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Abstract— In this paper we show how the stochastic heavy
ball method (SHB)—a popular method for solving stochastic
convex and non-convex optimization problems—operates as
a randomized gossip algorithm. In particular, we focus on
two special cases of SHB: the Randomized Kaczmarz method
with momentum and its block variant. Building upon a recent
framework for the design and analysis of randomized gossip
algorithms [19] we interpret the distributed nature of the
proposed methods. We present novel protocols for solving the
average consensus problem where in each step all nodes of the
network update their values but only a subset of them exchange
their private values. Numerical experiments on popular wireless
sensor networks showing the benefits of our protocols are also
presented.

Index Terms— Average Consensus Problem, Linear Systems,
Networks, Randomized Gossip Algorithms, Randomized Kacz-
marz, Momentum, Acceleration

I. INTRODUCTION

Average consensus is a fundamental problem in distributed
computing and multi-agent systems. It comes up in many
real world applications such as coordination of autonomous
agents, estimation, rumour spreading in social networks,
PageRank and distributed data fusion on ad-hoc networks and
decentralized optimization. Due to its great importance there
is much classical [34], [6] and recent [36], [37], [3] work on
the design of efficient algorithms/protocols for solving it.

One of the most attractive classes of protocols for solving
the average consensus are gossip algorithms. The develop-
ment and design of gossip algorithms was studied extensively
in the last decade. The seminal 2006 paper of Boyd et al.
[3] on randomized gossip algorithms motivated a fury of
subsequent research and now gossip algorithms appear in
many applications, including distributed data fusion in sensor
networks [36], load balancing [5] and clock synchronization
[10]. For a survey of selected relevant work prior to 2010, we
refer the reader to the work of Dimakis et al. [7]. For more
recent results on randomized gossip algorithms we suggest
[38], [40], [16], [28], [19], [13]. See also [8], [1], [27].

The main goal in the design of gossip protocols is for the
computation and communication to be done as quickly and
efficiently as possible. In this work, our focus is precisely
this. We design randomized gossip protocols which converge
to consensus fast.

A. The average consensus problem

In the average consensus (AC) problem, we are given an
undirected connected network G = (V, E) with node set

V = {1, 2, . . . , n} and edges E . Each node i ∈ V “knows” a
private value ci ∈ R. The goal of AC is for every node of
the network to compute the average of these private values,
c̄ := 1

n

∑
i ci, in a distributed fashion. That is, the exchange

of information can only occur between connected nodes
(neighbors).

B. Main Contributions

In our work we present a new class of randomized gossip
protocols where in each iteration all nodes of the network
update their values but only a subset of them exchange their
private information. The protocols that we present are based
on recently proposed ideas for the acceleration of randomized
Kaczmarz methods for solving consistent linear systems
[21] where the addition of a momentum term was shown
to provide practical speedups over the vanilla Kaczmarz
methods.

Further, we explain the connection between gossip
algorithms for solving the average consensus problem,
Kaczmarz-type methods for solving consistent linear sys-
tems, and stochastic gradient descent and stochastic heavy
ball methods for solving stochastic optimization problems.
We show that essentially all these algorithms behave as
gossip algorithms when used to solve carefully structure
problems.

Finally, we explain in detail the gossip nature of two
recently proposed fast Kacmzarz-type methods: the random-
ized Kacmzarz with momentum (mRK), and its block variant
- the randomized block Kaczmarz with momentum (mRBK).
We present a detailed comparison of our proposed gossip
protocols with existing popular randomized gossip protocols
and through numerical experiments we show the benefits of
our methods.

C. Structure of the paper

This work is organized as follows. Section II introduces
the important technical preliminaries and the necessary back-
ground for understanding of our methods. A new connection
between gossip algorithms, Kaczmarz methods for solving
linear systems and stochastic gradient descent (SGD) for
solving stochastic optimization problems is also described.
In Section III the two new accelerated gossip protocols
are presented. Details of their behaviour and performance
are also explained. Numerical evaluation of the new gossip



protocols is presented in Section IV. Finally, concluding
remarks are given in Section V.

D. Notation

The following notational conventions are used in this
paper. We write [n] := {1, 2, . . . , n}. Boldface upper-case
letters denote matrices; I is the identity matrix. By L we
denote the solution set of the linear system Ax = b, where
A ∈ Rm×n and b ∈ Rm. Throughout the paper, x∗ is the
projection of x0 onto L (that is, x∗ is the solution of the
best approximation problem; see equation (5)). An explicit
formula for the projection of x onto set L is given by

ΠL(x) := arg min
x′∈L
‖x′ − x‖ = x−A>(AA>)†(Ax− b).

