
Comparison of Modern Stochastic Optimization Algorithms

George Papamakarios

December 2014

Abstract

Gradient-based optimization methods are popular in machine learning applications. In
large-scale problems, stochastic methods are preferred due to their good scaling properties.
In this project, we compare the performance of four gradient-based methods; gradient de-
scent, stochastic gradient descent, semi-stochastic gradient descent and stochastic average
gradient. We consider logistic regression with synthetic data and softmax regression on the
MNIST dataset of handwritten digits.

1 Introduction

In machine learning, statistics and data science, one often needs to solve an unconstrained
optimization problem of the following type

min
w

f (w) ≡ 1
N

N∑
n=1

fn (w) (1.1)

where w ∈ RD and f is given by the average of N functions fn : RD → R. In a machine learning
context, w could be the parameters of a classifier we wish to learn, and fn could be the loss on
the nth data point in a train set of N data points. Solving the above problem would correspond
to fitting the classifier to the train set by minimizing the average loss.

In the common case where functions fn are smooth, iterative gradient-based methods, such
as gradient descent, are popular optimization tools. In principle, such methods need access to
the gradient of f , given by

∇f (w) =
1
N

N∑
n=1

∇fn (w). (1.2)

Evaluating ∇f scales linearly with the number of functions N and becomes computationally
expensive as N becomes large. As datasets grow bigger, such methods tend to become inefficient
in practical machine learning applications.

A viable alternative to gradient-based methods are stochastic gradient-based methods, such
as stochastic gradient descent. These methods do not fully compute ∇f , but rather approximate
it by a stochastic estimate ∇f̃ that is cheaper to compute. The estimate is typically computed
by using only a subset of functions fn. The main drawback of stochastic gradient-based methods
is that, due to their stochastic nature, their rate of convergence can be significantly worse than
that of their deterministic counterparts.

In the literature, there has been a significant number of approaches towards accelerating
the convergence of stochastic gradient-based methods (including for instance adding momentum
or averaging the gradients—see relevant discussion in [10] for more information). Recently, a
family of semi-stochastic gradient-based methods, such as semi-stochastic gradient descent and
stochastic average gradient, have been proposed, that combine elements from both deterministic
and stochastic gradient-based methods. As a result, they inherit both the fast convergence of
deterministic methods and the computational efficiency of stochastic methods.

In this report, we compare two classic gradient-based methods, a deterministic one and a
stochastic one, and two modern semi-stochastic methods, based on their performance in practical



2 2 Gradient-Based Optimization Algorithms

machine learning scenarios. We perform two sets of experiments; the first one involves logistic
regression on a synthetically generated dataset and the second one involves classification with
softmax regression of the handwritten digits in the MNIST dataset.

2 Gradient-Based Optimization Algorithms

In our comparisons, we used (a) gradient descent, a classic deterministic algorithm, (b) stochastic
gradient descent, a classic stochastic algorithm, (c) semi-stochastic gradient descent and (d)
stochastic average gradient, the last two being modern semi-stochastic algorithms. In this section,
we give brief descriptions of the above algorithms and provide relevant references.

2.1 Gradient Descent

Gradient descent (or simply GD) is a classic iterative gradient-based algorithm. In iteration
k, variable wk is updated towards the opposite direction of the gradient ∇f (wk), which is
(locally) the direction towards which f (wk) decreases the most quickly (hence its alternative
name, steepest descent). A step size parameter α determines the degree by which wk is changed.
Algorithm 2.1 describes the version of GD where α is the same in each iteration (this is the
version we use in our experiments). Figure 2.1a shows a typical run of the algorithm for a
strongly convex function f .

Algorithm 2.1: Gradient descent with constant step size
Input: step size α > 0, w0

1 for k ∈ {0, 1, . . .} do
2 wk+1 = wk − α∇f (wk)
3 end for

Output: wk

It can be shown (Theorem 2.1.15 in [9]) that if ∇f is Lipschitz continuous and f is strongly
convex, then, for an appropriate selection of α, GD has a linear convergence rate, in the sense
that

f (wk)− f (w∗) ∈ O
(
ck
)

(2.1)

where w∗ is the global minimiser of f and c < 1 depends on the condition number of f (the
higher the condition number, the closest c is to 1 and the slowest the convergence becomes).
This type of convergence is referred to as linear because the logarithm of the optimality gap
f (wk)− f (w∗) decays linearly with k.

