biAjix
i)2 − 1

d

d∑
i=1

xi + I[0,1]d(x),

Here d is the number of examples, each row of the ma-
trix A corresponds to a feature, b ∈ Rd, λ > 0 and
I[0,1]d denotes the indicator function of the set [0, 1]d,
defined as

I[0,1]d(x) =

{
0 if x ∈ [0, 1]d,

+∞ if x 6∈ [0, 1]d.

2. LASSO:

L(x) =
1

2
‖Ax− b‖2 + λ‖x‖1. (26)

The computation were performed on Archer (http://
archer.ac.uk/), which is UK #1 supercomputer .

5.1. Benefit from the new stepsizes

In this section we compare the four different stepsize pa-
rameters and show how they influence the convergence of
Hydra2 through numerical experiments. The dataset used in
this section is astro-ph dataset.1 The problem that we solve is
the SVM dual problem, see [10, 11].

Figure 1 displays the values of D1
ii, D

2
ii, D

3
ii and D4

ii with
respect to different i in {1, . . . , d} for (c, τ) = (32, 10) on the
astro-ph dataset. For this particular normalized dataset (the
diagonal elements of A>A are all equal to 1), the parameters
{D2

ii}i are equal to a constant for all i, the same for {D3
ii}i

and {D4
ii}i. Recall that according to Theorem 3.2, a better

convergence rate is guaranteed if smaller stepsize parameters
{Dii}i are used. Hence it is clear that {D1

ii}i and {D2
ii}i

are better choices than {D3
ii}i and {D4

ii}i. However, as we
mentioned, computing the parameters {D1

ii}i would require
a considerable computational effort, while computing {D2

ii}i
is as easy as passing one time the dataset. For this relatively
small astro-ph dataset, the time is about 1 minute for comput-
ing {D2

ii}i and less than 1 second for {D1
ii}i.

1Astro-ph is a binary classification problem which consist of abstracts of
papers from physics. The dataset consist of d = 29, 882 samples and the
feature space has dimension n = 99, 757.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

50

100

150

200

250

300

350

i

D
ii

D
1

D
2

D
3

D
4

Fig. 1: Plots of i v.s. D1
ii, i v.s. D2

ii, i v.s. D3
ii and i v.s. D4

ii

In order to investigate the benefit of the new stepsize pa-
rameters, we solved the SVM dual problem on the astro-ph
dataset for (c, τ) = (32, 10), using different stepsize parame-
ters. Figure 2 shows evolutions of the duality gap, obtained by
using the four stepsize parameters mentioned previously. We
see clearly from the figure that smaller stepsize parameters
yield better convergence speed, as what is predicted by The-
orem 3.2. Moreover, using our easily computable new step-
size parameters {D1

ii}i, we achieve comparable convergence
speed with respect to the existing ESO parameter {D2

ii}i.

0 2000 4000 6000 8000 10000
10

−4

10
−3

10
−2

10
−1

10
0

Iterations

D
u

a
lit

y
 g

a
p

D
1

D
2

D
3

D
4

Fig. 2: Duality gap v.s. number of iterations, for 4 different
stepsize parameters

5.2. Hydra2 vs Hydra

In this section, we report experimental results comparing
Hydra with Hydra2 on the LASSO problem. We generated
a sparse matrix A having the same block angular structure
as the one used in [3, Sec 7.], with d = 50 billion, c = 8,
s = 62, 500, 000 (note that d = cs) and n = 500, 000.

http://archer.ac.uk/
http://archer.ac.uk/

The average number of nonzero elements per row of A, i.e.,∑
j ωj/n is 5, 000, and the maximal number of nonzero ele-

ments in a row, i.e., maxj ωj is 201, 389. The dataset size is
400GB. We show in Figure 3 the error decrease with respect
to the number of iterations, plotted in log scale. It is clear that
Hydra2 provides better iteration convergence rate than Hydra.
Moreover, we see from Figure 4 that the speedup in terms of
the number of iterations is sufficiently large so that Hydra2

converges faster even in time than Hydra even though the run
time of Hydra2 per iteration is more expensive than Hydra.

10
4

10
5

10
6

10
−1

10
0

10
1

L
(x

k
)−

L
*

Iterations

hydra

hydra
2

Fig. 3: Evolution of L(xk)−L∗ in number of iterations, plot-
ted in log scale.

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

L
(x

k
)−

L
*

Elapsed time [s]

hydra

hydra
2

Fig. 4: Evolution of L(xk)− L∗ in time, plotted in log scale.

6. REFERENCES

[1] Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and
Carlos Guestrin, “Parallel coordinate descent for l1-
regularized loss minimization,” in ICML 2011, 2011.

[2] Peter Richtárik and Martin Takáč, “Parallel coor-

dinate descent methods for big data optimization,”
arXiv:1212.0873, 2012.

[3] Peter Richtárik and Martin Takáč, “Distributed co-
ordinate descent method for learning with big data,”
arXiv:1310.2059, 2013.

[4] Olivier Fercoq and Peter Richtárik, “Accelerated, paral-
lel and proximal coordinate descent,” arXiv:1312.5799,
2013.

[5] Yurii Nesterov, “A method of solving a convex program-
ming problem with convergence rate O(1/k2),” So-
viet Mathematics Doklady, vol. 27, no. 2, pp. 372–376,
1983.

[6] Paul Tseng, “On accelerated proximal gradient methods
for convex-concave optimization,” Submitted to SIAM
Journal on Optimization, 2008.

[7] Amir Beck and Marc Teboulle, “A fast itera-
tive shrinkage-thresholding algorithm for linear inverse
problems,” SIAM Journal on Imaging Sciences, vol. 2,
no. 1, pp. 183–202, 2009.

[8] Olivier Fercoq and Peter Richtárik, “Smooth minimiza-
tion of nonsmooth functions with parallel coordinate de-
scent methods,” arXiv:1309.5885, 2013.

[9] Grégoire Allaire and Sidi Mahmoud Kaber, Numerical
linear algebra, vol. 55 of Texts in Applied Mathematics,
Springer, New York, 2008, Translated from the 2002
French original by Karim Trabelsi.

[10] Shai Shalev-Shwartz and Tong Zhang, “Stochastic dual
coordinate ascent methods for regularized loss,” The
Journal of Machine Learning Research, vol. 14, no. 1,
pp. 567–599, 2013.

[11] Martin Takáč, Avleen Bijral, Peter Richtárik, and
Nathan Srebro, “Mini-batch primal and dual methods
for SVMs,” in ICML 2013, 2013.

	 Introduction
	 The Algorithm
	 Convergence rate
	 Stepsizes
	 New stepsizes
	 Existing stepsizes
	 Known bounds on existing stepsizes
	 Improved bounds on existing stepsizes
	 Comparison between the new and old stepsizes

	 Numerical Experiments
	 Benefit from the new stepsizes
	 Hydra2 vs Hydra

	 References

