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Abstract
We introduce ProxSkip—a surprisingly simple
and provably efficient method for minimizing the
sum of a smooth (f ) and an expensive nonsmooth
proximable (ψ) function. The canonical approach
to solving such problems is via the proximal gra-
dient descent (ProxGD) algorithm, which is based
on the evaluation of the gradient of f and the prox
operator of ψ in each iteration. In this work we are
specifically interested in the regime in which the
evaluation of prox is costly relative to the evalua-
tion of the gradient, which is the case in many ap-
plications. ProxSkip allows for the expensive prox
operator to be skipped in most iterations: while
its iteration complexity is O(κ log 1/ε), where κ
is the condition number of f , the number of prox
evaluations isO(

√
κ log 1/ε) only. Our main moti-

vation comes from federated learning, where eval-
uation of the gradient operator corresponds to tak-
ing a local GD step independently on all devices,
and evaluation of prox corresponds to (expensive)
communication in the form of gradient averag-
ing. In this context, ProxSkip offers an effec-
tive acceleration of communication complexity.
Unlike other local gradient-type methods, such
as FedAvg, SCAFFOLD, S-Local-GD and FedLin,
whose theoretical communication complexity is
worse than, or at best matching, that of vanilla
GD in the heterogeneous data regime, we obtain
a provable and large improvement without any
heterogeneity-bounding assumptions.

1. Introduction
We study optimization problems of the form

min
x∈Rd

f(x) + ψ(x), (1)
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where f : Rd → R is a smooth function, and ψ : Rd →
R ∪ {+∞} is a proper, closed and convex regularizer.

Such problem are ubiquitous, and appear in numerous ap-
plications associated with virtually all areas of science
and engineering, including signal processing (Combettes
& Pesquet, 2009), image processing (Luke, 2020), data sci-
ence (Parikh & Boyd, 2014) and machine learning (Shalev-
Shwartz & Ben-David, 2014).

1.1. Proximal gradient descent

One of the most canonical methods for solving (1), often
used as the basis for further extensions and improvements,
is proximal gradient descent (ProxGD), also known as the
forward-backward algorithm (Combettes & Pesquet, 2009;
Nesterov, 2013). This method solves (1) via the iterative
process defined by

xt+1 = proxγtψ(xt − γt∇f(xt)), (2)

where γt > 0 is a suitably chosen stepsize at time t, and
proxγψ(·) : Rd → Rd is the proximity operator of ψ, de-
fined via

proxγψ(x) := arg min
y∈Rd

[
1

2
‖y − x‖2 + γψ(y)

]
. (3)

It is typically assumed that the proximity operator (3) can
be evaluated in closed form, which means that the iteration
(2) defining ProxGD can be performed exactly. ProxGD is
most suited to situations when the proximity operator is
relatively cheap to evaluate, so that the bottleneck of (2)
is in the forward step (i.e., computation of the gradient
∇f ) rather than in the backward step (i.e., computation of
proxγψ). This is the case for many regularizers, including
the L1 norm (ψ(x) = ‖x‖1), the L2 norm (ψ(x) = ‖x‖22),
and elastic net (Zhou & Hastie, 2005). For many further
examples, we refer the reader to the books (Parikh & Boyd,
2014; Beck, 2017).

1.2. Expensive proximity operators

However, in this work we are interested in the situation
when the evaluation of the proximity operator is expensive.
That is, we assume that the computation of proxγψ (the
backward step) is costly relative to the evaluation of the
gradient of f (the forward step).

A conceptually simple yet rich class of expensive prox-
imity operators arises from regularizers ψ encoding a
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“complicated-enough” nonempty constraint set C ⊂ Rd via

ψ(x) =

{
0 x ∈ C
+∞ x /∈ C

. (4)

The evaluation of the proximity operator of ψ given by (4)
reduces to Euclidean projection onto C,

proxγψ(x) = arg min
y∈C
‖y − x‖,

which can be a difficult optimization problem on its own.
For instance, this is the case when C is a polyhedral or a
spectral set (Parikh & Boyd, 2014).1

1.3. Distributed machine learning and consensus
constraints

An important example of expensive proximity operators as-
sociated with indicator functions (4) arise in the consensus
formulation of distributed optimization problems. In partic-
ular, consider the problem of minimizing the average of n
functions using a cluster of n compute nodes/clients,

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (5)

where function fi : Rd → R, and the data describing it, is
owned by and stored on client i ∈ [n] := {1, 2, . . . , n}.
This problem is of key importance in machine learning
as it is an abstraction of the empirical risk minimization
(Shalev-Shwartz & Ben-David, 2014), which is currently
the dominant paradigm for training supervised machine
learning models.

By cloning the model x ∈ Rd into n independent copies
x1, . . . , xn ∈ Rd, problem (5) can be reformulated into the
consensus form (see e.g. Parikh & Boyd, 2014)

min
x1,...,xn∈Rd

1

n

n∑
i=1

fi(xi) + ψ(x1, . . . , xn) , (6)

where the regularizer ψ : Rnd → R given by

ψ(x1, . . . , xn) :=

{
0, if x1 = · · · = xn ,

+∞, otherwise,
(7)

encodes the consensus constraint

C := {(x1, . . . , xn) ∈ Rnd : x1 = · · · = xn}.

Evaluating the proximity operator of (7) is not computation-
ally expensive as it simply amounts to taking the average of
the variables (Parikh & Boyd, 2014):

proxγψ(x1, . . . , xn) = (x̄, . . . , x̄) ∈ Rnd, (8)

1Other examples of expensive proximity operators include
Schatten-p norms of matrices (e.g., the nuclear norm), and certain
variants of quadratic support functions (Friedlander & Goh, 2016).

where

x̄ :=
1

n

n∑
i=1

xi. (9)

However, it often involves high communication cost since
the vectors x1, . . . , xn are stored on different compute
nodes. Indeed, even simple averaging can be very time con-
suming if the communication links connecting the clients
(e.g., through an orchestrating server) are slow and the di-
mension d of the aggregated vectors/models high, which is
the case in federated learning (FL) (Konečný et al., 2016;
Kairouz et al., 2021).

1.4. Federated learning

For the above reasons, practical FL algorithms generally use
various communication-reduction mechanisms to achieve a
useful computation-to-communication ratio, such as delayed
communication. That is, the methods perform multiple local
steps independently, based on their local objective (Man-
gasarian & Solodov, 1994; McDonald et al., 2010; Zhang
et al., 2016; McMahan et al., 2016; Stich, 2019; Lin et al.,
2018).

However, when all the local functions fi are different (i.e.,
when each individual machine has data drawn from a differ-
ent distribution), local steps introduce a drift in the updates
of each client, which results in convergence issues. In-
deed, even in the case of the simplest local gradient-type
method, LocalGD, a theoretical understanding that would
not require any data similarity/homogeneity assumptions
eluded the community for a long time. A resolution was
found only recently (Khaled et al., 2019; 2020; Koloskova
et al., 2020). However, the rates obtained in these works
paint a pessimistic picture for LocalGD; for example, due to
client drift, they are sublinear even for smooth and strongly
convex problems.

The next task for the FL community was to propose algo-
rithmic adjustments that could provably mitigate the client
drift issue. A handful of recent methods, including Scaf-
fold (Karimireddy et al., 2020), S-Local-GD (Gorbunov et al.,
2021) and FedLin (Mitra et al., 2021), managed to do that.
For instance, under the assumption that f is L-smooth and
µ-strongly convex, with condition number κ = L/µ, Scaf-
fold, S-Local-GD and FedLin obtain a O(κ log 1/ε) commu-
nication complexity, which matches the communication
complexity of GD (that computes a single gradient on ev-
ery client per round of communication). However, and de-
spite the empirical superiority of these methods over vanilla
GD, their theoretical communication complexity does not
improve upon GD. This reveals a fundamental gap in our
understanding of local methods.