Despite its good convergence properties, when applied to problem (1.1), GD has to do work
O (N) per iteration in order to compute ∇f , which can be prohibitively expensive for large N .
Therefore, its applicability in large-scale machine learning is rather limited.

2.2 Stochastic Gradient Descent

Stochastic gradient descent (or simply SGD) is similar in principle to GD but instead of com-
puting the full gradient ∇f (wk), it simply chooses one of the gradients ∇fn (wk) uniformly at
random and uses that to update wk. Even though this may move wk away from the minimum,
it works in expectation, since

E [∇fn (wk)] = ∇f (wk) . (2.2)

SGD is described in Algorithm 2.2. Note however that in many practical implementations (in-
cluding ours), n in step 3 is chosen such that the algorithm considers all gradients before choosing
the same one again. Figure 2.1b shows a typical run of SGD for a strongly convex function f .

An important aspect of SGD is that ∇fn (wk) is a noisy estimate of the true gradient. Even
at the optimum where the true gradient is zero, the algorithm might continue to change wk.



2.3 Semi-Stochastic Gradient Descent 3

Algorithm 2.2: Stochastic gradient descent
Input: initial step size α0 > 0, decay parameter λ > 0, w0

1 for k ∈ {0, 1, . . .} do
2 αk = α0 (1 + α0λk)−1

3 choose n ∈ {1, 2, . . . , N} uniformly at random
4 wk+1 = wk − αk∇fn (wk)
5 end for

Output: wk

Therefore, in order to ensure convergence, the step size αk needs to decrease in every iteration.
According to [2], when the Hessian of f at the optimum is strictly positive definite, decreasing
αk as in Algorithm 2.2 guarantees convergence at the best possible rate, which is

E [f (wk)]− f (w∗) ∈ O
(
k−1

)
(2.3)

We can see that SGD has a significantly slower convergence rate than GD. Notice also that the
convergence is only in expectation. However, since the work in each iteration is independent of
N , SGD is very attractive in large-scale machine learning applications.

2.3 Semi-Stochastic Gradient Descent

Semi-stochastic gradient descent (also denoted as S2GD) was proposed in 2013 by Konečný and
Richtárik [6]. It combines elements from both GD and SGD (hence its name). S2GD starts by
computing the full gradient once and then proceeds with stochastic updates by choosing one of
the gradients at a time. If the full gradient was computed at w0, after i stochastic updates the
gradient estimate is taken to be

∇f̃ (wi) = ∇f (w0)−∇fn (w0) +∇fn (wi) (2.4)

for some uniformly random choice of n, and wi is subsequently updated using ∇f̃ (wi). As in
SGD, the gradient estimate is an unbiased estimate of the true gradient, since

E [∇f (w0)−∇fn (w0) +∇fn (wi)] = ∇f (w0)−∇f (w0) +∇f (wi) = ∇f (wi) . (2.5)

However, unlike SGD, in every stochastic update the true gradient at w0 is also used, effec-
tively reducing the noise of the estimate and speeding up convergence. After a (stochastic)
number t of stochastic updates, the algorithm computes again the full gradient at wt, and so on.
Algorithm 2.3 describes S2GD in detail and Figure 2.1c shows an typical run.

Algorithm 2.3: Semi-stochastic gradient descent
Input: step size α > 0, maximum # of inner iterations T > 0, λ ≥ 0, w0

1 for k ∈ {0, 1, . . .} do
2 g← 1

N

∑N
n=1∇fn (wk)

3 y← wk

4 choose t ∈ {1, 2, . . . , T} with probability ∝ (1− λα)−t

5 for i ∈ {1, 2, . . . , t} do
6 choose n ∈ {1, 2, . . . , N} uniformly at random
7 y← y − α [g −∇fn (y) +∇fn (wk)]
8 end for
9 wk+1 ← y

10 end for
Output: wk



4 2 Gradient-Based Optimization Algorithms

If all ∇fn are Lipschitz continuous and f is strongly convex, then it can be proven [6] that,
for an appropriate choice of its parameters, S2GD converges linearly—in expectation—to the
optimum with the number of outermost iterations, that is

E [f (wk)]− f (w∗) ∈ O
(
ck
)

(2.6)

for some c < 1 which depends on the condition number of f . In other words, S2GD inherits the
fast convergence of GD. Unlike GD though, after computing a full gradient, S2GD also performs
a number of stochastic updates, which leads to better performance for large N . Compared to
SGD, its major weakness is that it still has to wait for at least a full gradient evaluation before
making a single update, by which time SGD will have made N stochastic updates already.

