
IMPROVED ALGORITHMS FOR CONVEX
MINIMIZATION IN RELATIVE SCALE∗

PETER RICHTÁRIK†

Abstract. In this paper we propose two modifications to Nesterov’s algorithms for minimizing
convex functions in relative scale. The first is based on a bisection technique and leads to improved
theoretical iteration complexity and the second is a heuristic for avoiding restarting behavior. The
fastest of our algorithms produces a solution within relative error O(1/k) of the optimum, with k
being the iteration counter.

Key words. convex optimization, relative scale, sublinearity, Nesterov’s smoothing technique,
Löwner-John ellipsoids

AMS subject classifications. 62K05, 65K05, 68Q25, 90C06, 90C25, 90C47, 90C60

1. Introduction. The theory of modern convex optimization almost uniformly
assumes boundedness of the feasible set. This assumption is usually artificially en-
forced even for naturally unconstrained problems via the so-called “big M” method.
A clear advantage of dealing with bounded sets is the availability of a scale in which
one can measure the absolute accuracy of a solution. However, care is needed when
choosing the size of the artificially imposed bounds: large feasible sets tend to slow
algorithms down, whereas small sets may lead to the exclusion of minimizers. Since
there is no natural absolute scale for measuring the solutions of an unconstrained
problem, it seems to be reasonable to be looking for solutions that are approximately
optimal in relative scale. Although results of this type are rare in the convex opti-
mization literature, some work has recently been done in this area [15,16,18,19]. This
contrasts with the enormous literature on combinatorial optimization where approxi-
mation algorithms are studied extensively.

In particular, Nesterov [15] showed that the above obstacles can be overcome
when minimizing convex homogeneous functions over an affine subspace. The essence
of his approach involves computing an ellipsoidal rounding of the subdifferential of
the objective function at the origin. This family of problems encompasses essentially
all unconstrained convex minimization problems via a dimension-lifting procedure.
However, certain assumptions about the ellipsoidal rounding effectively limit the class
of problems that can be treated.

Contribution. In this paper we improve the algorithms of Nesterov [14,15] for solving
unconstrained convex minimization problems within a prescribed error δ in relative
scale. We propose two modifications of the original method: the first is based on a
bisection technique and leads to improved theoretical iteration complexity. The second
is a heuristic for avoiding certain restarting behavior of the method. The fastest of
our algorithms produces a solution within relative error O(1/k) of the optimum, with
k being the iteration counter. The bisection idea was independently used by Chudak

∗The results of this paper were obtained in the years 2005 and 2006 while the author was a research
assistant at Cornell University, working under the guidance of Mike Todd. They form a part of the
PhD thesis [17, Chapter 2] of the author, and were not previously published. This research was
partially supported by NSF through grants DMS-0209457 and DMS-0513337 and by ONR through
grant N00014-02-0057.

†Center for Operations Research and Econometrics (CORE) and Department of Mathemat-
ical Engineering (INMA), Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
(peter.richtarik@uclouvain.be).

1

2 PETER RICHTÁRIK

and Eleutério [5] for obtaining the same theoretical improvement in complexity in the
context of several combinatorial problems.

Contents. The paper is organized as follows. In Section 2 we formulate the central
sublinear minimization problem and briefly describe a dimension-lifting procedure
for converting an unconstrained minimization instance into a linearly constrained
sublinear minimization instance. Section 3 is devoted to defining basic notions and
deriving key consequences of the necessary pre-processing stage of our algorithms: the
computation of a pair of Löwner-John ellipsoids of a certain set. The next two parts
are devoted to the description and analysis of algorithms. In Section 4 we describe
methods based on a simple subgradient subroutine. We first summarize Nesterov’s
results and then improve them by incorporating a bisection speedup idea. We also
modify the methods, at no or only negligible cost in the theoretical complexity, to allow
for a “nonrestarting” behavior. In Section 5 we propose more efficient methods, which
are grounded in Nesterov’s smoothing technique. These are of an order of magnitude
faster than those based on the subgradient routine. Next follows Section 6 in which we
briefly summarize the theoretical complexities and remark on the scaling invariance
of the methods. In Section 7 we describe several special cases to which the methods
of this paper apply. The final section is devoted to computational experiments.

Notation. Throughout the paper, E (possibly with subscripts) is a finite dimensional
real vector space and E∗ is its dual, i.e., the space of all linear functionals on E. The
action of g ∈ E∗ on x ∈ E is written as 〈g, x〉. Coordinates of a vector y ∈ Rl

are denoted by superscripts in brackets; for example, y = (y(1), . . . , y(l)), whereas
subscripts designate vector labels. By Rl

+ we mean the nonnegative orthant of Rl.
More notation is introduced at the relevant spot in the text.

2. Sublinear minimization. The central problem of this paper is

(P) ϕ∗ def
= min

x∈L
ϕ(x),

where L is an affine subspace of a finite-dimensional real vector space E not containing
the origin and ϕ : E → R is a sublinear function: convex and (positively) homogeneous
of degree one. The last property means that the function is linear on every ray
emanating from the origin: ϕ(τx) = τϕ(x) for all τ ≥ 0 and x ∈ E. Note that
convexity and homogeneity imply subadditivity. Define n := dimE = dimE∗.

We will further make the assumption that the zero vector lies in the interior of
the (convex) subdifferential of ϕ evaluated at the origin:

(2.1) 0 ∈ int ∂ϕ(0).

Given the properties of ϕ, condition (2.1) essentially amounts to requiring that the
origin is the unique global minimizer of ϕ. The above assumptions imply that ∂ϕ(0)
is a full-dimensional compact and convex subset of E∗ and that we can write1

(2.2) ϕ(x) = max{〈g, x〉 : g ∈ ∂ϕ(0)}.

1There is a one-to-one correspondence between finite sublinear functions and nonempty compact
convex sets via the relation ϕ(x) = max{〈g, x〉 | g ∈ G} (this is the support function of G). It then
follows from the definition of the subdifferential that G = ∂ϕ(0). We refer the reader Rockafellar [20].
A detailed account of the properties of sublinear functions and subdifferentials of convex functions
can be found in Chapters IV and V of Hiriart-Urruty and Lemaréchal [7]. For a more compact and
up-to-date treatment see Borwein and Lewis [4, Corollary 4.2.3].

CONVEX MINIMIZATION IN RELATIVE SCALE 3

That is, ϕ is the support function of its subdifferential at the origin. For geometric
understanding of the situation implied by the assumptions it is helpful to note that
the epigraph of ϕ is a convex cone in E ×R+ whose only intersection with E× {0}
is the origin.