Due to the enormous effort that was exerted over the last sev-
eral years by the FL community in this direction without it
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Table 1. The performance of federated learning methods employing multiple local gradient steps in the strongly convex regime.

method # local steps
per round

# floats sent
per round

stepsize
on client i

linear
rate? # rounds rate better

than GD?

GD (Nesterov, 2004) 1 d 1
L

3 Õ(κ) (c) 7

LocalGD (Khaled et al., 2019; 2020) τ d 1
τL

7 O
(

G2

µnτε

)
(d) 7

Scaffold (Karimireddy et al., 2020) τ 2d 1
τL

(e) 3 Õ(κ) (c) 7

S-Local-GD (a)
(Gorbunov et al., 2021) τ d < # < 2d (f) 1

τL
3 Õ(κ) 7

FedLin (b)
(Mitra et al., 2021) τi 2d 1

τiL
3 Õ(κ) (c) 7

Scaffnew (g) (this work)
for any p ∈ (0, 1]

1
p

(h) d 1
L

3 Õ
(
pκ+ 1

p

)
(c) 3

for p ∈
(
1
κ
, 1
)

Scaffnew (g) (this work)
for optimal p = 1√

κ

√
κ (h) d 1

L
3 Õ(

√
κ) (c) 3

(a) This is a special case of S-Local-SVRG, which is a more general method presented in (Gorbunov et al., 2021). S-Local-GD arises as a special case when full gradient is
computed on each client.

(b) FedLin is a variant with a fixed but different number of local steps for each client. Earlier method S-Local-GD has the same update but random loop length.
(c) The Õ notation hides logarithmic factors.
(d) G is the level of dissimilarity from the assumption 1

n

∑n
i=1 ‖∇fi(x)‖2 ≤ G2 + 2LB2 (f(x)− f?) , ∀x.

(e) We use Scaffold’s cumulative local-global stepsize ηlηg for a fair comparison.
(f) The number of sent vectors depends on hyper-parameters, and it is randomized.
(g) Scaffnew (Algorithm 2) = ProxSkip (Algorithm 1) applied to the consensus formulation (6) + (7) of the finite-sum problem (5).
(h) ProxSkip (resp. Scaffnew) takes a random number of gradient (resp. local) steps before prox (resp. communication) is computed (resp. performed). What is shown in

the table is the expected number of gradient (resp. local) steps.

bearing the desired fruit (Kairouz et al., 2021), it seems very
challenging to establish theoretically that performing inde-
pendent local updates improves upon the communication
complexity of GD. In contrast, accelerated gradient descent
(without local steps) can reach the optimal O(

√
κ log 1/ε)

communication complexity (Lan, 2012; Woodworth et al.,
2020b; 2021).

This raises the question of whether this is a fundamental
limitation of local methods. Is it possible to prove a better
communication complexity than O(κ log 1/ε) for simple lo-
cal gradient-type methods, without resorting to any explicit
acceleration mechanisms?

2. Contributions
We now summarize the main contributions of this work.

2.1. ProxSkip: a general prox skipping algorithm

We develop a new ProxGD-like algorithm for solving the
general regularized problem (1). Our method, which we call
ProxSkip (see Algorithm 1), is designed to handle expensive
proximal operators.

A key ingredient in its design is a randomized prox-skipping
procedure: in each iteration of ProxSkip, we evaluate the
proximity operator with probability p ∈ (0, 1]. If p = 1,
several steps in our method are vacuous, and we recover
ProxGD as a special case (and the associated standard the-
ory). Of course, the interesting choice is 0 < p < 1. In

expectation, the proximity operator is evaluated every 1/p
iterations, which can be very rare if p is small.

Control variates stabilizing prox skipping. We had to in-
troduce several new algorithmic design adjustments for such
a method to provably work. In particular, ProxSkip uses a
control variate ht on line 3 to shift the gradient ∇f(xt)
when the forward step is performed.

Note that ht stays constant in between two consecutive
prox calls. Indeed, this is because in that case we have
xt+1 = x̂t+1 from line 8, and line 10 therefore simplifies to
ht+1 = ht. So, when operating in between two prox calls,
our method performs iterations of the form

xt+1 = xt − γ(∇f(xt)− ht),

where γ > 0 is a stepsize parameter. When a prox step is
executed, both the iterate xt and the control variate ht are
adjusted, and the process is repeated.

This control mechanism is necessary to allow for prox-
skipping to work. To illustrate this, consider an optimal
point x? = argminx f(x) + ψ(x). In general, it does not
hold ∇f(x?) = 0, so skipping the prox (without control
variate adjustment) would imply a drift away from x?. We
show below that the control variate converges to

ht → ∇f(x?),

which means that x? is a fixed point. This allows skipping
the prox for a significant amount of steps without impacting
the convergence.
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Algorithm 1 ProxSkip

1: stepsize γ > 0, probability p > 0, initial iterate x0 ∈ Rd, initial control variate h0 ∈ Rd, number of iterations T ≥ 1
2: for t = 0, 1, . . . , T − 1 do
3: x̂t+1 = xt − γ(∇f(xt)− ht) � Take a gradient-type step adjusted via the control variate ht
4: Flip a coin θt ∈ {0, 1} where Prob(θt = 1) = p � Flip a coin that decides whether to skip the prox or not
5: if θt = 1 then
6: xt+1 = prox γ

pψ

(
x̂t+1 − γ

pht
)

� Apply prox, but only very rarely! (with small probability p)
7: else
8: xt+1 = x̂t+1 � Skip the prox!
9: end if

10: ht+1 = ht + p
γ (xt+1 − x̂t+1) � Update the control variate ht

11: end for

Theory. If f is L-smooth and µ-strongly convex, we prove
that ProxSkip converges at a linear rate. In particular, we
show that after T iterations,

E [ΨT ] ≤ (1−min{γµ, p2})TΨ0,

where Ψt is a certain Lyapunov function (see (11)) involving
both xt and ht. If we choose γ = 1/L and p = 1/

√
κ,

where κ = L/µ is the condition number, then the iteration
complexity of ProxSkip isO(κ log 1/ε), whereas the number
of prox evaluations (in expectation) is O(

√
κ log 1/ε) only!

For more details related to theory, see Section 3.

2.2. Scaffnew: ProxSkip applied to federated learning

When applied to the consensus reformulation (6)–(7)
of problem (5), ProxSkip can be interpreted as a new
distributed gradient-type method performing local steps,
adding to the existing rich literature on local methods. In
this context, we decided to call our method Scaffnew (Algo-
rithm 2).2 Since prox evaluation now means communication
via averaging across the nodes (see (8) and (9)), and since
Scaffnew inherits the strong theoretical prox-skipping prop-
erties of its parent method ProxSkip:

We resolve one of the most important open
problems in the FL literature: breaking the
O(κ log 1/ε) communication complexity barrier
with a simple local method. In particular,
Scaffnew reaches an O(

√
κ log 1/ε) communica-

tion complexity without imposing any additional
assumptions (e.g., data similarity or stronger
smoothness assumptions).

Note that since the iteration complexity of Scaffnew is
O(κ log 1/ε), the number of local steps per communication
round is (on average) O(

√
κ). According to Arjevani &

Shamir (2015), the communication lower bound for first
2This is a homage to the influential Scaffold method of Karimireddy et al. (2020),

which in our experiments performs very similarly to Scaffnew if the former method
is used with fine-tuned stepsizes.

order distributed algorithms is O(
√
κ log 1/ε). This means

that Scaffnew is optimal in terms of communication rounds.

Please refer to Table 1 in which we compare our results with
the results obtained by existing state-of-the-art methods.