Finally, it is worth mentioning that if the λ parameter of S2GD is set to 0, then S2GD
reduces to stochastic variance reduced gradient, a method proposed also in 2013 by Johnson and
Zhang [4].

2.4 Stochastic Average Gradient

Stochastic average gradient (or simply SAG) was proposed in 2012 by Roux et al. [10]. Similarly
to SGD, SAG chooses in iteration k some gradient ∇fn (wk) uniformly at random. However, it
also remembers the most recently computed values for all gradients other than ∇fn (wk), and
uses the following gradient estimate to update wk

∇f̃ (wk) =
1
N

∑
n′ 6=n

∇fn′ (wk′) +∇fn (wk)

 (2.7)

where k′ < k is the iteration in which ∇fn′ was most recently evaluated. Algorithm 2.4 describes
SAG in detail and Figure 2.1d shows an typical run.

Algorithm 2.4: Stochastic average gradient
Input: step size α > 0, w0

1 initialize gn = 0 for all n ∈ {1, 2, . . . , N}
2 for k ∈ {0, 1, . . .} do
3 choose n ∈ {1, 2, . . . , N} uniformly at random

4 wk+1 ← wk − α
N

[∑
n′ 6=n gn′ +∇fn (wk)

]
5 gn ← ∇fn (wk)
6 end for

Output: wk

If all ∇fn are Lipschitz continuous and f is strongly convex, then it can be proven [10]
that, for some appropriate choice of step size α, SAG converges linearly—in expectation—to the
optimum in the sense that

E
[
‖wk −w∗‖2

]
∈ O

(
ck
)

(2.8)

for some c < 1 which depends on the condition number of f and the number of functions N .
It therefore achieves similar convergence rate as GD and S2GD but, unlike those algorithms, it
only requires a single gradient evaluation per iteration (same as SGD). In fact, as it was pointed
out in [10], SAG was the first ever gradient-based method to achieve linear convergence at an
iteration cost similar to SGD. However, its major drawback is its memory cost of O (N), which
can make it impractical for large N .

Finally, it is worth mentioning that SAG can be viewed as the randomized version of incre-
mental aggregate gradient (or simply IAG), a method proposed in 2007 by Blatt et al. [1]. Unlike
SAG which chooses a gradient uniformly at random, IAG cycles deterministically over gradients.
However, according to [10] (and our experience also confirm this), SAG can be used with step
sizes for which IAG may diverge. In other words, SAG can tolerate a larger step size than IAG
without becoming unstable.



2.5 Mini-Batch Versions of Stochastic Algorithms 5

(a) Gradient descent (b) Stochastic gradient descent

(c) Semi-stochastic gradient descent (d) Stochastic average gradient

Figure 2.1: Typical convergent runs of each optimization algorithm for a strongly convex function
f where N = 1000 and w ∈ R2.

2.5 Mini-Batch Versions of Stochastic Algorithms

The stochastic algorithms, i.e. SGD, S2GD and SAG, can be easily modified to work on mini-
batches instead of individual functions. In this context, a mini-batch is a subset of functions
fn of some predetermined fixed size M < N . In every stochastic update, instead of choosing a
single gradient ∇fn, the stochastic algorithm can be extended to randomly choose a whole mini-
batch instead. Let the chosen mini-batch consist of gradients ∇fn1 ,∇fn2 , . . . ,∇fnM

. Then, the
following gradient is used in the update of wk

∇fB (wk) =
1
M

M∑
m=1

∇fnm (wk). (2.9)

Of course, for M = 1 we recover the original formulation of the algorithms.
It is easy to see that for M > 1, ∇fB is a more reliable estimate of the full gradient that any

single gradient ∇fn. Nevertheless, by the time a mini-batch algorithm makes a single update,
the original algorithm would have made M updates that, in expectation, move towards the right
direction. It is therefore not obvious whether large mini-batches are advantageous. In fact,
Hinton [3] refers to the use of large mini-batches with SGD as “a serious mistake”.