A matrix that often appears in our update rules is

H := S(S>AA>S)†S>, (1)

where S ∈ Rm×q is a random matrix drawn in each step
of the proposed methods from a given distribution D, and †
denotes the Moore-Penrose pseudoinverse. Note that H is a
random symmetric positive semi-definite matrix.

In the convergence analysis we use λ+min to indicate the
smallest nonzero eigenvalue, and λmax for the largest eigen-
value of matrix W = E[A>HA], where the expectation
is taken over S ∼ D. Finally, xk = (xk1 , . . . , x

k
n) ∈ Rn

represents the vector with the private values of the n nodes
of the network at the kth iteration while with xki we denote
the value of node i ∈ [n] at the kth iteration.

II. BACKGROUND-TECHNICAL PRELIMINARIES

Our work is closely related to two recent papers:
• [19], where a new perspective on randomized gossip al-

gorithms is presented. In particular, a new approach for
the design and analysis of randomized gossip algorithms
is proposed and it was shown how that Randomized
Kaczmarz and Randomized Block Kaczmarz, popular
methods for solving linear systems, work as gossip
algorithm when applied to a special system encoding
the underlying network.

• [21], where several classes of stochastic optimization
algorithms enriched with heavy ball momentum were
analyzed. Among the methods studied are: stochastic
gradient descent, stochastic Newton, stochastic proxi-
mal point and stochastic dual subspace ascent.

In the rest of this section we present the main results of the
above papers, highlighting several connections. These results
will be later used for the development of the new randomized
gossip protocols.

A. Kaczmarz Methods and Gossip Algorithms

Kaczmarz-type methods are very popular for solving linear
systems Ax = b with many equations. The (deterministic)
Kaczmarz method for solving consistent linear systems was
originally introduced by Kaczmarz in 1937 [14]. Despite
the fact that a large volume of papers was written on
the topic, the first provably linearly convergent variant of
the Kaczmarz method—the randomized Kaczmarz Method

(RK)—was developed more than 70 years later: by in 2009
Strohmer and Vershynin [31]. This result sparked renewed
interest in design of randomized methods for solving linear
systems [23], [24], [9], [22], [39], [25], [30], [17], [26]. More
recently, Gower and Richtárik [11] provide a unified analysis
for several randomized iterative methods for solving linear
systems using a sketch-and-project framework. We adopt this
framework in this paper.

In particular the sketch-and-project algorithm proposed in
[11] for solving consistent the linear system Ax = b has the
form

xk+1 = xk −A>Sk(S>kAA>Sk)†S>k (Axk − b)
(1)
= xk −A>Hk(Axk − b), (2)

where in each iteration matrix Sk is sampled afresh from
an arbitrary distribution D. In [11] it was shown that many
popular algorithms for solving linear systems, including RK
methods and randomized coordinate descent methods can be
cast as special cases of the above update by choosing1 an
appropriate distribution D. The special cases that we are
interested in are the randomized Kaczmarz (RK) and its
block variant the randomized block Kaczmarz (RBK).

Let ei ∈ Rm be the ith unit coordinate vector in Rm and
let I:C be column submatrix of the m ×m identity matrix
with columns indexed by C ⊆ [m]. Then RK and RBK
methods can be obtained as special cases of the update rule
(2) as follows:

• RK: Let Sk = ei, where i = ik is chosen in each
iteration independently, with probability pi > 0. In this
setup the update rule simplifies to

xk+1 = xk − Ai:x
k − bi

‖Ai:‖22
A>i: . (3)

• RBK: Let S = I:C , where C = Ck is chosen in each
iteration independently, with probability pC ≥ 0. In this
setup the update rule simplifies to

xk+1 = xk −A>C:(AC:A
>
C:)
†(AC:x

k − bC). (4)

In this paper we are interested in two particular extension
of the above methods: the randomized Kaczmarz method
with momentum (mRK) and its block variant, the randomized
block Kaczmarz with momentum (mRBK), both proposed
and analyzed in [21]. Before we describe these two meth-
ods, let us summarize the main connections between the
Kaczmarz methods for solving linear systems and gossip
algorithms, as presented in [19].

In [12], [29], [21], it was shown that even in the case of
consistent linear systems with multiple solutions, Kaczmarz-
type methods converge linearly to one particular solution:
the projection of the initial iterate x0 onto the solution set

1In order to recover a randomized coordinate descent method, one also
needs to perform projections with respect to a more general Euclidean
norm. However, for simplicity, in this work we only consider the standard
Euclidean norm.



of the linear system. This naturally leads to the formulation
of the best approximation problem:

min
x=(x1,...,xn)∈Rn

1
2‖x− x

0‖2 subject to Ax = b. (5)

Above, A ∈ Rm×n and ‖·‖ is the standard Euclidean norm.
By x∗ = ΠL(x0) we denote the solution of (5).