2.3. Extensions

We develop two extensions of the vanilla ProxSkip method;
see Section 5. We are not attempting to be exhaustive: these
extensions are meant to illustrate that our method and proof
technique combine well with other tricks and techniques
often used in the literature.

From deterministic to stochastic gradients. First, in Sec-
tion 5.1 we perform an extension enabling us to use a
stochastic gradient gt(xt) ≈ ∇f(xt) in ProxSkip instead
of the true gradient ∇f(xt). This is of importance in many
applications, and is of particular importance for our method
since now that the cost of the prox step was reduced, the cost
of the gradient steps becomes more important. We operate
under the modern expected smoothness assumption intro-
duced by Gower et al. (2019; 2021), which is less restrictive
than the standard bounded variance assumption.

From a central server to fully decentralized training.
Second, in Section 5.2 we present and analyze ProxSkip
in a fully decentralized optimization setting, where the com-
munication between nodes is restricted to a communication
graph. Our decentralized algorithm inherits the property that
it is not affected by data-heterogeneity. The covariate tech-
nique in ProxSkip resembles, to some extent, some of the
existing gradient tracking mechanisms (Lorenzo & Scutari,
2016; Nedić et al., 2016). However, while gradient tracking
provably addresses data-heterogeneity, its communication
complexity scales proportional to the iteration complexity,
O(κ) (Yuan & Alghunaim, 2021; Koloskova et al., 2021).
The same holds for almost all other schemes that have been
designed to address data-heterogeneity in decentralized op-
timization (Tang et al., 2018; Vogels et al., 2021). Notable
exceptions include the optimal methods developed by Ko-
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valev et al. (2020; 2021b;a); see also the references therein.
However, these methods are based on classical acceleration
schemes, and do not perform multiple local steps.

3. Theory
We are now ready to describe our key theoretical develop-
ment: the convergence analysis of ProxSkip.

3.1. Assumptions

We rely on several standard assumptions to establish our
results. First, we need f to be smooth and strongly convex
(see Appendix A for complementary details).

Assumption 3.1. f is L-smooth and µ-strongly convex.

We also need the following standard assumption3 on the
regularizer ψ.

Assumption 3.2. ψ is proper, closed and convex.

These assumption imply that problem (1) has a unique mini-
mizer, which we denote x? := argmin f(x) + ψ(x).

3.2. Firm nonexpansiveness

In one step of our analysis we will rely on firm nonexpan-
siveness of the proximity operator (see, e.g., Bauschke et al.,
2021):

Lemma 3.3. Let Assumption 3.2 be satisfied. Let P (x) :=
prox γ

pψ
(x) and Q(x) := x− P (x). Then

‖P (x)− P (y)‖2 + ‖Q(x)−Q(y)‖2 ≤ ‖x− y‖2, (10)

for all x, y ∈ Rd and any γ, p > 0.

3.3. Two technical lemmas

The strength of our method comes from the role the control
variates ht play in stabilizing the effect of skipping prox
evaluations. Our analysis captures this effect. In particular, a
by-product of our analysis is a proof that the control variates
converge to h? := ∇f(x?), where x?. In order to show
this, we work with the following natural candidate for a
Lyapunov function:

Ψt := ‖xt − x?‖2 +
γ2

p2
‖ht − h?‖2 . (11)

We further define

wt := xt−γ∇f(xt), and w? := x?−γ∇f(x?). (12)

Note that if our method works, i.e., if xt → x?, then gradi-
ent smoothness implies that wt → w?. In our first technical

3Note that this assumption is automatically satisfied for ψ defined in (7).

lemma, we show that after one step of ProxSkip, the Lya-
punov function can be bounded in terms of the distance
‖wt − w?‖2 and the control variate error ‖ht − h?‖2. It is
this lemma in the proof of which we rely on firm nonexpan-
siveness. We do not use it anywhere else.

Lemma 3.4. If Assumptions 3.1 and 3.2 hold, γ > 0 and
0 < p ≤ 1, then

E [Ψt+1] ≤ ‖wt − w?‖2 + (1− p2)
γ2

p2
‖ht − h?‖2 , (13)

where the expectation is taken over the θt in Algorithm 1.

Our next lemma bounds the first term in the right-hand side
of (36) by a multiple of ‖xt − x?‖2.

Lemma 3.5. Let Assumption 3.1 hold with any µ ≥ 0. If
0 < γ ≤ 1

L , then

‖wt − w?‖2 ≤ (1− γµ)‖xt − x?‖2. (14)

3.4. Main theorem

As we shall now see, our main theorem follows simply by
combining the last two lemmas.

Theorem 3.6. Let Assumption 3.1 and Assumption 3.2 hold,
and let 0 < γ ≤ 1

L and 0 < p ≤ 1. Then, the iterates of
ProxSkip (Algorithm 1) satisfy

E [ΨT ] ≤ (1− ζ)TΨ0, (15)

where ζ := min{γµ, p2}.

Proof. By combining Lemmas 3.4 and 3.5, we get

E [Ψt+1] ≤ (1− γµ)‖xt − x?‖2 + (1− p2)
γ2

p2
‖ht − h?‖2

≤ (1− ζ)

(
‖xt − x?‖2 +

γ2

p2
‖ht − h?‖2

)
= (1− ζ)Ψt.

We get the theorem’s claim by unrolling the recurrence.

3.5. How often should one skip the prox?

Note that by choosing p = 1 (no prox skipping) and γ = 1/L,
we get ζ = 1/κ, which leads to the rate O(κ log 1/ε) of
ProxGD. This is not a surprise since when p = 1, ProxSkip
is identical to ProxGD.

More importantly, note that for any fixed stepsize γ >
0, the reduction factor ζ := min{γµ, p2} in (15) remains
unchanged as we decrease p from 1 down to p = 1/√γµ.
This is the reason why we can often skip the prox, and get
away with it for free, i.e., without any deterioration of the
convergence rate!
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Algorithm 2 Scaffnew: Application of ProxSkip to Federated Learning (i.e., to problem (6)–(7))
1: stepsize γ > 0, probability p > 0, initial iterate x1,0 = · · · = xn,0 ∈ Rd, initial control variates h1,0, . . . , hn,0 ∈ Rd on

each client such that
∑n
i=1 hi,0 = 0, number of iterations T ≥ 1

2: server: flip a coin, θt ∈ {0, 1}, T times, where Prob(θt = 1) = p � Decide when to skip communication
3: send the sequence θ0, . . . , θT−1 to all workers
4: for t = 0, 1, . . . , T − 1 do
5: in parallel on all workers i ∈ [n] do
6: x̂i,t+1 = xi,t − γ(gi,t(xi,t)− hi,t) � Local gradient-type step adjusted via the local control variate hi,t
7: if θt = 1 then
8: xi,t+1 = 1

n

n∑
i=1

x̂i,t+1 � Average the iterates, but only very rarely! (with small probability p)

9: else
10: xi,t+1 = x̂t+1 � Skip communication!
11: end if
12: hi,t+1 = hi,t + p

γ (xi,t+1 − x̂i,t+1) � Update the local control variate hi,t
13: end local updates
14: end for

By inspecting (15) it is easy to see that

T ≥ max

{
1

γµ
,

1

p2

}
log

1

ε
=⇒ E [ΨT ] ≤ εΨ0. (16)

Since in each iteration we evaluate the prox with probability
p, the expected number of prox evaluations is

pT
(16)
≈ max

{
p

γµ
,

1

p

}
log

1

ε
. (17)

Clearly, the best result is obtained if we use the largest
stepsize allowed by Theorem 3.6:

γ =
1

L
. (18)

Next, the value of p that minimizes expression (17) satisfies
pL
µ = 1

p , which gives the optimal probability

p =

√
µ

L
=

1√
κ
, (19)

where κ := L/µ is the condition number. With these optimal
choices of the parameters γ and p, the number of iterations
of ProxSkip is

T
(16)
≈ max

{
1

γµ
,

1

p2

}
log

1

ε

(18)+(19)
= κ log

1

ε
,

and the expected number of prox evaluations performed in
the process is

pT
(17)
≈ max

{
p

γµ
,

1

p

}
log

1

ε

(18)+(19)
=

√
κ log

1

ε
.