There is however a significant potential advantage in using mini-batches, since computing the
M gradients in (2.9) can be easily vectorized or parallelized. Therefore, on a parallel architecture,



6 3 Experimental Evaluation

computing the mini-batch gradient ∇fB can cost much less that M single gradient evaluations,
which makes the use of mini-batches particularly attractive.

3 Experimental Evaluation

In this section, we compare the performance of the four optimization algorithms described in the
previous section in practical machine learning tasks, namely (a) logistic regression with synthetic
data and (b) softmax regression with the MNIST dataset of handwritten digits.

3.1 Implementation Details

Each optimization algorithm has a number of parameters to set, which affect its convergence and
performance. All algorithms have a step size parameter α (α0 for SGD). In addition, SGD has a
decay parameter λ and S2GD has a parameter T controlling the maximum number of stochastic
updates per epoch and a non-negative parameter λ.

For SGD, in our implementation we set λ to be equal to the regularization parameter of the
problem (logistic or softmax regression), as suggested in [2]. For S2GD, we set T equal to N
(such that the number of stochastic updates is of the same order as the size of the data) and
we set λ to be equal to the regularization parameter of the problem. According to [6], if f is
µ-strongly convex, then parameter λ of S2GD should be a lower bound on µ. By choosing λ
to be the regularization parameter, this will always be the case. Finally, for each algorithm,
we manually tuned the step size parameter independently so as to maximize convergence speed.
The particular step sizes used will be reported in each individual experiment.

All four optimization algorithms, as well as logistic and softmax regression, were implemented
in MATLAB [8].

3.2 Logistic Regression on Synthetic Data

In this experiment, we generated N data points (xn, yn) for n ∈ {1, 2, . . . , N}, where xn ∈ R100

is an input feature vector and yn ∈ {−1, 1} is its class label. The feature vectors xn were
independently generated from a Gaussian distribution with zero mean and symmetric covariance,
in particular

P (xn) = N (xn|0, 20I) . (3.1)

For each xn, the class label yn was generated by a logistic regression model, as follows

P (yn|xn,w) =
1

1 + exp (−ynwTxn)
(3.2)

where we selected w = 1
2

[
1 1 · · · 1

]T ∈ R100.
Pretending not to know the value of w that generated the data, our objective is to fit a

regularized logistic regression model to the generated data, i.e. to minimize the following objective
function

f (w) =
1
N

N∑
n=1

log
[
1 + exp

(
−ynwTxn

)]
+
λ

2
‖w‖2 . (3.3)

For our experiments we selected λ = 0.1. Minimizing f can be formulated as in problem (1.1)
by identifying

fn (w) = log
[
1 + exp

(
−ynwTxn

)]
+
λ

2
‖w‖2 . (3.4)

It can easily be shown that all ∇fn are Lipschitz continuous and that f is λ-strongly convex,
therefore it has a unique global minimum. However, no closed-from solution for finding the global
minimum exists, therefore one needs to resort to numeric optimization instead.

Figure 3.1 shows the convergence behaviour of each optimization algorithm for N ranging
from 102 to 105. As expected, the convergence of GD, S2GD and SAG is linear, whereas the



3.2 Logistic Regression on Synthetic Data 7

0 0.5 1 1.5 2

x 10
6

10
−15

10
−10

10
−5

10
0

10
5

Number of gradient evaluations

O
pt

im
al

ity
 g

ap

 

 

GD
SGD
S2GD
SAG

(a) N = 102

0 0.5 1 1.5 2

x 10
6

10
−15

10
−10

10
−5

10
0

10
5

Number of gradient evaluations

O
pt

im
al

ity
 g

ap

 

 

GD
SGD
S2GD
SAG

(b) N = 103

0 0.5 1 1.5 2

x 10
6

10
−15

10
−10

10
−5

10
0

10
5

Number of gradient evaluations

O
pt

im
al

ity
 g

ap

 

 

GD
SGD
S2GD
SAG

(c) N = 104

0 0.5 1 1.5 2

x 10
6

10
−15

10
−10

10
−5

10
0

10
5

Number of gradient evaluations

O
pt

im
al

ity
 g

ap

 

