Efficiency of Randomized Coordinate Descent Methods on Minimization Problems with a Composite Objective Function

Martin Takáč
School of Mathematics
The University of Edinburgh
Email: M.Takac@sms.ed.ac.uk

Peter Richtárik
School of Mathematics
The University of Edinburgh
Email: Peter.Richtarik@ed.ac.uk

Abstract

We develop a randomized block-coordinate descent method for minimizing the sum of a smooth and a simple nonsmooth blockseparable convex function and prove that it obtains an ϵ-accurate solution with probability at least $1-\rho$ in at most $O((4 n / \epsilon) \log (1 / \epsilon \rho))$ iterations, where n is the dimension of the problem. This extends recent results of Nesterov [2], which cover the smooth case, to composite minimization, and improves the complexity by a factor of 2 . In the smooth case we give a much simplified analysis. Finally, we demonstrate numerically that the algorithm is able to solve various ℓ_{1}-regularized optimization problems with a billion variables.

I. Introduction

We consider the unconstrained convex optimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}} F(x) \stackrel{\text { def }}{=} f(x)+\Psi(x) \tag{1}
\end{equation*}
$$

where f is smooth and Ψ is block-separable. By x^{*} we denote an arbitrary optimal solution of (1) and by F^{*} the optimal value.

A. Block structure

Let $\left(\mathcal{U}_{1}, \ldots, \mathcal{U}_{n}\right)$ be a block decomposition of (a column permutation of) the $N \times N$ identity matrix, with $\mathcal{U}_{i} \in \mathbb{R}^{N \times N_{i}}$ and $\sum_{i=1}^{n} N_{i}=N$. Any $x \in \mathbb{R}^{N}$ can then be represented as $x=\sum_{i=1}^{n} \mathcal{U}_{i} x^{(i)}$, where $x^{(i)} \in \mathbb{R}^{N_{i}}$, and we will write $x=\left(x^{(1)} ; \ldots ; x^{(n)}\right)$. Let $\|\cdot\|_{(i)},\|\cdot\|_{(i)}^{*}$ be a pair of conjugate Euclidean norms in $\mathbb{R}^{N_{i}}$.

Smoothness of f means that the gradient of $t \mapsto f\left(x+\mathcal{U}_{i} t\right)$ is Lipschitz at $t=0$, uniformly in x for all i, with constants $L_{i}>0$:

$$
\begin{equation*}
\left\|\mathcal{U}_{i}^{T}\left[f^{\prime}\left(x+\mathcal{U}_{i} t\right)-f^{\prime}(x)\right]\right\|_{(i)}^{*} \leq L_{i}\|t\|_{(i)}, x \in \mathbb{R}^{N}, t \in \mathbb{R}^{N_{i}} \tag{2}
\end{equation*}
$$

Block separability of Ψ means that $\Psi(x)=\sum_{i=1}^{n} \Psi_{i}\left(x^{(i)}\right)$.

B. Examples of Ψ

- Unconstrained smooth minimization: $\Psi(x) \equiv 0$. Iteration complexity analysis in this case was done in [2]. Our results (not in this abstract) are slightly better and analysis much simpler.
- Block-constrained smooth minimization: $\Psi_{i}(x) \equiv$ indicator function of some convex set in $\mathbb{R}^{N_{i}}$.
- ℓ_{1}-regularized minimization: $\Psi(x) \equiv \lambda\|x\|_{1}$. In machine learning, this helps to prevent model over-fitting [1] and in compressed sensing this is used to recover sparse signals [3].
II. The Algorithm and its Iteration Complexity

Let us define a norm on \mathbb{R}^{N} by $\|x\|_{L}=\left(\sum_{i=1}^{n} L_{i}\left\|x^{(i)}\right\|_{(i)}^{2}\right)^{\frac{1}{2}}$.
Theorem 1. Choose $x_{0} \in \mathbb{R}^{N}$ and $\epsilon>0$ such that $\mu \equiv \epsilon / \| x^{*}-$ $x_{0} \|_{L}^{2} \leq 2$. Further, pick $\rho \in(0,1)$ and let

$$
k \geq \frac{4 n\left\|x^{*}-x_{0}\right\|_{L}^{2}}{\epsilon} \log \left(\frac{2\left(F\left(x_{0}\right)-F^{*}\right)}{\rho \epsilon}\right) .
$$