2.1. Approximate solutions. Our aim is to find an approximate solution of
(P), within relative error δ. The formal definition of the concept follows.

Definition 1. A point x ∈ L is a δ-approximate solution to (P) if

ϕ(x) ≤ (1 + δ)ϕ∗.

In proving theorems we will often use the equivalent inequality ϕ(x)−ϕ∗ ≤ δ
1+δϕ(x).

2.2. Treating unconstrained convex minimization. The general uncon-
strained convex minimization problem can be reformulated as a constrained sublinear
problem. Let us briefly describe the construction. If φ : E → R is a convex function,
its perspective is the function ϕ : E×R++ → R defined by

ϕ(x)
def
= ϕ(y, τ) = τφ(y/τ).

The function ϕ is clearly linear on every feasible ray leaving from the origin. In fact,
it can be shown that ϕ is convex on its domain (Hiriart-Urruty and Lemaréchal [7,
Proposition 2.2.1]). It is not in general possible to extend ϕ onto the entire space
E × R if we want to preserve both convexity and finiteness. However, there are at
least some important classes of functions for which this can be done. Consider the
following example.

Example 1. Define φ(y) = max{|〈ai, y〉 + b(i)| : i = 1, 2, . . . ,m}, where y ∈ E,
a1, . . . , am ∈ E∗ and b ∈ Rm. If we let x = (y, τ) and a′i = (ai, b

(i)) for i = 1, 2, . . . ,m
then for τ > 0 we obtain

ϕ(x) = τφ(y/τ) = τ max
1≤i≤m

|〈ai, y/τ〉+ b(i)| = max
1≤i≤m

|〈ai, y〉+ b(i)τ | = max
1≤i≤m

|〈a′i, x〉|,

where the last equality defines a new inner product on E × R. Clearly, ϕ can be
extended to a sublinear function defined on the entire space. Assumption (2.1) will
be satisfied if 0 ∈ int ∂ϕ(0) = conv{±a′i : i = 1, 2, . . . ,m}.

3. Ellipsoidal rounding and key inequalities. As a pre-processing phase,
Nesterov [15] first finds a positive definite operator G : E → E∗ giving rise to a pair of
central ellipsoids in E∗, one being contained in ∂ϕ(0) and the other containing it. This
can be done using Khachiyan’s algorithm [9], or the recent method of Ahipaşaoğlu,
Sun and Todd [1]. We thus assume that G and ρ ≥ 1 are available such that

(3.1) B(G, 1) ⊆ ∂ϕ(0) ⊆ B(G, ρ),

where B(G, γ)
def
= {g ∈ E∗ :

√

〈g,G−1g〉 ≤ γ} defines an ellipsoid in E∗ of radius γ.
The iteration complexities of the algorithms of this paper depend on the parameter

ρ characterizing the quality of the ellipsoidal rounding (3.1). The following result, a
celebrated theorem of John [8], gives lower bounds on the quality of rounding admitted
by full-dimensional convex sets.

Proposition 2 (John [8]). Any convex body Q ⊂ E∗ admits a rounding by
concentric ellipsoids with ρ ≤ dimE∗. If Q is centrally symmetric, then there exists
a rounding with ρ ≤

√
dimE∗.

4 PETER RICHTÁRIK

To see that the above result gives tight bounds, consider the following simple
example.

Example 2. The rounding obtained by the inscribed and circumscribed balls of
(i) a regular n-simplex has quality ρ = n,
(ii) the n-cube has quality ρ =

√
n.

For recent work related to ellipsoidal rounding see Belloni and Freund [2] and the
references therein.

3.1. Geometry induced by rounding. The rounding operator G defines an
inner product on E via 〈x, y〉G := 〈Gx, y〉, which in turn induces the norm ‖x‖G :=
√

〈x, x〉G. The dual spaceE∗ can be equipped with the dual norm ‖g‖∗G :=
√

〈g,G−1g〉.
Notice that these norms are themselves sublinear functions and as such admit a rep-
resentation similar to (2.2):

(3.2) ‖x‖G = max{〈g, x〉 : ‖g‖∗G ≤ 1},

with ∂‖ · ‖G(0) = {g ∈ E∗ : ‖g‖∗G ≤ 1}, and

(3.3) ‖g‖∗G = max{〈g, x〉 : ‖x‖G ≤ 1},

with ∂‖ · ‖∗G(0) = {x ∈ E : ‖x‖G ≤ 1}. Also observe that the first and last sets in
(3.1) are balls in E∗, with respect to the dual norm, of radii 1 and ρ, respectively.

3.2. Subgradients in the primal space. By defining

∂Gϕ(x)
def
= {h ∈ E : ϕ(y) ≥ ϕ(x) + 〈h, x〉G, ∀y ∈ E},

the subgradients of ϕ can be thought of as being elements of E as opposed to elements
of E∗. This will enable us to talk about taking steps in E in the “direction” of a
negative subgradient. There is a one-to-one correspondence linking the two concepts:

(3.4) ∂Gϕ(x) = G−1[∂ϕ(x)].

3.3. Inequalities. In view of (2.2) and (3.2), taking the maximum of the linear
functional 〈·, x〉 over the sets in (3.1) gives

(3.5) ‖x‖G ≤ ϕ(x) ≤ ρ‖x‖G, x ∈ E,

which together with subadditivity of ϕ implies that ϕ is ρ-Lipschitz:

ϕ(x + h) ≤ ϕ(x) + ϕ(h) ≤ ϕ(x) + ρ‖h‖G.

From now on we will denote by x∗ an arbitrary optimal solution of (P) and by x0

the minimum norm element of the feasible region—the projection of the origin onto
L. From (3.5) we then obtain

(3.6) ϕ(x0)
ρ ≤ ‖x0‖G ≤ ‖x∗‖G ≤ ϕ∗ ≤ ϕ(x0) ≤ ρ‖x0‖G.

Since ‖x∗ − x0‖G =
√

‖x∗‖2G − ‖x0‖2G and x0 6= 0 due to the assumption that L does
not pass through the origin, we also obtain

(3.7) ‖x∗ − x0‖G < ‖x∗‖G ≤ ϕ∗ ≤ ϕ(x), x ∈ L.