 

GD
SGD
S2GD
SAG

(d) N = 105

Figure 3.1: Convergence behaviour of each optimization algorithm in fitting logistic regression for
various numbers of data points. The horizontal axis corresponds to the number of times a gradient
∇fn needed to be evaluated. The vertical axis shows the optimality gap f (wk) − f (w∗). The
optimality gap was measured after every epoch, i.e. a full pass over the dataset. All algorithms
were initialised at w0 = 0. The step sizes used were α = 0.05 for GD, α0 = 0.1 for SGD,
α = 10−4 for S2GD and α = 5× 10−5 for SAG.



8 3 Experimental Evaluation

Figure 3.2: Examples of images of handwritten digits from the MNIST dataset. White corre-
sponds to a pixel value of 1 and black corresponds to a pixel value of 0.

convergence of SGD is sublinear. For small N (i.e. 102) GD is by far the fastest, however, as N
becomes larger, GD becomes increasingly inefficient, since it needs a full pass over the dataset
for each update of w. We can easily see that stochastic methods have an advantage over GD
for large N . Unlike SGD though, whose convergence is rather slow, S2GD and SAG are capable
of reaching very high precision (e.g. 10−15) despite their stochastic nature. Between S2GD and
SAG, the latter appears to have an advantage in this experiment.

3.3 Softmax Regression on the MNIST Dataset of Handwritten Digits

The MNIST dataset [7] consists of greyscale images of handwritten digits. The resolution of the
images is 28×28, i.e. a total of 784 pixels. The dataset is divided into a train set of 60000 images
and a test set of 10000 images. Figure 3.2 shows examples of images from the dataset.

In this experiment, we use the train set of N = 60000 images to fit a regularized softmax
regression model for digit classification. Let xn ∈ R784 for n ∈ {1, 2, . . . , N} be an image in
the train set and let yn ∈ {1, 2, . . . , 10} be the digit that it represents. Given a set of weights
w = {w1,w2, . . . ,w10}, the softmax regression model predicts that the probability of yn being
digit ` is

P (yn = `|xn,w) =
exp

(
wT
` xn

)∑10
`′=1 exp

(
wT
`′xn

) (3.5)

In order to fit the regularized softmax regression model to the train set, one needs to minimize
the following function with respect to w

f (w) = − 1
N

N∑
n=1

10∑
`=1

I (yn = `) logP (yn = `|xn,w) +
λ

2

10∑
`=1

‖w`‖2 (3.6)

where I (·) is the indicator function, i.e. 1 if its argument is true, 0 otherwise. The above can be
reformulated as in equation (1.1) by identifying

fn (w) = −
10∑
`=1

I (yn = `) logP (yn = `|xn,w) +
λ

2

10∑
`=1

‖w`‖2. (3.7)

It is not difficult to show that all ∇fn are Lipschitz continuous and f is λ-strongly convex,
therefore there exists a unique global minimizer. However, as it is the case with logistic regression,
there is no closed-form solution for optimizing f , therefore numeric optimization needs to be used
instead.

Figure 3.3 shows the convergence behaviour of each algorithm for different values of the
regularization parameter λ ranging from 10−1 to 10−4. Note that as λ decreases, the condition
number of the problem increases, since λ is a lower bound on the smallest eigenvalue of the
Hessian of f . As a result, this slows down the convergence of all algorithms, since they are
all gradient-based methods. Other than that, the convergence pattern is similar to that of the
logistic regression experiment. GD is the least efficient, since N is quite large. SGD has the



3.3 Softmax Regression on the MNIST Dataset of Handwritten Digits 9

0 5 10 15

x 10
5

10
−15

10
−10

10
−5

10
0

Number of gradient evaluations

O
pt

im
al

ity
 g

ap

 

 

GD
SGD
S2GD
SAG

(a) λ = 10−1

0 5 10 15

x 10
5

10
−15

10
−10

10
−5

10
0

Number of gradient evaluations

O
pt

im
al

ity
 g

ap

 

 

GD
SGD
S2GD
SAG

(b) λ = 10−2

0 5 10 15

x 10
5

10
−15

10
−10

10
−5

10
0

Number of gradient evaluations

O
pt

im
al

ity
 g

ap

 