Let us summarize the above findings.
Corollary 3.7. If we choose γ = 1/L and p = 1/

√
κ,

then the iteration complexity of ProxSkip (Algorithm 1)
is O(κ log 1/ε) and its prox calculation complexity is
O(
√
κ log 1/ε).

4. Application to Federated Learning
Let us now consider the problem of minimizing the average
of n functions stored on n devices, as formulated in (5).
This is the canonical problem in federated learning (McMa-
han et al., 2016; Kairouz et al., 2021).4 In this setting the
functions fi : Rd → R denote the local loss function of
client i defined over its own private data. For simplicity,
we assume in this section that every client can compute the
gradient∇fi(x) exactly (i.e., a full pass over the local data),
see Section 5.1 for the discussion of the stochastic setting.
When applied to the consensus reformulation (6)–(7) of
problem (5), ProxSkip reduces to Scaffnew (Algorithm 2).

Method description. Algorithm 2 has three main steps:
local updates to the client model xi,t ∈ Rd, local updates to
the client control variate hi,t ∈ Rd, and averaging the client
models with probability p in every iteration.

When gi,t(xi,t) = ∇fi(xi,t), then each local update on
client i takes the form

x̂i,t+1 = xi,t − γ(∇fi(xi,t)− hi,t) .

We will show below that hi,t
t→∞→ ∇fi(x?), so that it be-

comes evident that the optimal solution x? is a fixed point
of the algorithm (this is a key differentiation from, e.g.,
LocalGD (Khaled et al., 2020; Koloskova et al., 2020; Mali-
novskiy et al., 2020)). The local covariates hi,t are updated
after each communication round, i.e., when θt = 1, as

hi,t+1 = hi,t +
p

γ

 1

n

n∑
j=1

x̂j,t+1 − x̂i,t+1


︸ ︷︷ ︸

accumulated ‘client drift’

.

4As our focus is on a new communication-efficient scheme, we disregard here
other important aspects such as client sampling.
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The local drift (i.e., deviation from the client mean) is di-
vided by the stepsize and the expected length (i.e., 1/p) of
the local phase during which the drift has been accumu-
lated. This drift correction shares similarities with option II
in Scaffold (Karimireddy et al., 2020) and QG-DSGD (Lin
et al., 2021), yet differs from option I in Scaffold and
FedLin (Mitra et al., 2021), that both propose to compute an
additional gradient at the client average.

4.1. Convergence

We will need an assumption on the individual functions fi:

Assumption 4.1. Each fi is L-smooth and µ-strongly con-
vex.

Note though that we do not need to make any assumption on
the similarity of the functions fi. Convergence of Scaffnew
(Algorithm 2) in the deterministic case follows as a corollary
of Theorem 3.6.

Corollary 4.2 (Federated Learning). Let Assumption 4.1
hold and let γ = 1/L, p = 1/

√
κ and gi,t(xi,t) = ∇fi(xi,t).

Then the iteration complexity of Algorithm 2 is O(κ log 1/ε)
and its communication complexity is O(

√
κ log 1/ε).

Usefulness of local steps. Our result shows for the first
time a real advantage of local update methods without im-
posing any similarity assumptions. For instance, Wood-
worth et al. (2020a) assume quadratic functions, Karim-
ireddy et al. (2020; 2021) bounded Hessian dissimilarity,
and Yuan & Ma (2020) bounded Hessian. Without any such
assumption, we show here that local methods can converge
in significantly fewer update rounds than large-batch meth-
ods without local steps (Dekel et al., 2012). The method
matches the communication-complexity lower bound de-
rived in (Arjevani & Shamir, 2015) and is optimal in this
regard. Moreover, and unlike the approach adopted by
Hanzely & Richtárik (2020); Hanzely et al. (2020), our
improvements do not rely on interpreting local methods as
methods for solving personalized formulations of FL.

5. Extensions
5.1. Stochastic gradients

In machine learning, calculating full gradients may be ex-
tremely expensive and in some cases not possible. In this
section, we are going to make an extension of the basic
ProxSkip (Algorithm 1) to allow stochastic updates:

x̂t+1 = xt − γ(gt(xt)− ht). (20)

In a generic SGD method, we work with unbiased estimators
of gradients only.

Assumption 5.1 (Unbiasedness). For all t ≥ 0, gt(xt) is

an unbiased estimator of the gradient∇f(xt). That is,

E [gt(xt) | xt] = ∇f(xt). (21)

In our analysis of ProxSkip in the stochastic case, we rely on
the expected smoothness assumption introduced by Gower
et al. (2021) in the context of variance reduction, and later
adopted and simplified by Gower et al. (2019) in the context
if SGD analysis.

Assumption 5.2 (Expected smoothness). There exist con-
stants A ≥ 0 and C ≥ 0 such that for all t ≥ 0,

E
[
‖gt(xt)−∇f (x?)‖2 | xt

]
≤ 2ADf (xt, x?) + C.

(22)

This assumption is satisfied in many practical settings, in-
cluding when the randomness in gt arises from subsampling
(i.e., minibatching) and compression (Gorbunov et al., 2021).
It is also satisfied in the popular but artificial setting when
an additive zero mean and bounded variance noise is added
to the gradient, formalized next.

Assumption 5.3 (Bounded variance). For all t ≥ 0, the
stochastic estimator gt(xt) has bounded variance:

Var[gt(xt) | xt] ≤ σ2. (23)

The next lemma, due to Gower et al. (2019), shows that this
is indeed the case.

Lemma 5.4. Let Assumption 5.1 and Assumption 5.3 hold
and let f be convex and L-smooth, then expected smooth-
ness (i.e., Assumption 5.2) holds with A = L and C = σ2.

The main result of this section is formulated next.

Theorem 5.5. Let Assumptions 3.1, 3.2, 5.2 and 5.1 hold.
Let 0 < γ ≤ 1/A and 0 < p ≤ 1. Then, the iterates of
SProxSkip (Algorithm 3) satisfy

E [ΨT ] ≤ (1− ζ)TΨ0 +
γ2C

ζ
,

where ζ := min{γµ, p2}.

This result also gives us rates for Scaffnew (Algorithm 2).

Corollary 5.6. Consider Scaffnew (Algorithm 2) or SProx-
Skip (Algorithm 3). Choose any 0 < ε < 1. If
we choose γ = min

{
1
A ,

εµ
2C

}
and p =

√
γµ, then

in order to guarantee E [ΨT ] ≤ ε, it suffices to take

T ≥ max
{
A
µ ,

2C
εµ2

}
log
(

2Ψ0

ε

)
iterations, which results in

max
{√

A
µ ,
√

2C
εµ2

}
log
(

2Ψ0

ε

)
communications (in case of

Scaffnew) resp. prox evaluations (in case of SProxSkip) on
average.
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Figure 1. Deterministic Problem. Comparison of Scaffnew to other local update methods that tackle data-heterogeneity and to LocalGD. In
(a) we compare communication rounds with optimally tuned hyper-parameters. In (b) we compare communicated vectors (Scaffold, FedLin

and S-Local-GD require transmission of additional variables). In (c), we compare communication rounds with the algorithm parameters set
to the best theoretical stepsizes used in the convergence proofs.
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Figure 2. Stochastic Problem. Comparison of Scaffnew to other local update methods that tackle data-heterogeneity and to LocalSGD. In
(a) we compare commnication rounds with optimally tuned hyper-parameters. In (b) we compare communicated vectors and in (c), we
compare communication rounds with the algorithm parameters set to the best theoretical stepsizes used in the convergence proofs.