CONVEX MINIMIZATION IN RELATIVE SCALE 5

4. Algorithms based on a subgradient subroutine. Subgradient algorithms
were studied intensively in the sixties and seventies of the twentieth century by a
number of researchers, among them Y.M. Ermoliev, B.T. Polyak and N.Z. Shor. For
comprehensive texts we refer the reader to Shor [21] and Goffin [6]. For our purposes
we will manage with a result about the performance of a standard constant step-length
subgradient algorithm applied to a convex Lipschitz function [12, Section 3.2.3].

4.1. A constant step-length subgradient algorithm. The subgradient al-
gorithm we are going to describe works in a more general setting than that of problem
(P). For the sake of this subsection only, consider the problem of minimizing a con-
vex Lipschitz continuous function ϕ : E → R with Lipschitz constant γ over a simple
closed convex set Q1:

(Psg) ϕ∗ def
= min{ϕ(x) : x ∈ Q1}.

By simple set we mean one allowing for easy computation of projections onto it
(symbol proj will denote the projection operator). In this setting E is assumed to be
equipped with an inner product. Problem (P) is a special case of (Psg) with

• ϕ having additional properties,
• γ = ρ and Q1 = L, and
• E made Euclidean by the introduction of the inner product induced by G.

The following is a standard result (see, for example, Nesterov [12, Theorem 3.2.2]).
Proposition 3. If ‖x∗ − x0‖ ≤ R for some x0 ∈ E, minimizer x∗ of (Psg)

and R > 0, then the output x = Subgrad(ϕ,Q1, x0, R,N) of Algorithm 1 run on an
instance of problem (Psg) satisfies:

(4.1) ϕ(x) − ϕ∗ ≤ γR√
N+1

.

Algorithm 1 (Subgrad) Constant step-length subgradient scheme

1: Input: ϕ,Q1, x0, R,N ;
2: κ = R√

N+1
;

3: for k = 0 to N − 1
4: pick g ∈ ∂ϕ(xk); if g = 0 then xk is optimal and exit;

5: xk+1 = projQ1

(

xk − κ g
‖g‖

)

;

6: end for
7: Output: xk with best objective value

For Proposition 3 to hold it suffices to require that ϕ be Lipschitz on the ball
around x∗ with radius R.

4.2. Basic algorithmic ideas. As the previous subsection indicates, the basic
idea for solving (P) will be that of using the subgradient method (Algorithm 1). The
main issue with this algorithm, apart from the fact that it is slow (it requires O(1/ǫ2)
iterations to output an ǫ-optimal solution in the additive sense), is the need to supply
an initial point x0 and an upper bound R on ‖x∗ − x0‖.

The particular choice of x0 as the projection of the origin onto the feasible set of
(P) makes sense for at least two reasons. First, notice that if the ellipsoidal rounding
of ∂ϕ(0) is perfectly tight (ρ = 1), then by (3.5) we have ϕ(x) ≡ ‖x‖G, and therefore

6 PETER RICHTÁRIK

x0 is the optimal solution of (P). In fact, notice that by (3.6),

(4.2) ϕ(x0) ≤ ρϕ∗,

and hence x0 is a (ρ − 1)-approximate solution of (P). The better the rounding,
the better the approximation factor. Second, (3.7) offers the readily available upper
bound R = ϕ(x0). Of course, ϕ∗ would be better; the issue is that it is not known.

Good but unavailable upper bound. Let us formally apply Algorithm 1 to (P)
with R = ϕ∗. To achieve the required relative accuracy, it then suffices to run it for
N = ⌊ρ2/δ2⌋ iterations because, by Proposition 3,

ϕ(x)− ϕ∗ ≤ ρR√
N+1

≤ ρϕ∗√
ρ2/δ2

= δϕ∗.

Available but bad upper bound. Since the previous upper bound is unknown, it
seems reasonable to instead use the worse (but available) bound R = ϕ(x0). If we
wish to guarantee a solution within relative error δ, we need to take N = ⌊ρ4/δ2⌋
iterations. The argument is exactly the same and uses (4.2).

Iteratively updated upper bound. To move towards the better of the two ex-
tremes, Nesterov [15] proposed a scheme (Algorithm 2) which uses the subgradient
method as a subroutine, iteratively decreasing the known upper bound. This al-
gorithm starts by running the subgradient method for O(ρ2/δ2) iterations with the
available upper bound ϕ(x0). In the case when the subgradient subroutine is doing
well and manages to decrease the objective value by a constant factor, the previously
available upper bound also decreases by the same factor. This improved bound is
then used to run the next subgradient subroutine, again starting from x0.

Algorithm 2 (SubSearch) Subgradient search scheme.

1: Input: ϕ,L, x0, ρ, β > 0, δ;
2: x̂0 = x0, c = eβ, k = 1;

3: N =
⌊

c2ρ2
(

1 + 1
δ

)2
⌋

;

4: x̂k = Subgrad(ϕ,L, x0, ϕ(x̂k−1), N);
5: while ϕ(x̂k) < ϕ(x̂k−1)/c do
6: k = k + 1;
7: x̂k = Subgrad(ϕ,L, x0, ϕ(x̂k−1), N);
8: end while
9: Output: x̂k

The performance of Algorithm 2 is substantially better than the naive one-time
application of the subgradient method with the bad but available upper bound. How-
ever, it underperforms the one-time application of the subgradient method with the
good but unknown upper bound, by a factor of O(ln ρ). The performance of the
method, as analyzed by Nesterov [15], is summarized in Proposition 4. We include
the proof because it is short and offers insight into the subsequent improvements we
propose in the following subsections. We will also refer to parts of it later.

Proposition 4 (Nesterov [15, Theorem 3]). Algorithm 2 returns a δ-approximate
solution of (P) and takes at most

(4.3) e2βρ2
(

1 + 1
δ

)2
(

1 + 1
β ln ρ

)

CONVEX MINIMIZATION IN RELATIVE SCALE 7

steps of the subgradient method. If β is a constant, then the number of steps is

(4.4) O
(

ρ2

δ2 ln ρ
)

.

The optimal choice is β = 1
2 (
√
t2 + 2t− t) ≈ 1

2 , with t = ln ρ.
Proof. Assume that the algorithm stops at iteration k, failing to satisfy the

“while” clause at Step 5. In view of (3.6) we have

ϕ(x0)
ρ ≤ ϕ∗ ≤ ϕ(x̂k−1) <

ϕ(x0)

eβ(k−1) ,

and by comparing the first and the last term in this chain of inequalities we conclude
that the number of calls of the subgradient subroutine is at most 1 + β−1 ln ρ. The
bound (4.3) is obtained by multiplying this by N from Step 3 of the algorithm.
Minimizing (4.3) in β gives the final statement. It remains to show that the output is
as specified. Indeed, using the termination rule from Step 5 and applying Proposition
3 to the last call of the subgradient subroutine, we get

ϕ(x̂k)− ϕ∗ ≤ ρϕ(x̂k−1)√
N+1

≤ ρeβϕ(x̂k)√
N+1

≤ δ
1+δϕ(x̂k).