 

GD
SGD
S2GD
SAG

(c) λ = 10−3

0 5 10 15

x 10
5

10
−15

10
−10

10
−5

10
0

Number of gradient evaluations

O
pt

im
al

ity
 g

ap

 

 

GD
SGD
S2GD
SAG

(d) λ = 10−4

Figure 3.3: Convergence behaviour of each optimization algorithm in fitting regularized softmax
regression for various regularization parameters λ. The horizontal axis corresponds to the number
of times a gradient ∇fn needed to be evaluated. The vertical axis shows the optimality gap
f (wk) − f (w∗). The optimality gap was measured after every epoch, i.e. a full pass over the
dataset. All algorithms were initialized at w0 = 0. The step sizes used were α = 0.5 for GD,
α0 = 1 for SGD, α = 0.01 for S2GD and α = 0.001 for SAG.



10 3 Experimental Evaluation

0 1 2 3 4

x 10
5

0

0.2

0.4

0.6

0.8

1

Number of gradient evaluations

A
cc

ur
ac

y 
on

 te
st

 s
et

 

 

GD
SGD
S2GD
SAG

(a) λ = 10−1

0 1 2 3 4

x 10
5

0

0.2

0.4

0.6

0.8

1

Number of gradient evaluations

A
cc

ur
ac

y 
on

 te
st

 s
et

 

 

GD
SGD
S2GD
SAG

(b) λ = 10−2

0 1 2 3 4

x 10
5

0

0.2

0.4

0.6

0.8

1

Number of gradient evaluations

A
cc

ur
ac

y 
on

 te
st

 s
et

 

 

GD
SGD
S2GD
SAG

(c) λ = 10−3

0 1 2 3 4

x 10
5

0

0.2

0.4

0.6

0.8

1

Number of gradient evaluations

A
cc

ur
ac

y 
on

 te
st

 s
et

 

 

GD
SGD
S2GD
SAG

(d) λ = 10−4

Figure 3.4: Prediction accuracy of regularized softmax regression for various regularization pa-
rameters λ, as it varies along the optimization process in the first few epochs. The predicted
label is the one given the highest probability under softmax regression. The prediction accuracy
is the proportion of correctly predicted test examples in the test set. For the setting of the
parameters of the algorithms, see Figure 3.3.



3.3 Softmax Regression on the MNIST Dataset of Handwritten Digits 11

0 1 2 3 4

x 10
5

−2.5

−2

−1.5

−1

−0.5

Number of gradient evaluations

M
ea

n 
lo

g 
pr

ob
ab

ili
ty

 o
f t

es
t s

et

 

 

GD
SGD
S2GD
SAG

(a) λ = 10−1

0 1 2 3 4

x 10
5

−2.5

−2

−1.5

−1

−0.5

0

Number of gradient evaluations

M
ea

n 
lo

g 
pr

ob
ab

ili
ty

 o
f t

es
t s

et

 

 

GD
SGD
S2GD
SAG

(b) λ = 10−2

0 1 2 3 4

x 10
5

−2.5

−2

−1.5

−1

−0.5

0

Number of gradient evaluations

M
ea

n 
lo

g 
pr

ob
ab

ili
ty

 o
f t

es
t s

et

 

 

GD
SGD
S2GD
SAG

(c) λ = 10−3

0 1 2 3 4

x 10
5

−2.5

−2

−1.5

−1

−0.5

0

Number of gradient evaluations

M
ea

n 
lo

g 
pr

ob
ab

ili
ty

 o
f t

es
t s

et

 

 

GD
SGD
S2GD
SAG

(d) λ = 10−4

Figure 3.5: Mean log probability of the test set, under softmax regression for various regular-
ization parameters λ, as it varies along the optimization process in the first few epochs. Mean
log probability is calculated as 1

N

∑
n logP (yn|xn,w), where (xn, yn) are examples from the test

set. For the setting of the parameters of the algorithms, see Figure 3.3.



12 References

slowest asymptotic convergence. S2GD and SAG manage to achieve the best precision, with
the former being faster. It is an interesting observation though that in the first few epochs
(i.e. passes over the dataset) SGD appears to achieve better performance than S2GD and SAG.
Indeed, S2GD and SAG have a large overhead; S2GD needs a full pass over the dataset to make
the first update, and the first iterations of SAG are dominated by zero-initialized gradients.
Eventually though, due to SGD’s slow convergence, S2GD and SAG overtake SGD.