In [19] it was shown how RK and RBK work as gossip
algorithms when applied to a special linear system encoding
the underlying network. In particular the following definition
is used:

Definition 2.1 ([19]): A linear system Ax = b is called
“average consensus (AC) system” when Ax = b is equiva-
lent to saying that xi = xj for all (i, j) ∈ E .

Note that many linear systems satisfy the above definition.
For example, we can choose b = 0 and A ∈ R|E|×n to
be the incidence matrix of G. In this case, the row of the
system corresponding to edge (i, j) directly encodes the
constraint xi = xj . A different choice is to pick b = 0 and
A = L, where L is the Laplacian of G. Note that depending
on what AC system is used, RK and RBK have different
interpretations as gossip protocols.

From now on we work with the AC system described in
the first example. Since b = 0, the general sketch-and-project
update rule (2) simplifies to:

xk+1 =
[
I−A>HkA

]
xk. (6)

The convergence performance of RK and RBK for solving
the best approximation problem (and as a result the average
consensus problem) is described by the following theorem.

Theorem 2.2 ([11], [12]): Let {xk} be the iterates pro-
duced by (2). Then

E[‖xk − x∗‖2] ≤ ρk‖x0 − x∗‖2,

where x∗ is the solution of (5), ρ := 1− λ+min ∈ [0, 1], and
λ+min denotes the minimum nonzero eigenvalue of W :=
E[A>HA].

In [19], the behavior of both RK and RBK as gossip algo-
rithms was described, and a comparison with the convergence
results of existing randomized gossip protocols was made.
In particular, it was shown that the most basic randomized
gossip algorithm [3] (“randomly pick an edge (i, j) ∈ E and
then replace the values stored at vertices i and j by their
average”) is an instance of RK applied to the linear system
Ax = 0, where the A is the incidence matrix of G. RBK
can also be interpreted as a gossip algorithm:

Theorem 2.3 ([19], RBK as a Gossip Algorithm): Each
iteration of RBK for solving Ax = 0 works as follows: 1)
Select a random set of edges S ⊆ E , 2) Form subgraph
Gk of G from the selected edges, 3) For each connected
component of Gk, replace node values with their average.

B. The Heavy Ball momentum

A detailed study of several (equivalent) stochastic refor-
mulations of consistent linear systems was developed in [29].
This new viewpoint facilitated the development and analysis
of relaxed variants (with relaxation parameter ω ∈ (0, 2)) of

the sketch-and-project update (2). In particular, one of the
reformulations is the stochastic optimization problem

min
x∈Rn

f(x) := ES∼D[fS(x)], (7)

where

fS(x) :=
1

2
‖Ax− b‖2H =

1

2
(Ax− b)>H(Ax− b), (8)

and H is the random symmetric positive semi-definite matrix
defined in (1).

Under certain (weak) condition onD, the set of minimizers
of f is identical to the set of the solutions of the linear
system. In [29], problem (7) was solved via Stochastic
Gradient Descent (SGD):

xk+1 = xk − ω∇fSk
(xk). (9)

Moreover, a linear rate of convergence was proved despite
the fact that f is not necessarily strongly convex and that a
fixed stepsize ω > 0 is used.

Observe that that gradient of the stochastic function (8) is
given by

∇fSk
(x)

(8)
= A>Hk(Ax− b) (10)

and as a result, it is easy to see that for ω = 1, the SGD
update (9) reduces to the sketch-and-project update (equation
(2)).

The recent works [20], [21] analyze momentum variants
of SGD, with the goal to accelerate the convergence of the
method for solving problem (7). SGD with momentum—
also known as the stochastic heavy ball method (SHB)—
is very popular in the optimization literature for solving
stochastic optimization problems, and it is also extremely
popular in areas such as deep learning [32], [33], [15], [35].
However, even though SHB is used extensively in practice,
its theoretical convergence behavior is not well understood.
To the best of our knowledge, [20], [21] are the first that
prove linear convergence of SHB in any setting.

The update rule of SHB for solving problem (7) is
formally presented in the following algorithm:

Algorithm 1 Stochastic Heavy Ball (SHB)
1: Parameters: Distribution D from which method samples ma-

trices; stepsize/relaxation parameter ω ∈ R; momentum pa-
rameter β.