4.3. Bisection improvement. Each outer iteration of Algorithm 2, possibly
except the last one, produces a guaranteed upper bound on the distance of x0 from
the set of minimizers of (P)—better by a constant factor than the one available
before. Loosely speaking, we will show that by allowing for guesswork it is possible
to improve the theoretical performance of this algorithm (the same improvement was
independently obtained by Chudak and Eleutério [5] in the context of combinatorial
applications). The key observation is formulated in the following lemma.

Lemma 5. If ϕ∗ ≤ R and N =
⌊

ρ2/β2
⌋

for some β > 0, then

x = Subgrad(ϕ,L, x0, R,N)

satisfies

(4.5) ϕ(x)− βR ≤ ϕ∗ and ϕ(x) ≤ (1 + β)R.

Proof. By Proposition 3 we have ϕ(x) − ϕ∗ ≤ ρR/
√
N + 1 ≤ βR, and hence

ϕ(x) ≤ ϕ∗ + βR ≤ (1 + β)R.
The above result essentially states that for any positive R we can, at the cost of

O(ρ2/β2) iterations of the subgradient method (Algorithm 1), either get a certificate
that ϕ∗ ≤ (1+β)R (if x satisfies ϕ(x) ≤ (1+β)R) or that R < ϕ∗ (if ϕ(x) > (1+β)R).
In any case, we either get an upper or lower bound on ϕ∗.

Note that thanks to (3.6), we are in the possession of an initial lower and upper

bound on ϕ∗: if we set L0 = ‖x0‖G and R0 = ϕ(x0), then
ϕ(x0)

ρ ≤ L0 ≤ ϕ∗ ≤ R0,
with

(4.6) R0

L0
≤ ρ.

Assume that at step k we have Lk ≤ ϕ∗ ≤ Rk, with qk
def
= Rk/Lk > 1 + β (see

Figure 1). Pick R so that

(4.7) Lk < R < (1 + β)R < Rk.

8 PETER RICHTÁRIK

L0 = ϕ(x0)
ρ

Lk−1 R0 = ϕ(x0)Rk−1ϕ∗

R

‖x0 − x∗‖G

(1 + β)R

Fig. 1. Bisection step k.

For this R let x be given by Lemma 5. There are two possibilities. If ϕ(x) ≤ (1+β)R,
then in view of (4.5) we can update:

(4.8) Lk+1 = max{ϕ(x)− βR,Lk}, Rk+1 = min{Rk, ϕ(x)} ≤ (1 + β)R.

If ϕ(x) > (1 + β)R, then we can set

(4.9) Lk+1 = R, Rk+1 = min{Rk, ϕ(x)}.

This bisection procedure is then repeated until qk < (1 + τ)(1 + β) for some τ > 0.
The following lemma states how much improvement in qk can be obtained by a single
bisection step.

Lemma 6. Assume Lk ≤ ϕ∗ ≤ Rk, qk > 1+β and β > 0. After a single bisection
step with R = [LkRk/(1 + β)]1/2 we obtain Lk+1 ≤ ϕ∗ ≤ Rk+1 satisfying

(4.10) qk+1 ≤ (1 + β)1/2q
1/2
k .

Proof. It is easy to see that (4.7) holds. Observing that R is chosen so that (1 +
β)R/Lk = Rk/R, in view of (4.8) and (4.9) we obtain

qk+1 = Rk+1

Lk+1
≤ max

{

(1+β)R
Lk

, min{Rk,ϕ(x)}
R

}

≤ Rk

R = (1 + β)1/2q
1/2
k .

The ideas outlined above lead to Algorithm 3 whose performance is analyzed in
the next theorem.

Theorem 7. Algorithm 3 returns a δ-approximate solution of (P) and takes at
most

(4.11) ρ2

β2

[

1 + log2

(

ln ρ
ln(1+τ)

)]

+ (1 + τ)2(1 + β)2ρ2
(

1 + 1
δ

)2

steps of the subgradient subroutine. If β is a constant, the number of steps is

(4.12) O
(

ρ2
(

1
δ2 + ln ln ρ

))

.

Proof. Let us first analyze the bisection phase (the “while” loop). Repeated use of
Lemma 6 gives

qk ≤ (1 + β)
1
2 q

1
2
k−1 ≤ (1 + β)

1
2 (1 + β)

1
4 · · · (1 + β)

1
2k q

1
2k
0

(4.6)

≤ (1 + β)ρ
1
2k .

The smallest integer k for which (1+β)ρ
1
2k ≤ (1+τ)(1+β) is k∗ = ⌈log2(ln ρ/ ln(1 + τ))⌉

and hence the total number of lower-level subgradient method iterations of the bisec-
tion phase is at most Nbis = ρ2β−2k∗. The statement then follows by adding Nbis

CONVEX MINIMIZATION IN RELATIVE SCALE 9

Algorithm 3 (SubBis) Subgradient bisection scheme.

1: Input: ϕ,L, x0, ρ, β, τ, δ;
2: k = 0, L0 = ‖x0‖G, R0 = ϕ(x0), c = (1 + τ)(1 + β), N =

⌊

ρ2/β2
⌋

;
3: while Rk/Lk > c do

4: R =
√

LkRk

1+β , x = Subgrad(ϕ,L, x0, R,N);

5: if ϕ(x) ≤ (1 + β)R then
6: set Rk+1, Lk+1 as in (4.8)
7: else
8: set Rk+1, Lk+1 as in (4.9)
9: end if

10: k = k + 1
11: end while
12: N =

⌊

R2
k

L2
k

ρ2
(

1 + 1
δ

)2
⌋

, x = Subgrad(ϕ,L, x0, Rk, N);

13: Output: x

and the number of iterations needed for the finalization phase (Step 12). It remains
to show that the output of the algorithm is as specified. Notice that Lk ≤ ϕ(x) and
Proposition 3 applied to the subgradient method call at Step 12 give

ϕ(x)− ϕ∗ ≤ ρRk√
N+1

≤
ρ
Rk

Lk
ϕ(x)

√
N+1

≤ δ
1+δϕ(x).