Even though we have established that S2GD and SAG can achieve higher precision in fitting
the objective than SGD or GD after the same amount of work, it is natural to wonder whether this
extra precision makes any difference within a machine learning context. In other words, we can
see that SGD can also achieve a reasonable accuracy fairly quickly, would that be good enough?
To attempt an answer to this question, we have plotted in Figure 3.4 the predictive accuracy on
the test set and in Figure 3.5 the mean log probability of the test set, under the learned softmax
regression model after the first few epochs. We can see that after only one epoch, i.e. a single
pass over the data, SGD is often very close already to the asymptotic performance, which means
that any further improvement makes little to no difference to the predictive performance of the
model. This observation is consistent with the view expressed in [2] that, unless it is accompanied
by a reduction in the generalization error of the model, further reducing the optimality gap on
the train set is “wasted computational effort”.

4 Conclusions and Future Work

The conclusions of this project can be summarized as follows.

(i) Gradient descent, although efficient at a small scale, becomes impractical in large-scale
problems. In such a case, stochastic alternatives are necessary.

(ii) Stochastic gradient descent is capable of achieving good solutions fairly quickly, although
it is impractical if high precision is required. Fortunately, this might not be necessary in a
machine learning context.

(iii) Semi-stochastic gradient descent and stochastic average gradient combine the best of both
worlds by being capable of achieving very accurate solutions in a feasible amount of time.

In practice, perhaps the best strategy would be to run SGD for a single or a couple of epochs,
get a fairly good solution and, if further precision is required, use S2GD or SAG initialized with
this solution. The idea of initializing S2GD or SAG by the output of SGD was also suggested in
their original papers, [6] and [10] respectively.

We would like to emphasize however that the conclusions of our experiments are relevant to
fitting convex objectives. It would be interesting to see how the algorithms behave with non-
convex objectives, such as when training a neural network. Also, this project has focused on
optimization algorithms that update all parameters at once; choosing only a subset of param-
eters to update in each iteration gives rise to methods under the name coordinate descent (for
example [5]), which would be worth including in future comparisons.

Acknowledgements

I would like to thank Dr Peter Richtárik for his guidance, especially regarding S2GD, and his
useful feedback.

References

[1] D. Blatt, A. Hero, and H. Gauchman. A convergent incremental gradient method with a
constant step size. SIAM Journal on Optimization, 18(1):29–51, 2007.



References 13

[2] L. Bottou. Stochastic gradient descent tricks. In Neural Networks, Tricks of the Trade,
volume 7700 of Lecture Notes in Computer Science, pages 430–445. Springer, 2012.

[3] G. E. Hinton. A practical guide to training restricted Boltzmann machines. In Neural
Networks: Tricks of the Trade, volume 7700 of Lecture Notes in Computer Science, pages
599–619. Springer, 2012.

[4] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems 26, pages 315–323. 2013.

[5] J. Konečnỳ, Z. Qu, and P. Richtárik. S2CD: Semi-stochastic coordinate descent. 2014.

[6] J. Konečný and P. Richtárik. Semi-Stochastic Gradient Descent Methods. ArXiv e-prints,
Dec. 2013.

[7] Y. LeCun, C. Cortes, and C. J. C. Burges. MNIST handwritten digit database. http:
//yann.lecun.com/exdb/mnist/. Accessed on 4 Dec 2014.

[8] MATLAB. version 8.2.0 (R2013b). The MathWorks Inc., Natick, Massachusetts, 2013.

[9] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Applied
Optimization. Springer, 2004.

[10] N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In Advances in Neural Information Processing
Systems 25, pages 2663–2671. 2012.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	Introduction
	Gradient-Based Optimization Algorithms
	Gradient Descent
	Stochastic Gradient Descent
	Semi-Stochastic Gradient Descent
	Stochastic Average Gradient
	Mini-Batch Versions of Stochastic Algorithms

	Experimental Evaluation
	Implementation Details
	Logistic Regression on Synthetic Data
	Softmax Regression on the MNIST Dataset of Handwritten Digits

	Conclusions and Future Work