2: Initialize: x0, x1 ∈ Rn

3: for k = 1, 2, . . . do
4: Draw a fresh Sk ∼ D
5: Set xk+1 = xk − ω∇fSk (x

k) + β(xk − xk−1)
6: end for
7: Output: The last iterate xk

Note that using the expression of the stochastic gradient
(10), the update rule of SHB can be written more explicitly
as follows:

xk+1 = xk − ωA>Hk(Axk − b) + β(xk − xk−1). (11)

Using the same choice of distribution D as in equation (3)
and (4), we can now obtain momentum variants of RK and
RBK:



• RK with momentum (mRK) :

xk+1 = xk − ωAi:x
k − bi

‖Ai:‖22
A>i: + β(xk − xk−1)

• RBK with momentum (mRBK):

xk+1 = xk−ωA>C:(AC:A
>
C:)
†(AC:x

k−bC)+β(xk−xk−1)

In [21], two main theoretical results describing the behav-
ior of SHB (and as a result also the special cases mRK and
mRBK) were presented:

Theorem 2.4 (Theorem 1, [21]): Choose x0 = x1 ∈ Rn.
Let {xk}∞k=0 be the sequence of random iterates produced by
SHB. Let λ+min (resp, λmax) be the smallest nonzero (resp.
largest) eigenvalue of W. Assume 0 < ω < 2 and β ≥ 0 and
that the expressions a1 := 1+3β+2β2−(ω(2−ω)+ωβ)λ+min

and a2 := β + 2β2 + ωβλmax satisfy a1 + a2 < 1. Then

E[‖xk − x∗‖2] ≤ qk(1 + δ)‖x0 − x∗‖2, (12)

and

E[f(xk)] ≤ qk λmax

2
(1 + δ)‖x0 − x∗‖2,

where q =
a1+
√
a21+4a2
2 and δ = q−a1. Moreover, a1+a2 ≤

q < 1.
Theorem 2.5 (Theorem 4, [21]): Let {xk}∞k=0 be the se-

quence of random iterates produced by SHB, started with
x0 = x1 ∈ Rn, with relaxation parameter (stepsize) 0 < ω ≤
1/λmax and momentum parameter (1−

√
ωλ+min)2 < β < 1.

Let x∗ = ΠB
L (x0). Then there exists a constant C > 0 such

that for all k ≥ 0 we have ‖E[xk − x∗]‖2 ≤ βkC.
Corollary 1: (i) If we choose ω = 1 and β = (1 −√

0.99λ+min)2, then the iteration complexity becomes:

Õ(
√

1/λ+min).
(ii) If we choose ω = 1/λmax and β = (1 −√

0.99λ+
min

λmax
)2, then the iteration complexity becomes:

Õ(
√
λmax/λ

+
min).

III. RANDOMIZED GOSSIP PROTOCOLS WITH
MOMENTUM

Having presented SHB for solving the stochastic optimiza-
tion problem (7) and describing its sketch-and-project nature
(11), let us now describe its behavior as a randomized gossip
protocol when applied to solving the AC system Ax = 0,
where A ∈ |E| × n is the incidence matrix of the network.

Since b = 0, method (11)) ican be simplified to:

xk+1 =
[
I− ωA>HkA

]
xk + β(xk − xk−1). (13)

In the rest of this section we will focus on two special
cases of the above method: RK with momentum and RBK
with momentum.

Algorithm 2 mRK: Randomized Kaczmarz with momentum
as a gossip algorithm

1: Parameters: Distribution D from which method samples
matrices; stepsize/relaxation parameter ω ∈ R; heavy
ball/momentum parameter β.

2: Initialize: x0, x1 ∈ Rn

3: for k = 1, 2, . . . do
4: Pick an edge e = (i, j) following the distribution D
5: The values of the nodes are updated as follows:

• Node i: xk+1
i = 2−ω

2
xki + ω

2
xkj + β(xki − xk−1

i )
• Node j: xk+1

j = 2−ω
2
xkj + ω

2
xki + β(xkj − xk−1

j )

• Any other node `: xk+1
` = xk` + β(xk` − xk−1

` )

6: end for
7: Output: The last iterate xk

A. Randomized Kaczmarz Gossip with momentum

When RK is applied to solve an AC system Ax = 0,
one recovers the famous pairwise gossip algorithm [3].
Algorithm 2 describes how the relaxed variant of randomized
Kaczmarz with momentum behaves as a gossip algorithm.
See also Figure (1) for a graphical illustration of the method.

Remark 3.1: Note that in the special case with β = 0
(no momentum parameter) only the two nodes of edge e =
(i, j) update their values. In this case the two nodes do not
update their values to their exact average but to a convex
combination that depends on the stepsize ω ∈ (0, 2). To
obtain the pairwise gossip algorithm of [3], we should further
choose ω = 1.