4.4. Nonrestarting algorithms. Algorithms SubSearch and SubBis (Algorithms
2 and 3) use the subgradient subroutine always started from one point, denoted x0,
which is defined as the projection of the origin onto the feasible set. This point is
indeed special as it allows for the key inequalities (3.6) and (3.7), which in turn drive
the analysis in both algorithms. The first of these inequalities makes x0 indispensable
as the starting point of the very first subgradient subroutine call in both algorithms,
making it possible to construct initial lower and upper bounds on ϕ∗. It is hard to
think of a different readily computable point that could serve the same purpose.

The issue we are going to touch upon in this subsection concerns the use of x0

as the starting point in all subsequent calls of the subroutine. In our view, restarting
from this particular point seems to be convenient for the sake of the proofs rather
than efficient algorithmically. Let us elaborate on this a bit. Both algorithms men-
tioned above can be viewed as simultaneously optimizing (solving (P)) and searching
for a good upper bound on ‖x0 − x∗‖G in order to look less like the “do-it-all-with-
the-available-but-bad-upper-bound” and more like the “do-it-all-with-the-good-but-
unavailable-upper-bound” algorithm. Combining these two goals is possible because
ϕ∗ is both the optimal value of (P) and an upper bound on ‖x0 − x∗‖G. It seems
likely that the optimization goal could be attained faster if we could use the current
best point, as opposed to x0, to start every call of the subroutine. Although both
algorithms gather information about increasingly better iterates {x̂k}, this knowledge
is used only to update the upper bound on ‖x0 − x∗‖G in the next call of the sub-
gradient subroutine and not to start the subroutine itself from a better point. There
is a good reason for that though: even if some point x̂k obtained along the way in
one of the algorithms was much better than x0 in terms of its objective value, there
are no theoretical guarantees that ‖x̂k − x∗‖G will be smaller. Starting the subgra-
dient subroutine from such a point thus means combining a probable advantage with
a possible disadvantage. A simple observation reveals that the disadvantage factor is

10 PETER RICHTÁRIK

under control. Indeed, for any x ∈ L,

(4.13) ‖x− x∗‖G ≤ ‖x‖G + ‖x∗‖G
(3.7)

≤ ‖x‖G + ϕ∗ ≤ ‖x‖G + ϕ(x)
(3.5)

≤ 2ϕ(x).

This means that whenever the subgradient method outputs some point x, we have
an upper bound on ‖x − x∗‖G available. Therefore, on the next call we can run the
method starting at x with R = ‖x‖G + ϕ(x).

Nonrestarting version of SubSearch. Algorithm 4 is a modified version of Al-
gorithm 2 in the spirit of the preceding discussion. The theoretical performance is
unchanged.

Algorithm 4 (SubSearchNR) Nonrestarting subgradient search scheme.

1: Input: ϕ,L, x0, ρ, δ;
2: x̂0 = x0, c =

√
e, k = 1;

3: N =
⌊

c2ρ2
(

1 + 1
δ

)2
⌋

, N ′ =
⌊

4c2ρ2
(

1 + 1
δ

)2
⌋

, R = ϕ(x̂0);

4: x̂k = Subgrad(ϕ,L, x̂0, R,N);
5: while ϕ(x̂k) < ϕ(x̂k−1)/c do
6: k = k + 1;
7: R = ‖x̂k−1‖G + ϕ(x̂k−1);
8: x̂k = Subgrad(ϕ,L, x̂k−1, R,N ′);
9: end while

10: Output: x̂k

Theorem 8. Algorithm 4 outputs a δ-approximate solution of (P). The number
of calls of the subgradient subroutine is at most 1 + 2 ln ρ and the total number of
lower-level subgradient steps is hence at most

(4.14) 4eρ2
(

1 + 1
δ

)2
(1 + 2 ln ρ) = O

(

ρ2

δ2 ln ρ
)

.

Proof. The proof of the upper bound on the number of the outer level iterations
is exactly the same as for Algorithm 2. If the algorithm terminates with k = 1, it
is identical to Nesterov’s, and the result follows (we can drop the constant 4 in this
case). For k > 1, the analysis is analogous:

ϕ(x̂k)− ϕ∗ ≤ ρR√
N+1

(4.13)

≤ ρ2ϕ(x̂k−1)

2cρ
(

1+
1
δ

) ≤ δ
1+δϕ(x̂k).

Nonrestarting bisection algorithm. The following fact plays the role of Lemma 5
in the design and analysis of a nonrestarting bisection algorithm (Algorithm 5).

Lemma 9. Let x′ ∈ L and assume ϕ∗ ≤ R. If we let N = ⌊ρ2/β2⌋ for some
β > 0, then

x = Subgrad(ϕ,L, x′, R+ ‖x′‖G, N)

satisfies

(4.15) ϕ(x)− β(‖x′‖G +R) ≤ ϕ∗ and ϕ(x) ≤ (1 + β)R + β‖x′‖G.

Proof. By (4.13) we have ‖x′ − x∗‖G ≤ ‖x′‖G + R and hence by Proposition 3,

ϕ(x)− ϕ∗ ≤ ρ‖x′‖G+R√
N+1

≤ β(‖x′‖G +R).

CONVEX MINIMIZATION IN RELATIVE SCALE 11

Rearranging the expression gives the first inequality in (4.15); the second inequality
follows from (3.5).

The idea of updating the lower and upper bounds is analogous to the restarting
version of the algorithm. Assume that at step k we have Lk ≤ ϕ∗ ≤ Rk, with
qk = Rk/Lk > 1 + β. Pick R so that (4.7) holds and x′ such that Rk = ϕ(x′),
and let x be given by Lemma 9. Again, we have two possibilities. Notice that if
ϕ(x) ≤ (1 + β)R + β‖x′‖G, then since ‖x′‖G ≤ ϕ(x′) = Rk, we have

(4.16) ϕ(x) ≤ (1 + β)R+ βRk

(4.7)

≤ Rk,

as long as β ≤ 1. We can thus update

(4.17) Lk+1 = max{ϕ(x)− β(‖x′‖G +R), Lk}, Rk+1 = ϕ(x).

If ϕ(x) > (1 + β)R + β‖x′‖G, we can set

(4.18) Lk+1 = R, Rk+1 = min{Rk, ϕ(x)}.

The improvement in qk after a single bisection step is given in the following result.
Lemma 10. Assume Lk ≤ ϕ∗ ≤ Rk, qk > 1 + β and 0 < β ≤ 1. After a single

bisection step with R = [LkRk/(1 + β)]1/2 we obtain Lk+1 ≤ ϕ∗ ≤ Rk+1 satisfying

(4.19) qk ≤
(

β + 1√
2

)

qk−1.