Limitations. The main limitation of applying analysis of
SProxSkip in the FL setting (Algorithm 2) is that we do not
achieve linear speedup in terms of the number of clients.
This issue comes from the analysis technique and it needs
deeper investigation. The same problem appears in the
analysis of FedLin, but it does not in the analysis of Scaffold.

5.2. Decentralized training

Let us now discuss the minimization problem with decentral-
ized communication. Given a graph G = (V,E) with nodes
V and edges E, we assume that every communication node
i receives a weighted average of its neighbors’ vectors with
weights Wi1, . . . ,Win ∈ [0, 1]. Besides, nodes i and j com-
municate if and only if Wij 6= 0, which is also equivalent
to (i, j) ∈ E. The weights Wij define the mixing matrix
W that we assume to be symmetric, doubly stochastic, and
positive semi-definite. Then, the problem is equivalent to

min
x∈Rd

f(x) subject to (I−W)x = 0,

where I is the identity matrix. Let us set L to be the square-
root of I −W and define the indicator function ψ(y) by
setting ψ(0) = 0 and ψ(y) = +∞ for any y 6= 0, which is
similar to our previous definition in equation (7). Then, the

constraint (I −W)x = 0 is equivalent to Lx = 0, so the
problem can be rewritten as

min
x∈Rd

f(x) + ψ(Lx).

The reason we define L this way is that splitting algorithms
require computation of LL>u for some vector u, which in
our case is exactly (I−W)u. Algorithmically, computing
this product corresponds to communicating over the graph.
For convenience, we provide the algorithm formulation in
the graph notation in the appendix; see Algorithm 5. The
convergence of our decentralized algorithm is stated below.

Theorem 5.7. Let f satisfy Assumption 4.1 and define the
spectral gap of W as δ = 1 − λ2(W) ∈ (0, 1). If we set
p ∈ (0, 1], γ ≤ 1/L, τ ≤ p/γ, then the average iterate xT
satisfies

E
[
‖xT − x?‖2

]
≤ (1−min(γµ, pγτδ))TΦ0,

where Φ0 ≤ ‖x0 − x?‖2 + γ
pτδn

∑n
i=1 ‖∇fi(x∗)‖2.

If we plug-in τ = p/γ, the theorem implies that the new rate
is Õ(κ + 1

p2δ ). Thus, it is optimal to choose p =
√

1/(δκ)

whenever the network is sufficiently well-connected. If
passing a message is challenging, which happens when
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δ ≤ 1/κ, then it is optimal to communicate every iteration
by setting p = 1.

6. Experiments
To test the performance of algorithms and illustrate theo-
retical results, we use classical logistic regression problem.
The loss function for this model has the following form:

f(x) =
1

n

n∑
i=1

log
(
1 + exp

(
−bia>i x

))
+
λ

2
‖x‖2,

where ai ∈ Rd and bi ∈ {−1,+1} are the data samples.
We set the regularization parameter λ = 10−4L, where L is
the smoothness constant.

We implemented all algorithms in Python using the package
RAY (Moritz et al., 2018) to utilize parallelization. All
methods were evaluated on a workstation with an Intel(R)
Xeon(R) Gold 6146 CPU at 3.20GHz with 24 cores. We
use the ’w8a’ dataset from LIBSVM library (Chang & Lin,
2011).

In our experiments, we have two settings: deterministic
(Figure 1) and stochastic problems (Figure 2). First, we
provide results with tuned hyper-parameters (subplot (a)).
Local GD converges to the neighborhood of the solution due
to data-heterogeneity. Scaffold and Scaffnew have the same
convergence rate in terms of communication rounds and this
rate is better than others. However, Scaffnew outperforms
Scaffold in terms of communicated vectors since it does
not transmit control variables (subplot (b)). Second, we
test algorithms with theoretical hyper-parameters (subplot
(c)). In this setting, Scaffnew outperforms other methods
dramatically since our theory guarantees that we can use
large stepsizes. The number of local steps is set to be

√
κ̂,

where κ̂ = L
λ is an estimate of the condition number.
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local SGD on identical and heterogeneous data. In The 23rd
International Conference on Artificial Intelligence and Statistics
(AISTATS 2020), 2020. (Cited on pages 2, 3, and 6)

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich, S. U.
A unified theory of decentralized SGD with changing topology
and local updates. In 37th International Conference on Machine
Learning (ICML). PMLR, 2020. (Cited on pages 2 and 6)

Koloskova, A., Lin, T., and Stich, S. U. An improved analysis of
gradient tracking for decentralized machine learning. In Ad-
vances in Neural Information Processing Systems 34 (NeurIPS),
volume 34. Curran Associates, Inc., 2021. (Cited on page 4)
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Appendix
A. Basic Facts
The Bregman divergence of a differentiable function f : Rd → R is defined by

Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉.

It is easy to see that
〈∇f(x)−∇f(y), x− y〉 = Df (x, y) +Df (y, x), ∀x, y ∈ Rd (24)

For an L-smooth and µ-strongly convex function f : Rd → R, we have

µ

2
‖x− y‖2 ≤ Df (x, y) ≤ L

2
‖x− y‖2, ∀x, y ∈ Rd (25)

and
1

2L
‖∇f(x)−∇f(y)‖2 ≤ Df (x, y) ≤ 1

2µ
‖∇f(x)−∇f(y)‖2, ∀x, y ∈ Rd. (26)

Given ψ : Rd → R, we define ψ∗(y) := supx∈Rd{〈x, y〉 − ψ(x)} to be its Fenchel conjugate. The proximity operator of
ψ∗ satisfies for any τ > 0

if u = proxτψ∗(y), then u ∈ y − τ∂ψ∗(u). (27)

B. Analysis of ProxSkip (Algorithm 1)
B.1. Proof of Lemma 3.4

Proof. In order to simplify notation, let P (·) := prox γ
pψ

(·), and

x := x̂t+1 −
γ

p
ht, y := x? −

γ

p
h?. (28)

STEP 1 (Optimality conditions). Using the first-order optimality conditions for f +ψ and using h? := ∇f(x?), we obtain
the following fixed-point identity for x?:

x? = prox γ
pψ

(
x? −

γ

p
h?

)
(28)
= P (y). (29)

STEP 2 (Recalling the steps of the method). Recall that the vectors xt and ht are in Algorithm 1 updated as follows:

xt+1 =

{
P
(
x
)

with probability p

x̂t+1 with probability 1− p
, (30)

and

ht+1 = ht +
p

γ
(xt+1 − x̂t+1) =

{
ht + p

γ (P (x)− x̂t+1) with probability p

ht with probability 1− p
. (31)

STEP 3 (One-step expectation of the Lyapunov function).

The expected value of the Lyapunov function

Ψt := ‖xt − x?‖2 +
γ2

p2
‖ht − h?‖2 (32)
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at time t+ 1, with respect to the coin toss at iteration t, is

E [Ψt+1]
(30)+(31)+(32)

= p

(
‖P (x)− x?‖2 +

γ2

p2

∥∥∥∥ht +
p

γ
(P (x)− x̂t+1)− h?

∥∥∥∥2
)

+ (1− p)
(
‖x̂t+1 − x?‖2 +

γ2

p2
‖ht − h?‖2

)
(29)
= p

(
‖P (x)− P (y)‖2 +

∥∥∥∥γp ht + P (x)− x̂t+1 −
γ

p
h?

∥∥∥∥2
)

+ (1− p)
(
‖x̂t+1 − x?‖2 +

γ2

p2
‖ht − h?‖2

)

(28)+(29)
= p

‖P (x)− P (y)‖2 + ‖P (x)− x+ y − P (y)‖2︸ ︷︷ ︸
‖Q(x)−Q(y)‖2

+ (1− p)
(
‖x̂t+1 − x?‖2 +

γ2

p2
‖ht − h?‖2

)
.

