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Abstract—In the first part of this work, based on [2], we develop
a new approach to sparse principal component analysis (sparse PCA).
We propose four optimization formulations of the problem, aimed at
extracting one or several sparse dominant components. While the initial
formulations involve nonconvex functions, we rewrite them into the form
of an optimization program involving maximization of a convex function
on a compact set and propose and analyze a simple gradient method for
solving it (generalized power method). We demonstrate numerically on
a set of random and gene expression test problems that our approach
outperforms existing algorithms both in quality of the obtained solution
and in speed.

A natural extension of the ideas above allows us to construct a
method for finding, simultaneously, jointly sparse approximations to the
eigenvectors associated with the largest and smallest eigenvalues of a
symmetric psd matrix. This problem is equivalent to the Compressed
Sensing problem of finding bounds on the asymmetric Restricted Isometry
constants with the additional new requirement for the respective sparse
eigenvectors to be supported on the same set. We prove a result on the
emergence of joint sparsity in the iterates of the method and show that
in the non-penalized case, the iterates are identical to the normalized
gradients of the iterates of the Cauchy steepest descent method applied
to minimizing a convex quadratic function [1].

I. PRELIMINARIES

Let A = [a1, . . . , an] ∈ Rp×n, with p � n. Let λ̄ (resp. λ) be
the largest (resp. smallest) eigenvalue of S = ATA. Fix γ > 0.

II. GENERALIZED POWER METHOD FOR SPARSE PCA

For simplicity, we focus here on the problem of finding a sparse
approximation z∗ to the eigenvector of S “corresponding” to λ̄. That
is, we seek a sparse unit-norm vector z∗ ∈ Rn such that ‖Az∗‖2 is
large. Consider the following optimization problem:

max{‖Az‖2 − γ‖z‖1 : ‖z‖2 ≤ 1}. (1)

It turns out that the optimal solution z∗ of (1) is given by

z∗ = z/‖z‖2, z(i) = sign(aTi x)[|aTi x| − γ]+, i = 1, . . . , n,

where x is solves the smooth convex maximization problem

max
‖x‖2≤1

n∑
i=1

[|aTi x| − γ]2+. (2)

Note that since p� n, the dimension of the search space is decreased
enormously. It is easy to show that γ ≥ ‖ai‖2 ⇒ z

(i)
∗ = 0, and hence

γ controls sparsity of the solution.
For problems of type (2), i.e., for maximization of a convex

function f over a compact set Q, we propose the following simple
gradient method: Choose x0 ∈ Q and for k ≥ 0 iterate:

xk+1 ∈ arg max{f(xk) + 〈f ′(xk), y − xk〉 : y ∈ Q} (GPM)

This is our main convergence result:

Theorem 1 ([2]). Let f be convex, Q compact and {xi} be the
iterates produced by GPM. Then

min
0≤i≤k

max
y∈Q
〈f ′(xi), y − xi〉 ≤

max f∗ − f(x0)

k + 1
.

If, in addition, f is strongly convex with parameter σf > 0, the
convex hull of Q is strongly convex with parameter σQ, and we define
δf = min{‖s‖∗ : s ∈ ∂f(x), x ∈ Q}, then

∞∑
k=0

‖xk+1 − xk‖2 ≤
2(max f − f(x0))

σQδf + σf
.

III. JOINTLY SPARSE MIN AND MAX EIGENVECTORS

Consider the following optimization problem:

max{xTSy − γ‖(x, y)‖1 : ‖x‖2 = ‖y‖2 = 1, xT y = 0}. (3)

If γ = 0, the optimal value of (3) is 1
2
(λ̄− λ), and if x∗, y∗ are the

optimal solutions, then p = (x∗ + y∗)/
√

2 and q = (x∗ − y∗)/
√

2
are the maximal and minimal eigenvectors of S, respectively. Below
we give a method for (approximately) solving (3) for γ > 0 and
show that γ induces joint sparsity in x and y. Hence, the method
is able to identify a small principal submatrix of S whose extreme
eigenvalues are a good approximation to λ̄ and λ.

Let yγ(x) (resp. xγ(y)) be the optimal solution of (3) for fixed x
(resp. y). Fix unit-norm x0 and consider the following method:

yk = yγ(xk), xk+1 = xγ(yk). (ADM)

Theorem 2. Let w ∈ Rn with ‖w‖2 = 1, u = Sw, L = {tw : t ∈
R}, B = {s : ‖s+ u‖∞ ≤ γ} and

Opt
def
= max{uT z − γ‖z‖1 : ‖z‖2 = 1, wT z = 0}. (4)

If L does not pass through the interior of B, then the solution of (4)
is given by z = d/‖d‖2, Opt =

√
ω(t∗) = ‖d‖2, where

t∗ ∈ arg min
t

[ω(t)
def
=

n∑
i=1

([|u(i) + tw(i)| − γ]+)2],

d(i) = sign(u(i) + t∗w(i))[|u(i) + t∗w(i)| − γ]+, i = 1, . . . , n.

This result gives conditions under which the operations in (ADM)
can be performed efficiently (in a closed form).

Let uk = Sxk. We further show that
1) validity result: if γ ≤

√
‖u0‖22 − (uTx0)2/(‖x0‖1+

√
n), then

the condition of Theorem 2 will hold for all ADM iterates,
2) joint sparsity result: any of the conditions (i)
‖AT ai‖2 ≤ γ, x

(i)
k = 0, (ii) |x(i)k | ≤ (γ −

|u(i)
k |)/

√
γ2(n− 4) + 2γ‖uk‖1 + ‖uk‖22, implies y(i)k = 0.
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