Proof. Note that (4.7) holds. In view of (4.17), (4.16) and (4.18) we get

qk+1 =
Rk+1

Lk+1
≤ max

{

(1+β)R+βRk

Lk
, min{Rk,ϕ(x)}

R

}

≤ (1+β)R+βRk

Lk

=
√

1 + β
√
qk + βqk =

√

1+β
qk

qk + βqk <
√

1
2qk + βqk.

Theorem 11. Algorithm 5 run with β satisfying 0 < β < 1 − 1√
2
returns a

δ-approximate solution of (P) and takes at most

(4.20) ρ2

β2

[

1 + ln ρ−ln[(1+τ)(1+β)]

− ln(β+1/
√
2)

]

+ 4(1 + τ)2(1 + β)2ρ2
(

1 + 1
δ

)2

steps of the subgradient subroutine. If τ and β are chosen as constants, this becomes

(4.21) O
(

ρ2

δ2 + ρ2 ln ρ
)

.

Proof. Let us first analyze the bisection phase. Repeated use of Lemma 10 gives
qk ≤ (β + 1/

√
2)kq0 ≤ (β + 1/

√
2)kρ. The smallest integer k for which the last

expression drops below c = (1 + τ)(1 + β) is k∗ = ⌈ln(ρ/c)/ ln(1/(β + 1/
√
2))⌉ =

O (ln ρ), and hence the total number of lower-level subgradient method iterations of
the bisection phase is Nbis = ⌊ρ2/β2⌋k∗. The guarantee (4.20) follows by adding Nbis

and N from Step 13. The output of the algorithm is as specified; the analysis is
identical to that in Theorem 8.

Note that the nonrestarting version of the bisection algorithm has a slightly worse
complexity bound—we have lost one logarithm in (4.21) in comparison with (4.12).
However, the bisection strategy separates the δ from the logarithmic term when com-
pared to the bound (4.14) for the SubSearch algorithm.

12 PETER RICHTÁRIK

Algorithm 5 (SubBisNR) Nonrestarting subgradient bisection scheme.

1: Input: ϕ,L, x0, ρ, β, τ, δ;
2: k = 0, x′ = x0, L0 = ‖x0‖G, R0 = ϕ(x0);
3: c = (1 + τ)(1 + β), N =

⌊

ρ2/β2
⌋

;
4: while Rk/Lk > c do

5: R =
√

LkRk

1+β , x = Subgrad(ϕ,L, x′, ‖x′‖G +R,N);

6: if ϕ(x) ≤ (1 + β)R + β‖x′‖G then
7: set Lk+1, Rk+1 as in (4.17)
8: else
9: set Lk+1, Rk+1 as in (4.18)

10: end if
11: x′ = x, k = k + 1
12: end while
13: N =

⌊

4
R2

k

L2
k

ρ2
(

1 + 1
δ

)2
⌋

, x = Subgrad(ϕ,L, x′, ‖x′‖G +Rk, N);

14: Output: x

5. Algorithms based on smoothing. We have seen in Section 4 that problem
(P) allows for simple algorithms that require O(δ−2) iterations of the subgradient
method. We have improved Nesterov’s subgradient search algorithm (Algorithm 2),
which needs O(ρ2δ−2 ln ρ) iterations, by incorporating a simple bisection idea and
obtained Algorithm 3 with the slightly better O(ρ2δ−2+δ−2 ln ln ρ) complexity. That
is, we have improved the dependence on the rounding parameter ρ, but not on the
error parameter δ.

We start in the following subsection by briefly describing Nesterov’s smoothing
technique [13] and the implied algorithm for smooth minimization of nonsmooth func-
tions. It is not our intention to describe the approach in full generality; rather, we will
adapt the results to the setting of problem (P)—the minimization of a nonnegative
sublinear (convex and homogeneous) function vanishing at the origin only.

5.1. The setting. Nesterov [13] considers a rather general nonsmooth convex
optimization problem and shows that it is possible to solve it in O(ǫ−1) iterations
of a gradient-type method, if a solution within absolute error ǫ is sought. His novel
approach involves two phases. The first is a pre-processing phase in which one ap-
proximates the objective function by a smooth function with Lipschitz continuous
gradient. The second phase amounts to running an optimal smooth method [11, 12]
with complexity O(ǫ−1/2) applied to the smooth function.

We will describe the model for sublinear functions. Consider the following more
general version of problem (P), with ϕ replaced by an arbitrary sublinear function
and L (or L intersected with a large ball) replaced by a compact and convex subset
Q1 of E1 := E:

(P ′) ϕ∗ := min
x

{ϕ(x) : x ∈ Q1}.

Notice that ϕ can be written as

(5.1) ϕ(x) = max
g

{〈g, x〉 : g ∈ ∂ϕ(0)},

CONVEX MINIMIZATION IN RELATIVE SCALE 13

To allow for some modeling flexibility, the purpose of which will be clear later, we will
instead consider the following family of representations of the objective function:

(5.2) ϕ(x) = max
y

{〈Ax, y〉 : y ∈ Q2}.

Here we are introducing a new finite-dimensional real vector space E2, a linear oper-
ator A : E1 → E∗

2 and a compact and convex set Q2 ⊂ E2.
Definition 12. The adjoint of A is the operator A∗ : E2 → E∗

1 defined via

〈Ax, y〉 = 〈A∗y, x〉 ∀ x ∈ E1, y ∈ E2.

We assume that the spaces E1 and E2 are equipped with norms ‖ · ‖1 and ‖ · ‖2
respectively2, and the dual spaces E∗

1 and E∗
2 with the corresponding dual norms

(5.3) ‖g‖∗1 := max{〈g, x〉 : ‖x‖1 ≤ 1} and ‖h‖∗2 := max{〈h, y〉 : ‖y‖2 ≤ 1},
for g ∈ E∗

1 and h ∈ E∗
2.

Definition 13. The norm of A is defined by

(5.4) ‖A‖1,2 := max
x,y

{〈Ax, y〉 : ‖x‖1 = 1, ‖y‖2 = 1}.

One can similarly define ‖A∗‖2,1. It follows easily from the definition that

(5.5) ‖A‖1,2 = max
x

{‖Ax‖∗2 : ‖x‖1 = 1} = ‖A∗‖2,1 = max
y

{‖A∗y‖∗1 : ‖y‖2 = 1}.