Distributed Nature of the Algorithm: There are many
ways to implement mRK in a distributed fashion. Here we
highlight a few:

• Asynchronous pairwise broadcast gossip: In this pro-
tocol each node i ∈ V of the network G has a clock
that ticks at the times of a rate 1 Poisson process.
The inter-tick times are exponentially distributed, in-
dependent across nodes, and independent across time.
This is equivalent to a global clock ticking at a rate n
Poisson process which wakes up an edge of the network
at random. In particular, in this implementation mRK
works as follows: In the kth iteration (time slot) the
clock of node i ticks and node i randomly contact one
of its neighbors and simultaneously broadcast a signal to
inform the nodes of the whole network that is updating
(this signal does not contain any private information of
node i). The two nodes (i, j) share their information and
update their private values following the update rule of
Algorithm 2 while all the other nodes updating their
values using their own information. In each iteration
only one pair of nodes exchange their private values.

• Synchronous Pairwise gossip: In this protocol a single
global clock is available to all nodes. The time is
assumed to be slotted commonly across nodes and in
each time slot only a pair of nodes of the network
is randomly activated and exchange their information
following the update rule of Algorithm 2. The remaining
not activated nodes update their values using their own



Fig. 1: Example of how mRK works as gossip algorithm. In the presented
network the edge that connects nodes 6 and 7 is randomly selected. The
pair of nodes exchange their information and update their values following
the update rule of the Algorithm 2 while the rest of the nodes, ` ∈ [5],
update their values using only their own previous private values.

last two private values. Note that this implementation
of mRK comes with the disadvantage that requires a
central entity which choose the activate pair of nodes
in each step.

• Asynchronous Pairwise gossip with common memory:
Note that the update rule of the nodes of the active pair
in Algorithm 2 can rewritten as follows:

xk+1
i = xki + β(xki − xk−1i ) +

ω

2
(xkj − xki )

xk+1
j = xkj + β(xkj − xk−1j ) +

ω

2
(xki − xkj )

In particular observe that in their update rule they have
the expression xki +β(xki −x

k−1
i ) which is precisely the

update of all non activate nodes of the network. Thus if
we assume that the nodes share a common counter that
counts how many iterations take place and each node i
saves also the last iterate ki that it was activated then the
algorithm can work in distributed fashion as follows:
Let us denote the number of total iterations (common
counter) that becomes available to the activate nodes of
each step as K and let us define with ik = K − ki the
number of iterations between the current iterate and the
last time that the ith node is picked (iteration ki) then
the update rule of the Algorithm 2 can be equivalently
expressed as:

– Pick an edge e = (i, j) at random following the
distribution D.

– The private values of the nodes of the network are
updated as follows:

xk+1
i = ik

[
xki + β(xki − xk−1i )

]
+
ω

2
(xkj − xki )

xk+1
j = jk

[
xkj + β(xkj − xk−1j )

]
+
ω

2
(xki − xkj )

ki = k + 1

kj = k + 1

Any other node `: xk+1
` = xk`

B. Connection with the accelerated gossip algorithm

In the randomized gossip literature there in one particular
method closely related to our approach. It was first proposed
in [4] and its analysis under strong conditions was presented
in [16]. In this paper local memory is exploited by installing
shift registers at each agent. In particular we are interested
in the case of just two registers where the first stores the
agent’s current value and the second the agent’s value before
the latest update. The algorithm can be described as follows.
Suppose that edge e = (i, j) is chosen at time k. Then,

• Node i: xk+1
i = ω(

xk
i +x

k
j

2 ) + (1− ω)xk−1i

• Node j: xk+1
i = ω(

xk
i +x

k
j

2 ) + (1− ω)xk−1j

• Any other node `: xk+1
` = xk`

where ω ∈ [1, 2). The method was analyzed in [16] under
a strong assumption on the probabilities of choosing the
pair of nodes that as the authors mentioned is unrealistic
in practical scenarios, and for networks like the random
geometric graphs. At this point we should highlight that the
results presented in [21] hold for essentially any distribution
D and as a result such a problem cannot occur.

Note also that in the case that we choose β = ω−1 in the
update rule of Algorithm 2, then our method is simplified
to:

• Node i: xk+1
i = ω(

xk
i +x

k
j

2 ) + (1− ω)xk−1i

• Node j: xk+1
i = ω(

xk
i +x

k
j

2 ) + (1− ω)xk−1j

• Any other node `: xk+1
` = ωxk` + (1− ω)xk−1`

In order to apply Theorem 2.4, we need to assume that
0 < ω < 2 and β = ω − 1 ≥ 0 which also means that
ω ∈ [1, 2). Thus for ω ∈ [1, 2) and momentum parameter
β = ω−1 it is easy to see that our approach is very similar to
the shift-register algorithm. Both methods update the selected
pair of nodes in the same way. However, in our case the other
nodes of the network do not remain idle but instead also
update their values using their own previous information.

