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Abstract—We develop a randomized block-coordinate descent method
for minimizing the sum of a smooth and a simple nonsmooth block-
separable convex function and prove that it obtains an ϵ-accurate solution
with probability at least 1−ρ in at most O((4n/ϵ) log(1/ϵρ)) iterations,
where n is the dimension of the problem. This extends recent results of
Nesterov [2], which cover the smooth case, to composite minimization,
and improves the complexity by a factor of 2. In the smooth case we give
a much simplified analysis. Finally, we demonstrate numerically that the
algorithm is able to solve various ℓ1-regularized optimization problems
with a billion variables.

I. INTRODUCTION

We consider the unconstrained convex optimization problem

min
x∈RN

F (x)
def
= f(x) + Ψ(x), (1)

where f is smooth and Ψ is block-separable. By x∗ we denote an
arbitrary optimal solution of (1) and by F ∗ the optimal value.

A. Block structure

Let (U1, . . . ,Un) be a block decomposition of (a column per-
mutation of) the N × N identity matrix, with Ui ∈ RN×Ni

and
∑n

i=1 Ni = N . Any x ∈ RN can then be represented
as x =

∑n
i=1 Uix

(i), where x(i) ∈ RNi , and we will write
x = (x(1); . . . ;x(n)). Let ∥ · ∥(i), ∥ · ∥∗(i) be a pair of conjugate
Euclidean norms in RNi .

Smoothness of f means that the gradient of t 7→ f(x + Uit) is
Lipschitz at t = 0, uniformly in x for all i, with constants Li > 0:

∥UT
i [f ′(x+ Uit)− f ′(x)]∥∗(i) ≤ Li∥t∥(i), x ∈ RN , t ∈ RNi . (2)

Block separability of Ψ means that Ψ(x) =
∑n

i=1 Ψi(x
(i)).

B. Examples of Ψ

• Unconstrained smooth minimization: Ψ(x) ≡ 0. Iteration com-
plexity analysis in this case was done in [2]. Our results (not in
this abstract) are slightly better and analysis much simpler.

• Block-constrained smooth minimization: Ψi(x) ≡ indicator
function of some convex set in RNi .

• ℓ1-regularized minimization: Ψ(x) ≡ λ∥x∥1. In machine learn-
ing, this helps to prevent model over-fitting [1] and in com-
pressed sensing this is used to recover sparse signals [3].

II. THE ALGORITHM AND ITS ITERATION COMPLEXITY

Let us define a norm on RN by ∥x∥L = (
∑n

i=1 Li∥x(i)∥2(i))
1
2 .

Theorem 1. Choose x0 ∈ RN and ϵ > 0 such that µ ≡ ϵ/∥x∗ −
x0∥2L ≤ 2. Further, pick ρ ∈ (0, 1) and let

k ≥ 4n∥x∗−x0∥2L
ϵ

log
(

2(F (x0)−F∗)
ρϵ

)
.

If xk is the random vector generated by Algorithm 1 when applied
to the objective function Fµ(x) = F (x) + µ

2
∥x − x0∥2L, then

Prob(F (xk)− F ∗ ≤ ϵ) ≥ 1− ρ.

Algorithm 1 Uniform Coordinate Descent for Composite Functions
for k = 0, 1, 2, . . . iterate

Choose ik = i ∈ {1, 2, . . . , n} with probability 1
n

T (i) = arg min
t∈RNi

⟨∇f(xk),Uit⟩+
Li

2
∥t∥2(i) +Ψ(xk + Uit)

xk+1 = xk + UiT
(i)

III. NUMERICAL RESULTS

We will apply Algorithm 1 to random instance of (1) with

f(x) = 1
2
∥Ax− b∥22, Ψ(x) = ∥x∥1, (3)

where b ∈ Rm, A ∈ Rm×n, N = n.
In the first table below we present duration time (in seconds) of n

iterations of Algorithm 1 applied to problem (1), (3) with a sparse
solution x∗ and random sparse matrix A. By ∥ · ∥0 we denote number
of nonzero elements.

∥x∗∥0
∥A∥0 = 108 ∥A∥0 = 109

107 × 106 108 × 107 107 × 106 108 × 107

16× 102 5.89 11.04 46.28 70.48
16× 103 5.83 11.59 46.07 59.03
16× 104 4.28 8.64 46.93 77.44

Let us remark that n = 107 iterations in case when m = 108 and
A has a billion nonzeros are executed in about 1 minute. In order
to get a solution with accuracy ϵ = 10−5, one needs approximately
40×n iterations. In the next table we illustrate, on a random problem
with m = 107, n = 106, ∥A∥0 = 108 and ∥x∗∥0 = 16 × 102, the
typical behavior of the method in reducing the gap F (xk)− F ∗.

k/n F (xk)− F ∗ ∥xk∥0 time [sec.]
0.0010 < 1016 857 0.01

15.2320 < 1010 997944 65.19
20.6150 < 108 978761 88.25
25.9120 < 106 763314 110.94
30.6620 < 104 57991 131.25
35.0520 < 102 2538 150.02
38.2650 < 100 1633 163.75
40.9880 < 10−1 1604 175.38
42.7140 < 10−4 1600 182.77
44.8600 < 10−6 1600 191.94
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