Example 3. Consider the function

ϕ∞(x) := max
i

{|〈ai, x〉| : i = 1, 2, . . . ,m},

where x ∈ E1 = Rn, ai ∈ E∗
1 = Rn and 〈g, x〉 =

∑n
i=1 g

(i)x(i). Note that in the
following three representations of ϕ∞ the structure of the set Q2 gets simpler as the
dimension of the space E2 increases.

1. E2 = E∗
2 = Rn, Q2 = conv{±ai : i = 1, 2, . . . ,m} and A = I. This seems

to be the most natural and straightforward representation.
2. E2 = E∗

2 = Rm, Q2 = {y ∈ Rm :
∑m

i=1 |y(i)| ≤ 1} and A is the m × n
matrix with rows a1, . . . , am. In this case we have

ϕ∞(x) = max

{

m
∑

i=1

y(i)〈ai, x〉 :

m
∑

i=1

|y(i)| ≤ 1

}

.

3. E2 = E∗
2 = R2m, Q2 is the unit simplex in R2m and A is the 2m× n matrix

with rows composed of a1, . . . , am and −a1, . . . ,−am:

ϕ∞(x) = max

{

m
∑

i=1

(y
(i)
1 − y

(i)
2)〈ai, x〉 :

m
∑

i=1

y
(i)
1 + y

(i)
2 = 1, y

(i)
1 , y

(i)
2 ≥ 0

}

.

If we let θ(y)
def
= minx{〈A∗y, x〉 : x ∈ Q1}, then because both Q1 and Q2 are convex

and compact and 〈A∗y, x〉 ≡ 〈y,Ax〉 is bilinear, we can apply a standard minimax
result and rewrite (P ′) as follows:

(P ′′) ϕ∗ = θ∗
def
= max

y
{θ(y) : y ∈ Q2}.

2The numbers are subscripts referring to the spaces in which the norms are defined and are not
intended to suggest the use of the ℓ1 and ℓ2 norms.

14 PETER RICHTÁRIK

5.2. Smoothing and an efficient smooth method. In the first phase of
Nesterov’s approach, the objective function of (P ′) is approximated by a smooth
convex function with Lipschitz continuous gradient. An approximation with error
O(ǫ) has gradient with Lipschitz constant of O(1/ǫ). The second phase consists of
applying to (P) (with the objective function replaced by its smooth approximation)
an efficient smooth method (Algorithm 6) requiring O(1/

√
ǫ) iterations of a gradient

type. The smooth algorithm is capable of producing points x̂ and ĝ feasible to both
(P ′) and (P ′′), respectively, such that ϕ(x̂)− θ(ĝ) = O(1/ǫ). Because ϕ∗ = θ∗, these
points are approximate optimizers in their respective problems (in the additive sense).

The smoothing approach assumes the availability of prox-functions d1 and d2
for the sets Q1 and Q2, respectively. These are continuous and strongly convex
nonnegative functions defined on these sets, with convexity parameters σ1 and σ2,
respectively. Let x0 be the center of the set Q1 (think Q1 = L):

(5.6) x0 := argmin
x

{d1(x) : x ∈ Q1}.

We assume that d1 vanishes at its center and hence the above properties imply

d1(x) ≥ 1
2σ1‖x− x0‖21.

For example, if d1(x) :=
1
2‖x‖21 (so σ1 = 1) and Q1 is the intersection of L and a

large-enough ball centered at the origin, then x0 coincides with its earlier definition.
Notice that for d1(x) =

1
2‖x‖21 − 1

2‖x0‖21 we have d1(x) =
1
2‖x− x0‖21 for x ∈ L.

In an analogous fashion we define the center y0 of Q2 and assume that d2 vanishes
at y0. Therefore

d2(y) ≥ 1
2σ2‖y − y0‖22.

Finally, let D1 and D2 satisfy D1 ≥ maxx{d1(x) : x ∈ Q1} and D2 ≥ maxy{d2(y) :
y ∈ Q2}.

Proposition 14 (Nesterov [13], Theorem 1). For µ > 0, the function

(5.7) ϕµ(x) := max
y

{〈Ax, y〉 − µd2(y) : y ∈ Q2},

is a continuously differentiable uniform approximation of ϕ:

(5.8) ϕµ(x) ≤ ϕ(x) ≤ ϕµ(x) + µD2 ∀ x ∈ E1.

Moreover, if we denote by yµ(x) the (unique) maximizer from (5.7), then the gradient
of ϕµ(x) is given by ∇ϕµ(x) = A∗yµ(x) and is Lipschitz continuous with constant

(5.9) γµ = 1
µσ2

‖A‖21,2.

The smooth version of (P ′) therefore is

(P ′
sm) min

x
{ϕµ(x) : x ∈ Q1}.

The main result of [13] is the following:
Theorem 15 (Nesterov [13, Theorem 3]). If we apply Algorithm 6 to problem

(P ′
sm

) with smoothing parameter

(5.10) µ =
2‖A‖1,2

N+1

√

D1

σ1σ2D2

CONVEX MINIMIZATION IN RELATIVE SCALE 15

and if x = Smooth(ϕµ, γµ, Q1, x0, N), then3

(5.11) ϕ(x) − ϕ∗ ≤ 4‖A‖1,2

N+1

√

D1D2

σ1σ2
.

Algorithm 6 (Smooth) Efficient smooth method.

1: Input: f, γ,Q1, x0, N ;
2: for k = 0 to N do
3: Compute ∇f(xk);
4: yk = argmin{〈∇f(xk), x − xk〉+ γ

2‖x− xk‖21 : x ∈ Q1};
5: zk = argmin{∑k

i=0
i+1
2 〈∇f(xi), x− xi〉+ γ

σ1
d1(x) : x ∈ Q1};

6: xk+1 = 2
k+3zk +

k+1
k+3yk;

7: end for
8: Output: yN

5.3. The main result. We will use the above theorem in the same way as
Proposition 3 to devise a O(1/δ)-algorithm for finding a δ-approximate solution of
(P). Algorithms of this type, formulated for several specific choices of objective func-
tions, were proposed already by Nesterov [14,15]. These methods are similar in spirit
to Algorithm 2, recursively updating an upper bound on ϕ∗. We give an improved ver-
sion of this algorithm applicable to the problems considered in the cited papers. Our
contribution lies mainly in improving the theoretical complexity by incorporating a
bisection speedup. As in the previous section, it is possible to formulate a nonrestart-
ing version of our algorithm by sacrificing the double logarithm in the theoretical
complexity for a single one.

