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Abstract—We develop a randomized block-coordinate descent method
for minimizing the sum of a smooth and a simple nonsmooth block-
separable convex function and prove that it obtains an e-accurate solution
with probability at least 1 — p in at most O((4n/¢) log(1/ep)) iterations,
where n is the dimension of the problem. This extends recent results of
Nesterov [2], which cover the smooth case, to composite minimization,
and improves the complexity by a factor of 2. In the smooth case we give
a much simplified analysis. Finally, we demonstrate numerically that the
algorithm is able to solve various ¢1-regularized optimization problems
with a billion variables.

I. INTRODUCTION
We consider the unconstrained convex optimization problem
min F(x) £ f(z) + 0 (2), 1
where f is smooth and ¥ is block-separable. By z* we denote an
arbitrary optimal solution of (1) and by F™* the optimal value.

A. Block structure

Let (U,...,Un) be a block decomposition of (a column per-
mutation of) the N x N identity matrix, with U; € RNV *N:
and Y " Ny = N. Any = € R™ can then be represented
as x = :L:lb{ix“), where z® € RY:, and we will write
z = (zW;. . ;2™). Let || - lliys Il - Itz be a pair of conjugate
Euclidean norms in R™:,

Smoothness of f means that the gradient of ¢ — f(z + Uit) is
Lipschitz at ¢ = 0, uniformly in x for all ¢, with constants L; > 0:

4" [ (2 + Ust) = £ @]y < Lilltl ), « € RY, t € R (2)
Block separability of ¥ means that ¥(z) = 37", ¥;(2?).
B. Examples of ¥

o Unconstrained smooth minimization: ¥(x) = 0. Iteration com-
plexity analysis in this case was done in [2]. Our results (not in
this abstract) are slightly better and analysis much simpler.

e Block-constrained smooth minimization: ¥;(x) = indicator
function of some convex set in R,

o {1-regularized minimization: V(x) = A||z||1. In machine learn-
ing, this helps to prevent model over-fitting [1] and in com-
pressed sensing this is used to recover sparse signals [3].

II. THE ALGORITHM AND ITS ITERATION COMPLEXITY
Let us define a norm on RY by ||z||, = (3, LiHUC(i)H?i))%-
Theorem 1. Choose zo € RY and € > 0 such that p = ¢/||z* —
xo||2 < 2. Further, pick p € (0,1) and let

k> 4n\|z*;zoui log (2(F(IEZ,F*)) .

If xy, is the random vector generated by Algorithm 1 when applied
to the objective function F,(z) = F(z) + &|z — zol|Z, then
Prob(F(zx) — F* <€) >1—p.
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Algorithm 1 Uniform Coordinate Descent for Composite Functions

for £=0,1,2,... iterate
Choose ix =i € {1,2,...,n} with probability =

T = arg min (Vf(zr),Ust) + = |[tl|7) + P (xx + Uit)
teRNi 2
Tppr = Tp + UTD

III. NUMERICAL RESULTS
We will apply Algorithm 1 to random instance of (1) with

f@) =3l Az = b5, ¥(@) = |zl €)

2

where b € R, A € R™*™ N =n.

In the first table below we present duration time (in seconds) of n
iterations of Algorithm 1 applied to problem (1), (3) with a sparse
solution z* and random sparse matrix A. By || - ||o we denote number
of nonzero elements.

III*H ”AHO =108 IIA”O = 10°
O || 107 x 108 | 108 x 107 || 107 x 10° | 10% x 107
16 x 107 5.89 11.04 46.28 70.48
16 x 103 5.83 11.59 46.07 59.03
16 x 10* 4.28 8.64 46.93 77.44

Let us remark that n = 107 iterations in case when m = 10® and
A has a billion nonzeros are executed in about 1 minute. In order
to get a solution with accuracy e = 10™°, one needs approximately
40 x n iterations. In the next table we illustrate, on a random problem
with m = 107, n = 105, || Ao = 10® and ||z*|jo = 16 x 107, the
typical behavior of the method in reducing the gap F'(zy) — F*.

k/n || F(xk) — F* | |lollo | time [sec.]
0.0010 < 10° 857 0.01
15.2320 < 10 997944 65.19
20.6150 <108 978761 88.25
25.9120 < 10° 763314 110.94
30.6620 < 10* 57991 131.25
35.0520 < 10? 2538 150.02
38.2650 < 10° 1633 163.75
40.9880 <107t 1604 175.38
42.7140 <107* 1600 182.77
44.8600 <1076 1600 191.94
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