STEP 4 (Applying firm nonexpansiveness). Applying firm nonexpansiveness of P (Lemma 3.3), this leads to the
inequality

E [Ψt+1]
(10)
≤ p ‖x− y‖2 + (1− p)

(
‖x̂t+1 − x?‖2 +

γ2

p2
‖ht − h?‖2

)
(28)
= p

∥∥∥∥x̂t+1 −
γ

p
ht −

(
x? −

γ

p
h?

)∥∥∥∥2

+ (1− p)
(
‖x̂t+1 − x?‖2 +

γ2

p2
‖ht − h?‖2

)
.

STEP 5 (Simple algebra). Next, we expand the squared norm and collect the terms, obtaining

E [Ψt+1] ≤ p‖x̂t+1 − x?‖2 + p
γ2

p2
‖ht − h?‖2 − 2γ〈x̂t+1 − x?, ht − h?〉+ (1− p)

(
‖x̂t+1 − x?‖2 +

γ2

p2
‖ht − h?‖2

)
= ‖x̂t+1 − x?‖2 − 2γ〈x̂t+1 − x?, ht − h?〉+

γ2

p2
‖ht − h?‖2. (33)

Finally, note that by our definition of wt, we have the identity x̂t+1 = wt + γht. Therefore, the first two terms above can be
rewritten as

‖x̂t+1 − x?‖2 − 2γ〈x̂t+1 − x?, ht − h?〉 = ‖wt − w? + γ(ht − h?)‖2 − 2γ〈wt − w? + γ(ht − h?), ht − h?〉
= ‖wt − w?‖2 + 2γ〈wt − w?, ht − h?〉+ γ2‖ht − h?‖2

−2γ〈wt − w?, ht − h?〉 − 2γ2‖ht − h?‖2

= ‖wt − w?‖2 − γ2‖ht − h?‖2. (34)

It remains to plug (34) into (33).

B.2. Proof of Lemma 3.5

Proof. Recall the definition of wt and w? in (12). Plugging these expressions into ‖wt − w?‖2, expanding the square, and
applying properties of f as a µ-strong convex and L-smooth function, we get

‖wt − w?‖2
(12)
= ‖xt − x? − γ(∇f(xt)−∇f(x?))‖2

= ‖xt − x?‖2 + γ2‖∇f(xt)−∇f(x?)‖2 − 2γ〈∇f(xt)−∇f(x?), xt − x?〉
(25)
≤ (1− γµ)‖xt − x?‖2 − 2γDf (xt, x?) + γ2‖∇f(xt)−∇f(x?)‖2

= (1− γµ)‖xt − x?‖2 − 2γ
(
Df (xt, x?)−

γ

2
‖∇f(xt)−∇f(x?)‖2

)
(26)
≤ (1− γµ)‖xt − x?‖2,

where the last inequality holds if 0 ≤ γ ≤ 1
L .
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C. Analysis of SProxSkip (Algorithm 3)
C.1. The algorithm

We consider a variant of ProxSkip which uses a stochastic gradient gt(xt) instead of∇f(xt); see Algorithm 3.

Algorithm 3 SProxSkip (Stochastic gradient version of ProxSkip)
1: stepsize γ > 0, probability p > 0, initial iterate x0 ∈ Rd, initial control variate h0 ∈ Rd, number of iterations T ≥ 1
2: for t = 0, 1, . . . , T − 1 do
3: x̂t+1 = xt − γ(gt(xt)− ht) � Take a stochastic gradient-type step adjusted via the control variate ht
4: Flip a coin θt ∈ {0, 1} where Prob(θt = 1) = p � Flip a coin that decides whether to skip the prox or not
5: if θt = 1 then
6: xt+1 = prox γ

pψ

(
x̂t+1 − γ

pht
)

� Apply prox, but only very rarely! (with small probability p)
7: else
8: xt+1 = x̂t+1 � Skip the prox!
9: end if

10: ht+1 = ht + p
γ (xt+1 − x̂t+1) � Update the control variate ht

11: end for

C.2. Two lemmas

Lemma C.1 is an extension of Lemma 3.4 to the stochastic case. In this result, we work with

w′t = xt − γgt(xt) (35)

instead of wt = xt − γ∇f(xt).

Lemma C.1. If Assumptions 3.1 and 3.2 hold, γ > 0 and 0 < p ≤ 1, then

E [Ψt+1] ≤ ‖w′t − w?‖2 + (1− p2)
γ2

p2
‖ht − h?‖2 , (36)

where the expectation is taken over the θt in Algorithm 3.

Proof. The proof is identical to the proof of Lemma 3.4.

Likewise, Lemma C.2 is an extension of Lemma 3.5 to the stochastic case.

Lemma C.2. Let Assumption 3.1 hold with any µ ≥ 0. If 0 < γ ≤ 1
A , then

E
[
‖w′t − w?‖2

]
≤ (1− γµ)‖xt − x?‖2 + γ2C, (37)

where the expectation is w.r.t. the randomness in the stochastic gradient gt(·).

Proof. Recall the definition of w′t in (35) and w? in (12). Plugging these expressions into ‖w′t−w?‖2, expanding the square,
we get

‖w′t − w?‖2
(12)+(35)

= ‖xt − x? − γ(gt(xt)−∇f(x?))‖2

= ‖xt − x?‖2 + γ2‖gt(xt)−∇f(x?)‖2 − 2γ〈gt(xt)−∇f(x?), xt − x?〉. (38)

Taking expectation w.r.t. the randomness of the stochastic gradient gt(xt), and using unbiasedness (Assumption 5.2) and
expected smoothness (Assumption 5.1), we get

E
[
‖w′t − w?‖2

] (38)
= ‖xt − x?‖2 + γ2E

[
‖gt(xt)−∇f(x?)‖2

]
− 2γ〈E [gt(xt)]−∇f(x?), xt − x?〉

= ‖xt − x?‖2 − 2γ〈∇f(xt)−∇f(x?), xt − x?〉+ γ2E
[
‖gt(xt)−∇f(x?)‖2

]
.
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The second term can be decomposed using the identity 〈∇f(xt)−∇f(x?), xt − x?〉 = Df (xt, x?) + Df (x?, xt) (see
(24)), and the third term can be bounded via E

[
‖gt(xt)−∇f(x?)‖2

]
≤ 2ADf (xt, x?) + C (see expected smoothness;

Assumption 5.2), which leads to

E
[
‖w′t − w?‖2

]
≤ ‖xt − x?‖2 − 2γ(Df (xt, x?) +Df (x?, xt)) + γ2 (2ADf (xt, x?) + C) . (39)

By plugging the inequality µ‖xt − x?‖2 ≤ 2Df (x?, xt) (see (25)) into (39), we get

E
[
‖w′t − w?‖2

]
≤ (1− γµ)‖xt − x?‖2 − 2γDf (xt, x?) + γ2 (2ADf (xt, x?) + C)

≤ (1− γµ)‖xt − x?‖2 − 2γ(1− γA)Df (xt, x?) + γ2C.

Finally, the stepsize restriction γ ≤ 1
A allows us to produce the estimate

E
[
‖w′t − w?‖2

]
≤ (1− γµ)‖xt − x?‖2 + γ2C, (40)

which is what we wanted to show.