If x_{k} is the random vector generated by Algorithm 1 when applied to the objective function $F_{\mu}(x)=F(x)+\frac{\mu}{2}\left\|x-x_{0}\right\|_{L}^{2}$, then $\operatorname{Prob}\left(F\left(x_{k}\right)-F^{*} \leq \epsilon\right) \geq 1-\rho$.

```
Algorithm 1 Uniform Coordinate Descent for Composite Functions
    for \(k=0,1,2, \ldots\) iterate
        Choose \(i_{k}=i \in\{1,2, \ldots, n\}\) with probability \(\frac{1}{n}\)
        \(T^{(i)}=\arg \min _{t \in \mathbb{R}^{N}}\left\langle\nabla f\left(x_{k}\right), \mathcal{U}_{i} t\right\rangle+\frac{L_{i}}{2}\|t\|_{(i)}^{2}+\Psi\left(x_{k}+\mathcal{U}_{i} t\right)\)
        \(x_{k+1}=x_{k}+\mathcal{U}_{i} T^{(i)}\)
```


III. Numerical results

We will apply Algorithm 1 to random instance of (1) with

$$
\begin{equation*}
f(x)=\frac{1}{2}\|A x-b\|_{2}^{2}, \quad \Psi(x)=\|x\|_{1}, \tag{3}
\end{equation*}
$$

where $b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}, N=n$.
In the first table below we present duration time (in seconds) of n iterations of Algorithm 1 applied to problem (1), (3) with a sparse solution x^{*} and random sparse matrix A. By $\|\cdot\|_{0}$ we denote number of nonzero elements.

$\left\\|x^{*}\right\\|_{0}$	$\\|A\\|_{0}=10^{8}$		$\\|A\\|_{0}=10^{9}$	
	$10^{7} \times 10^{6}$	$10^{8} \times 10^{7}$	$10^{7} \times 10^{6}$	$10^{8} \times 10^{7}$
16×10^{2}	5.89	11.04	46.28	70.48
16×10^{3}	5.83	11.59	46.07	59.03
16×10^{4}	4.28	8.64	46.93	77.44

Let us remark that $n=10^{7}$ iterations in case when $m=10^{8}$ and A has a billion nonzeros are executed in about 1 minute. In order to get a solution with accuracy $\epsilon=10^{-5}$, one needs approximately $40 \times n$ iterations. In the next table we illustrate, on a random problem with $m=10^{7}, n=10^{6},\|A\|_{0}=10^{8}$ and $\left\|x^{*}\right\|_{0}=16 \times 10^{2}$, the typical behavior of the method in reducing the gap $F\left(x_{k}\right)-F^{*}$.

k / n	$F\left(x_{k}\right)-F^{*}$	$\left\\|x_{k}\right\\|_{0}$	time [sec.]
0.0010	$<10^{16}$	857	0.01
15.2320	$<10^{10}$	997944	65.19
20.6150	$<10^{8}$	978761	88.25
25.9120	$<10^{6}$	763314	110.94
30.6620	$<10^{4}$	57991	131.25
35.0520	$<10^{2}$	2538	150.02
38.2650	$<10^{0}$	1633	163.75
40.9880	$<10^{-1}$	1604	175.38
42.7140	$<10^{-4}$	1600	182.77
44.8600	$<10^{-6}$	1600	191.94

References

[1] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale 12 -loss linear support vector machines. Journal of Machine Learning Research, 9:1369-1398, 2008.
[2] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. CORE Discussion Paper 2010/2.
[3] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by separable approximation. Trans. Sig. Proc., 57:2479-2493, July 2009.