Using a diagonal momentum n × n matrix B =
Diag(B11,B22, . . . ,Bnn), the two algorithms above can be
expressed as:

xk+1 = xk−ω

(
xki − xkj

2
(ei − ej)

)
+B(xk−xk−1). (14)

In particular, in our algorithm every element on the diagonal
is equal to β = ω−1, while in [4] all values on the diagonal
are zeros except for the two values Bii = Bjj = ω − 1.

Remark 3.2: The shift register case and our algorithm
can be seen as two limit cases of the update rule (14). In
particular, note that the shift register method uses only two
non-zero diagonal elements in matrix B, while our method
has a full diagonal. We believe that further methods can be
developed in the future by exploring the cases where more
than two but not all elements of the diagonal matrix B are
non-zero. It might be possible to obtain better convergence
if one carefully chooses these values based on the network
topology. We leave this as an open problem for future
research.



Algorithm 3 Randomized Block Kaczmarz Gossip with
momentum

1: Parameters: Distribution D from which method samples
matrices; stepsize/relaxation parameter ω ∈ R; heavy
ball/momentum parameter β.

2: Initialize: x0, x1 ∈ Rn

3: for k = 1, 2, ... do
4: Select a random set of edges S ⊆ E
5: Form subgraph Gk of G from the selected edges
6: Node values are updated as follows:

• For each connected component Vk
r of Gk, replace the

values of its nodes with:

xk+1
i = ω

[∑
j∈Vk

r
xkj

|Vk
r |

]
+ (1− ω)xki + β(xki − xk−1

i )

(16)
• Any other node `: xk+1

` = xk` + β(xk` − xk−1
` )

7: end for
8: Output: The last iterate xk

C. Randomized block Kaczmarz gossip with momentum

Recall that Theorem 2.3 says how RBK (with no mo-
mentum and no relaxation) can be interpreted as a gossip
algorithm. Now we use this result to explain how relaxed
RBK with momentum works. Note that the update rule of
RBK with momentum can be rewritten as follows:

xk+1 (13)
= ω(I−A>HkA)xk + (1− ω)xk + β(xk − xk−1),

(15)
where (I−A>HkA)xk is the update rule of RBK (6).

Thus, in analogy to the simple RBK, in the kth step,
a random set of edges is selected and a number (say q)
connected components are formed as a result. This includes
the connected components that belong to both sub-graph Gk
and also the singleton connected components (nodes outside
the Gk). Let us define the set of the nodes that belong in the
r ∈ [q] connected component at the kth step Vkr , such that

V = ∪
r={1,2,...q}

Vkr and |V| =
q∑
r=1
|Vkr | for any k > 0.

Using the update rule (15), Algorithm 3 shows how mRBK
is updating the private values of the nodes of the network
(see also Figure 2 for the graphical interpretation).

Note that in the update rule of mRBK the nodes that are
not attached to a selected edge (do not belong in the sub-
graph Gk) update their values via xk+1

` = xk` + β(xk` −
xk−1` ). By considering these nodes as singleton connected
components their update rule is exactly the same with the
nodes of sub-graph Gk. This is easy to see as follows:

xk+1
` = ω

[∑
j∈Vk

r
xkj

|Vkr |

]
+ (1− ω)xk` + β(xk` − xk−1` )

= ω

[
xk`
1

]
+ (1− ω)xk` + β(xk` − xk−1` )

= xk` + β(xk` − xk−1` ) (17)

Remark 3.3: Note that in the special case that only one
edge is selected in each iteration (Sk ∈ Rm×1) the update
rule of mRBK is simplified to the update rule of mRK. In

Fig. 2: Example of how the mRBK method works as gossip algorithm. In
the presented network in the kth iteration the red edges are randomly chosen
and they form subgraph Gk(from the red edges) and also four connected
component. In this figure V k

1 and V k
2 are the two connected components that

belong in the subgraph Gk while V k
3 and V k

4 are the singleton connected
components. Then the nodes update their values by communicate with the
other nodes of their connected component using the update rule (16). For
example the node number 5 that belongs in the connected component V k

2
will update its value using the values of node 4 and 3 that also belong in

the same component as follows: xk+1
5 = ω

[
xk
3+xk

4+xk
5

3

]
+(1−ω)xk5 +

β(xk5 − x
k−1
5 ).

this case the sub-graph Gk is the pair of the two selected
edges.

Remark 3.4: In [19] it was shown that several existing
gossip protocols for solving the average consensus problem
are special cases of the simple RBK (Theorem 2.3). For
example two gossip algorithms that can be cast as special
cases of the simple RBK are the path averaging proposed in
[2] and the clique gossiping [18]. In path averaging, in each
iteration a path of nodes is selected and its nodes update their
values to their exact average (ω = 1). In clique gossiping,
the network is already divided into cliques and a through
a random procedure a clique is activated and the nodes of
it update their values to their exact average (ω = 1). Since
mRBK contains simple RBK as a special case for β = 0,
we expect that these special protocols can also be accelerated
with the addition of momentum parameter β ∈ (0, 1).