C.3. Proof of Theorem 5.5

Proof. Combining Lemma C.1 and Lemma C.2, we get

E [Ψt+1]
(36)+(40)
≤ (1− γµ)‖xt − x?‖2 + (1− p2)

γ2

p2
‖ht − h?‖2 + γ2C

≤ max{1− γµ, 1− p2}Ψt + γ2C

= (1− ζ)Ψt + γ2C ,

where ζ := min{γµ, p2}. Taking full expectation, we get E [Ψt+1] ≤ (1− ζ)E [Ψt] + γ2C, and unrolling the recurrence,
we finally obtain

E [ΨT ] ≤ (1− ζ)TΨ0 +
γ2C

ζ
. (41)

C.4. Proof of Corollary 5.6

Recall that Theorem 5.5 requires the stepsize γ to satisfy

0 < γ ≤ 1

A
. (42)

Pick 0 < ε < 1. We will now choose γ and T such that E [ΨT ] ≤ ε. We shall do so by bounding both terms on the
right-hand side of (41) by ε

2 .

• In order to minimize the number of prox evaluations, whatever the choice of γ will be, we choose the smallest
probability p which does not lead to any degradation of the rate ζ := min{γµ, p2}. That is, we choose

p =
√
γµ, (43)

in which case ζ = γµ.

• The first term on the right-hand side of (41) can be bounded as follows:

T ≥ 1

γµ
log

(
2Ψ0

ε

)
=⇒ (1− ζ)TΨ0 ≤

ε

2
. (44)

• The second term on the right-hand side of (41) can be bounded as follows:

γ ≤ εµ

2C
=⇒ γ2C

ζ
=
γC

µ
≤ ε

2
. (45)
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Since the number of iterations (44) depends inversely on the stepsize γ, we choose the largest stepsize consistent with the
bounds (42) and (45):

γ = min

{
1

A
,
εµ

2C

}
. (46)

By plugging this into (44), we get the iteration complexity bound

T ≥ max

{
A

µ
,

2C

εµ2

}
log

(
2Ψ0

ε

)
=⇒ E [ΨT ] ≤ ε .

Since in each iteration we evaluate the prox with probability p given by (43), and since there are T iterations, the expected
number of prox evaluations is given by

pT
(44)
≥ p

1

γµ
log

(
2Ψ0

ε

)
(43)
=

√
1

γµ
log

(
2Ψ0

ε

)
(46)
= max

{√
A

µ
,

√
2C

εµ2

}
log

(
2Ψ0

ε

)
.
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D. Decentralized Analysis
Let us now analyze the convergence of Algorithm 4 and Algorithm 5.

Algorithm 4 SplitSkip

1: stepsizes γ > 0 and τ > 0, matrix L ∈ Rd×m, probability p > 0, initial iterate x0 ∈ Rd, initial control variate
y0 = 0 ∈ Rm, number of iterations T ≥ 1

2: for t = 0, 1, . . . , T − 1 do
3: x̂t+1 = xt − γ(∇f(xt) + L>yt) � Take a gradient-type step adjusted via the control variate yt
4: Flip a coin θt ∈ {0, 1} where Prob(θt = 1) = p � Flip a coin that decides whether to skip the prox or not
5: if θt = 1 then
6: yt+1 = proxτψ∗

(
yt + τLx̂t+1

)
� Apply prox, but only very rarely! (with small probability p)

7: xt+1 = x̂t+1 − γ
pL
>(yt+1 − yt)

8: else
9: xt+1 = x̂t+1

10: yt+1 = yt � Skip the prox!
11: end if
12: end for

Algorithm 5 Decentralized Scaffnew

1: stepsizes γ > 0 and τ > 0, initial iterates x1,0 = . . . = xn,0 = x0 ∈ Rd, initial control variables h1,0 = . . . = hn,0 =
0 ∈ Rd, weights for averaging W = (Wij)

n
i,j=1

2: for t = 0, 1, . . . , T − 1 do
3: Flip a coin θt ∈ {0, 1} where Prob(θt = 1) = p � Flip a coin that decides whether to skip the prox or not
4: for i = 1, . . . , n do
5: x̂i,t+1 = xi,t − γ(∇fi(xi,t)− hi,t) � Take a gradient-type step adjusted via the control variate hi,t
6: if θt = 1 then
7: xi,t+1 =

(
1− γτ

p

)
x̂i,t+1 + γτ

p

∑n
j=1Wij x̂j,t+1 � Communicate, but only very rarely! (with small prob. p)

8: hi,t+1 = hi,t + p
γ (xi,t+1 − x̂i,t+1) � Update the control variate hi,t

9: else
10: xi,t+1 = x̂i,t+1 � Skip communication!
11: hi,t+1 = hi,t
12: end if
13: end for
14: end for

Notice Algorithm 5 is a special case of Algorithm 4 with L = (I −W)1/2 and ψ being indicator function of 0. Indeed,
the conjugate of ψ is simply 0 everywhere, so proxτψ∗(y) = y for any y. Thus, if we define ht := −L>yt, we obtain
Algorithm 5, which we explain in more detail in Section D.1. For this reason, we will do the analysis for the more general
Algorithm 4.

Let us also add a few connections of this method to the existing literature on primal–dual algorithms. When p = 1,
Algorithm 4 reverts to a primal–dual algorithm first proposed by Loris and Verhoven for least squares problems (Loris &
Verhoeven, 2011), and rediscovered later under the names PDFP2O (Chen et al., 2013) and PAPC (Drori et al., 2015). The
convergence of this algorithm has been analyzed by Combettes et al. (2014); Condat et al. (2019; 2022) and generalized to
the case of stochastic gradients by Salim et al. (2020), who also studied its linear convergence under similar assumptions,
albeit without skipping the prox step.

Our analysis is based on the following Lyapunov function:

Φt := ‖xt − x?‖2 +
γ

pτ
‖yt − y?‖2, (47)

where yt is the dual variable from Algorithm 4.
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Theorem D.1. Let Assumption 3.1 and Assumption 3.2 hold, and assume that for any y, we have ∂ψ∗(y) ⊆ range(L). If
we choose p ∈ (0, 1], γ ≤ 1

L , γτ ≤ p
‖LL>‖ , then

E
[
‖xT − x?‖2

]
≤ (1− ζ)TΦ0,

where ζ = min{γµ, pγτλ+
min(LL>)}.

Proof. Let us define ŷt+1 := proxτψ∗(yt + τLx̂t+1). As stated in equation (27), this definition implies the following
implicit representation of ŷt+1:

ŷt+1 = yt + τLx̂t+1 − τ(ψ∗)′(yt+1),

where (ψ∗)′(yt+1) ∈ ∂ψ∗(yt+1) is a subgradient of ψ∗ at yt+1. With the help of ŷt+1, we can expand the expected distance
to the solution,

E
[
‖xt+1 − x?‖2

]
= p‖x̂t+1 − x? −

γ

p
L>(ŷt+1 − yt)‖2 + (1− p)‖x̂t+1 − x?‖2

= p

[
‖x̂t+1 − x?‖2 − 2

γ

p
〈x̂t+1 − x?,L>(ŷt+1 − yt)〉+

γ2

p2
‖L>(ŷt+1 − yt)‖2

]
+ (1− p)‖x̂t+1 − x?‖2

= ‖x̂t+1 − x?‖2 − 2γ〈x̂t+1 − x?,L>(ŷt+1 − yt)〉+
γ2

p
‖L>(ŷt+1 − yt)‖2.

Next, let us recur the first term to ‖wt − w?‖ by using the expansion ‖a+ b‖2 = ‖a‖2 + 2〈a+ b, b〉 − ‖b‖2,

‖x̂t+1 − x?‖2 = ‖wt − w? − γL>(yt − y?)‖2

= ‖wt − w?‖2 − 2γ〈x̂t+1 − x?,L>(yt − y?)〉 − γ2‖L>(yt − y?)‖2.