D. Mass preservation

One of the key properties of some of the most efficient
randomized gossip algorithms is mass preservation. If a
gossip algorithm has this property it means that the sum
(and as a result the average) of the private values of the
nodes remains fixed during the iterative procedure. That is:

n∑
i=1

xki =

n∑
i=1

x0i , ∀k ≥ 1.

The original pairwise gossip algorithm proposed in [3]
satisfied the mass preservation property, while exisiting ac-
celerated gossip algorithms [4], [16] preserving a scaled sum.

In this section we show that the two proposed protocols
presented above also have a mass preservation property.
In particular, we prove mass preservation for the case of
the block randomized gossip protocol (Algorithm 3) with



momentum. This is sufficient since the Kaczmarz gossip with
momentum (mRK) can be cast as special case.

Theorem 3.1: Let us assume that x0 = x1. That is, the
two registers of each node have the same initial value. Then
for the Algorithms 2 and 3 we have

∑n
i=1 x

k
i =

∑n
i=1 ci for

any k ≥ 0 and as a result, 1
n

∑n
i=1 x

k
i = c̄.

Proof: We prove the result for the more general
Algorithm 3. Let assume that in the kth step of the method
q connected components are formed. Let us also define the
set of the nodes of each connected component as Vkr such

that V = ∪
r={1,2,...q}

Vkr and |V| =
q∑
r=1
|Vkr | for any k > 0.

Thus:
n∑
i=1

xk+1
i =

∑
i∈Vk

1

xk+1
i +

∑
i∈Vk

2

xk+1
i + · · ·+

∑
i∈Vk

q

xk+1
i (18)

Let us first focus, without loss of generality, on connected
component r ∈ [q] and simplify the expression for the sum
of its nodes:∑
i∈Vk

r

xk+1
i

(16)
=

∑
i∈Vk

r

ω

(∑
j∈Vk

r
xkj

|Vkr |

)
+ (1− ω)

∑
i∈Vk

r

xki

+β
∑
i∈Vk

r

(xki − xk−1i )

= |Vkr |
ω
∑
j∈Vk

r
xkj

|Vkr |
+ (1− ω)

∑
i∈Vk

r

xki

+β
∑
i∈Vk

r

(xki − xk−1i )

= (1 + β)
∑
i∈Vk

r

xki − β
∑
i∈Vk

r

xk−1i (19)

By substituting this for all r ∈ [q] into the right hand side
of (18) and from the fact that V = ∪

r={1,2,...q}
Vkr :

n∑
i=1

xk+1
i = (1 + β)

n∑
i=1

xki − β
n∑
i=1

xk−1i (20)

Since x0 = x1, we have
∑n
i=1 x

0
i =

∑n
i=1 x

1
i , and as a

result
∑n
i=1 x

k
i =

∑n
i=1 x

0
i for all k ≥ 0.

IV. NUMERICAL EVALUATION

We devote this section to experimentally evaluate the
performance of the proposed gossip algorithms: mRK and
mRBK. In particular we perform three experiments. In the
first two we focus on the performance of the mRK while in
the last one on its block variant mRBK. In comparing the
methods with their momentum variants we use the relative
error measure ‖xk − x∗‖2/‖x0 − x∗‖2 where the starting
vectors of values x0 = x1 = c are taken to be always
Gaussian vectors. For all of our experiments the horizontal
axis represents the number of iterations.

The networks used in the experiments are the cycle (ring
graph), the 2-dimension grid and the randomized geometric
graph (RGG) with radius r =

√
log(n)/n. All the code for

the experiments is written in the Julia 0.6.3 programming
language.
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Fig. 3: Performance of mRK for fixed step-size ω = 1 and several
momentum parameters β in a cycle, 2-dimension grid and RGG. The choice
β = 0 corresponds to the randomized pairwise gossip algorithm proposed
in [3]; The n in the title of each plot indicates the number of nodes of the
network. For the grid graph this is n× n.

A. Impact of momentum parameter on mRK

Recall that in the simple pairwise gossip algorithm the
two nodes that exchange information update their values to
their exact average while all the other nodes remain idle. In
our framework this method can be cast as special case of
mRK when β = 0 and ω = 1. In this experiment we keep
always the stepsize to be ω = 1 which means that the pair of
the chosen nodes update their values to their exact average.
We show that by choosing a suitable momentum parameter
β ∈ (0, 1) we can have faster convergence for all networks
under study. See Figure 3 for more details.

B. Comparison with the Shift-Register

In this experiment we compare mRK with the shift register
case when we choose the ω and β in such a way in order
to satisfy the connection establish in Section III-B. That is,
we choose β = ω − 1 for any choice of ω ∈ (1, 2). Note
that in all plots of Figure 4 our algorithm outperform the
corresponding shift-register case.

C. Impact of momentum parameter on mRBK

In this experiment our goal is to show that the addition of
momentum accelerates the RBK gossip algorithm proposed
in [19]. Without loss of generality we choose the block size
to be always equal to τ = 5. That is the random matrix
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Fig. 4: Comparison of mRK with the pairwise momentum method
(Pmom), shift-register algorithm proposed in [16]. In order to have a fair
comparison we take always β = ω− 1 for our algorithm and the stepsizes
are chosen to be either ω = 1.2 or ω = 1.3. The baseline method in
the plots denotes the simple not accelerated randomized pairwise gossip
algorithm from [3]. The n in the title of each plot indicates the number of
nodes of the network. For the grid graph this is n× n.

Sk ∼ D in the update rule of mRBK is always a m × 5
column submatrix of the indetity m × m matrix. Thus, in
each iteration 5 edges of the network are chosen to form
the subgraph Gk and the values of the nodes are updated
according to Algorithm 3. Note that similar plots can be
obtained for any choice of block size. We run all algorithms
with fixed stepsize ω = 1. It is obvious that by choosing
a suitable momentum parameter β ∈ (0, 1) we have faster
convergence than when β = 0, for all networks under study.
See Figure 5 for more details.

V. CONCLUSION AND FUTURE RESEARCH

In this paper we present new accelerated randomized
gossip algorithms using tools from numerical linear algebra
and the area of randomized Kaczmarz methods for solving
linear systems. In particular, using recently developed results
on the stochastic reformulation of consistent linear systems
we explain how stochastic heavy ball method for solving
a specific quadratic stochastic optimization problem can be
interpreted as gossip algorithm. To the best of our knowl-
edge, it is the first time that such protocols are presented for
solving the average consensus.

We believe that this work opens up many possible future
venues of research. For example, using other Kaczmarz-type
methods to solve particular linear systems we can obtain
novel distributed protocols for solving the average consensus.
In addition we believe that the gossip protocols presented
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Fig. 5: Comparison of the mRBK with its no momentum variant RBK
(β = 0) proposed in [19]. The stepsize for all methods is ω = 1 and the
block size is τ = 5. The baseline method in the plots denote the simple
randomized pairwise gossip algorithm (block τ = 1) and is plotted to
highlight the benefits of having larger block sizes. The n in the title of each
plot indicates the number of nodes of the network. For the grid graph this
is n× n.

in this work can be extended to the more general setting
of distributed optimization where the goal is to minimize
the average of convex functions (1/n)

∑n
i=1 fi(x) in a

distributed fashion.
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[30] F. Schöpfer and D.A. Lorenz. Linear convergence of the randomized
sparse Kaczmarz method. arXiv preprint arXiv:1610.02889, 2016.

[31] T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm
with exponential convergence. J. Fourier Anal. Appl., 15(2):262–278,
2009.

[32] I. Sutskever, J. Martens, G.E. Dahl, and G.E. Hinton. On the
importance of initialization and momentum in deep learning. ICML
(3), 28:1139–1147, 2013.

[33] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with
convolutions. In CVPR, pages 1–9, 2015.

[34] John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed
asynchronous deterministic and stochastic gradient optimization algo-
rithms. IEEE transactions on automatic control, 31(9):803–812, 1986.

[35] A.C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The
marginal value of adaptive gradient methods in machine learning.
arXiv preprint arXiv:1705.08292, 2017.

[36] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor
fusion based on average consensus. In Information Processing in

Sensor Networks, 2005. IPSN 2005. Fourth International Symposium
on, pages 63–70. IEEE, 2005.

[37] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed
averaging. Systems & Control Letters, 53(1):65–78, 2004.

[38] J.Y. Yu and M.G. Rabbat. Performance comparison of randomized
gossip, broadcast gossip and collection tree protocol for distributed
averaging. In Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), 2013 IEEE 5th International Workshop on,
pages 93–96. IEEE, 2013.

[39] A. Zouzias and N.M. Freris. Randomized extended Kaczmarz for
solving least squares. SIAM. J. Matrix Anal. & Appl., 34(2):773–793,
2013.

[40] A. Zouzias and N.M. Freris. Randomized gossip algorithms for solving
Laplacian systems. In Control Conference (ECC), 2015 European,
pages 1920–1925. IEEE, 2015.