Thus,

E
[
‖xt+1 − x?‖2

]
= ‖wt − w?‖2 − 2γ〈x̂t+1 − x?,L>(yt − y?)〉 − 2γ〈x̂t+1 − x?,L>(ŷt+1 − yt)〉

− γ2‖L>(yt − y?)‖2 +
γ2

p
‖L>(ŷt+1 − yt)‖2

= ‖wt − w?‖2 − 2γ〈x̂t+1 − x?,L>(ŷt+1 − y?)〉 − γ2‖L>(yt − y?)‖2 +
γ2

p
‖L>(ŷt+1 − yt)‖2.

Now, we can turn our attention to the convergence of the dual variable yt. Since yt+1 is updated with probability p, it holds

E
[
‖yt+1 − y?‖2

]
= p‖yt − y? + (ŷt+1 − yt)‖2 + (1− p)‖yt − y?‖2

= p‖yt − y?‖2 + 2p〈ŷt+1 − y?, ŷt+1 − yt〉 − p‖ŷt+1 − yt‖2 + (1− p)‖yt − y?‖2

= ‖yt − y?‖2 + 2p〈ŷt+1 − y?, ŷt+1 − yt〉 − p‖ŷt+1 − yt‖2

= ‖yt − y?‖2 + 2pτ〈ŷt+1 − y?,Lx̂t+1 − (ψ∗)′(ŷt+1)〉 − p‖ŷt+1 − yt‖2.

By the first-order optimality conditions, we have Lx? = (ψ∗)′(x?), where (ψ∗)′(x?) is some subgradient of ψ∗ at x?.
Therefore, convexity of ψ∗ gives

〈ŷt+1 − y?,Lx̂t+1 − (ψ∗)′(ŷt+1)〉 = 〈ŷt+1 − y?,L(x̂t+1 − x?)− (ψ∗)′(ŷt+1) + (ψ∗)′(y?)〉
≤ 〈ŷt+1 − y?,L(x̂t+1 − x?)〉.

Combining the recursions for the iterates xt+1 and yt+1, we obtain

E [Φt+1] = E
[
‖xt+1 − x?‖2 +

γ

pτ
‖yt+1 − y?‖2

]
≤ ‖wt − w?‖2 − 2γ〈x̂t+1 − x?,L>(ŷt+1 − y?)〉 − γ2‖L>(yt − y?)‖2 +

γ2

p
‖L>(ŷt+1 − yt)‖2

+
γ

pτ
‖yt − y?‖2 + 2γ〈ŷt+1 − y?,L(x̂t+1 − x?)〉 −

γ

τ
‖ŷt+1 − yt‖2

= ‖wt − w?‖2 +
γ

pτ
‖yt − y?‖2 − γ2‖L>(yt − y?)‖2 +

γ2

p
‖L>(ŷt+1 − yt)‖2 −

γ

τ
‖ŷt+1 − yt‖2.
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Using the assumption that τ ≤ p
γ‖LL>‖ , we get

γ2

p
‖L>(ŷt+1 − yt)‖2 ≤

γ2

p
‖LL>‖‖ŷt+1 − yt‖2 ≤

γ

τ
‖ŷt+1 − yt‖2.

Plugging this back, we derive

E [Φt+1] ≤ ‖wt−w?‖2 +
γ

pτ
‖yt−y?‖2−γ2‖L>(yt−y?)‖2

(14)
≤ (1−γµ)‖xt−x∗‖2 +

γ

pτ
‖yt−y?‖2−γ2‖L>(yt−y?)‖2.

Since we assume that ∂ψ∗(y) ⊆ range(L) and y0 = 0 ∈ Rd, we have that yt − y? ∈ range(L). Therefore, ‖L>(yt −
y?)‖2 ≥ λ+

min(LL>)‖yt − y?‖2, where λ+
min is the smallest positive eigenvalue. Combining these results, we get

E
[
‖xt − x?‖2

]
≤ E [Φt] ≤ (1− γµ)‖xt−1 − x?‖2 +

γ

pτ

(
1− pγτλ+

min(LL>)
)
‖yt−1 − y?‖2

≤ (1−min(γµ, pγτλ+
min(LL>))tΦ0.

D.1. Proof of Theorem 5.7

Proof. To obtain the communication step as a special case of the proximity operator, we set ψ to be the indicator function of
the singleton {0} ⊆ Rd,

ψ(x) =

{
0 x = 0

+∞ x 6= 0
.

Its Fenchel conjugate equals, by definition, ψ∗(y) = supx∈Rd{〈x, y〉 − ψ(x)} = 〈0, y〉 = 0. Therefore, for any y,
proxτψ∗(y) = y and ∂ψ∗(y) = {0} ⊆ range(L), and the conditions of Theorem D.1 hold. Next, let us establish that
Algorithm 5 is a special case of Algorithm 4. If we consider the iterates of Algorithm 4 and define ht := −L>yt, then its
first step can be rewritten as

x̂t+1 = xt − γ(∇f(xt) + L>yt) = xt − γ(∇f(xt)− ht),

which is exactly the first step of Algorithm 5. The second step of Algorithm 4 is either to do nothing or to update yt+1.
Using the fact that proxτψ∗(yt + τLx̂t+1) = yt + τLx̂t+1, it is easy to see that

ht+1 := −L>yt+1 = −L>(yt + τLx̂t+1) = ht − τL>Lx̂t+1.

By setting L = (I−W)1/2, we get L>L = I−W, and we recover the second step of Algorithm 5 in an equivalent form:{
hi,t+1 = hi,t + τ

(
x̂i,t+1 −

∑n
j=1Wij x̂j,t+1

)
,

xi,t+1 = x̂i,t+1 + γ
p (hi,t+1 − hi,t).

⇐⇒

{
xi,t+1 =

(
1− γτ

p

)
x̂i,t+1 + γτ

p

∑n
j=1Wij x̂j,t+1,

hi,t+1 = hi,t + p
γ (xi,t+1 − x̂i,t+1).

Finally, notice that λ+
min(L>L) = λ+

min(I−W) = 1− λ2(W) = δ, ‖L>L‖ = ‖I−W‖ < 1, and yi,0 = 0, so applying
Theorem D.1 yields

E

[
1

n

n∑
i=1

‖xi,T − x?‖2
]
≤ (1− ζ)TΦ0 = (1− ζ)T

(
‖x0 − x?‖2 +

γ

pτ

1

n

n∑
i=1

‖yi,∗‖2
)
.

By Jensen’s inequality, the average iterate xT := 1
n

∑n
i=1 xi,T satisfies

E
[
‖xT − x?‖2

]
≤ E

[
1

n

n∑
i=1

‖xi,T − x?‖2
]
≤ (1− ζ)T

(
‖x0 − x?‖2 +

γ

pτ

1

n

n∑
i=1

‖yi,∗‖2
)
.

Finally, notice that ‖yi,∗‖2 = ‖L†Lyi,∗‖2 = ‖L†∇fi(x∗)‖2 ≤ 1
λ+
min(L>L)

‖∇fi(x∗)‖2 = 1
δ ‖∇fi(x∗)‖

2.



ProxSkip 20

E. Additional Experiments
In this experiment we compare Scaffnew methods with different parameters of probability p. Note that the expected value of
the number of local steps in between two communication rounds is equal to 1

p .

0 100 200 300 400 500 600 700
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Figure 3. The communication complexity of Scaffnew with several different choices of parameter p in the deterministic case (i.e., when full
gradients are computed rather than stochastic gradients).

As we can see in Figure 3, if our method communicates either too often (1/p = 100) or too rarely (1/p = 1000), convergence
suffers. The optimal number of local steps in this experiment is 1/p = 300. This value is close to

√
κ̂ ≈ 100, where κ̂ is

an estimate of the true condition number κ, which can be smaller than κ̂. Our theory predicted that the choice p = 1√
κ

is
optimal up to constant factors, which is close the experiment’s results. Thus, whenever an estimate of the conditioning
number is available, our estimate provides a practical recipe for the number of local steps that provides decent empirical
performance without any tuning.