Preliminaries. Let us return to problem (P), using the representation (5.2) for the
objective function (hence Q1 = L), and approach it with the tools described in the
previous subsections. Let E1 := E and assume that G : E1 → E∗

1 defines an ellipsoidal
rounding of ∂ϕ(0) = A∗Q2 such that (3.1) holds. Notice that the inequalities (3.5),
(3.6) and (3.7) are implied by (3.1). To be able to obtain an algorithm guaranteeing a
δ-approximate solution in relative scale, it is crucial to choose ‖x‖1 ≡ ‖x‖G, x ∈ E1.

If we wish to apply Algorithm 6, we need to supply to it a bounded subset of
L containing the minimizer. Observe that as long as we are in the possession of an
upper bound R on ϕ∗, (3.7) guarantees that all minimizers of (P) lie in the set

Q1(R)
def
= L ∩ {x : ‖x− x0‖G ≤ R}.

The point x0—the projection of the origin onto L in the G-norm—is the center of
Q1(R) as defined in (5.6) if we choose the prox-function for Q1(R) to be

d1(x) :=
1
2‖x− x0‖2G.

In this case σ1 = 1 and D1 = max{d1(x) : x ∈ Q1(R)} = 1
2R

2. We leave the choice
of d2 purposely open to allow for fine-tuning for particular applications.

A direct consequence of Theorem 15 with the settings described above is the
following analogue of Lemma 5.

3The original theorem states the result as a gap between ϕ(x) and θ(y) for a certain y ∈ Q2.

16 PETER RICHTÁRIK

Lemma 16. If ϕ∗ ≤ R, β > 0 and we set

N =

⌊

2
√
2‖A‖1,2

β

√

D2

σ2

⌋

, µ =
√
2‖A‖1,2R
N+1

√

1
σ2D2

,

and γµ as in (5.9), then

x = Smooth(ϕµ, γµ, Q1(R), x0, N)

satisfies

ϕ(x)− βR ≤ ϕ∗ and ϕ(x) ≤ (1 + β)R.

The above lemma leads to a bisection algorithm (Algorithm 7) in the same way
as we have seen it in the section on subgradient algorithms. The main result follows:

Algorithm 7 (SmoothBis) Smooth bisection scheme.

1: Input: ϕ, x0, ρ, β, τ, δ;
2: k = 0, x = x0, L0 = ‖x0‖G, R0 = ϕ(x0);

3: c = (1 + τ)(1 + β), N =
⌊

2
√
2‖A‖1,2

β

√

D2

σ2

⌋

;

4: while Rk/Lk > c do

5: R =
√

LkRk

1+β , µ =
√
2‖A‖1,2R
N+1

√

1
σ2D2

, γµ =
‖A‖2

1,2

µσ2
;

6: x = Smooth(ϕµ, γµ, Q1(R), x0, N);
7: if ϕ(x) ≤ (1 + β)R then
8: set Lk+1, Rk+1 as in (4.8)
9: else

10: set Lk+1, Rk+1 as in (4.9)
11: end if
12: k = k + 1;
13: end while

14: N =
⌊

2
√
2Rk

Lk
‖A‖1,2(1 + 1

δ)
√

D2

σ2

⌋

, µ =
√
2‖A‖1,2Rk

N+1

√

1
σ2D2

, γµ =
‖A‖2

1,2

µσ2
;

15: x = Smooth(ϕµ, γµ, Q1(Rk), x0, N);
16: Output: x

Theorem 17. Algorithm 7 returns a δ-approximate solution of (P) and takes at
most

(5.12) 2
√
2‖A‖1,2

√

D2

σ2

[

1
β

⌈

log2

(

ln ρ
ln(1+τ)

)⌉

+ (1 + τ)(1 + β)
(

1 + 1
δ

)

]

steps of the smooth optimization subroutine. If β and τ are constants, this becomes

(5.13) O

(

‖A‖1,2
√

D2

σ2

(

ln ln ρ+ 1
δ

)

)

.

A reasonable practical choice of the paramaters β and τ is

(5.14) β =
√
δ, τ = 1

2 (
√

1 + 4β
ln 2 − 1).

CONVEX MINIMIZATION IN RELATIVE SCALE 17

5.4. A direct representation of the objective function. We can get rid
of the dependence on ‖A‖1,2 in (5.13) by identifying E2 with E∗

1 (and consequently
E1 with E∗

2). In this case we can simply choose A = I and consider the following
structural model for the objective function:

ϕ(x) = max
g

{〈g, x〉 : g ∈ Q2}.

Let us set ‖g‖2 = ‖g‖∗1 = ‖g‖∗G and select the following prox-function for Q2 (with
center at the origin):

d2(g) =
1
2 (‖g‖

∗
G)

2.

Clearly σ2 = 1 and D2 ≤ 1
2ρ

2; the second inequality follows from the ellipsoidal
rounding inclusion (3.1). Also observe that since ‖ · ‖∗2 ≡ ‖ · ‖1, we have

‖A‖1,2 = max{‖Ax‖∗2 : ‖x‖1 = 1} = max{‖x‖1 : ‖x‖1 = 1} = 1.

Substituting the values of these parameters into (5.13) gives the complexity

O
(

ρ
(

1
δ + ln ln ρ

))

.

Remark 1. Observe that, in principle, we do not lose generality by “excluding” A
because we can simply set the “new” Q2 to be equal to the “old” A∗Q2. However, this
sacrifice in modeling flexibility means that Q2 always coincides with ∂ϕ(0), which has
to be of a simple structure for the algorithm to work efficiently. This is mainly due
to the need to compute derivatives of ϕµ, which amounts to solving (5.7)—a concave
quadratic maximization problem over Q2. If this problem can not be solved efficiently
(say in a closed form), the method will likely be impractical.

6. Scaling and complexity.

6.1. Scaling. It is natural to ask the following question: how do the “relative-
scale” algorithms developed in this paper perform when we scale the objective func-
tion? Note that if we replace A by tA for some t > 0 (effectively scaling ϕ by t > 0),
then (3.1) holds with G replaced by t2G. Therefore, the inequalities in Section 3.3
are valid and so are all the results of this paper. Note that, in particular, the values
of ρ and ‖A‖1,2 remain unchanged. Looking at (4.4), (4.12), (4.14), (4.21) and (5.13)
we see that the iteration complexities of the algorithms discussed in the paper are not
affected by scaling.

6.2. Complexity comparison. Table 1 compares the iteration complexities of
the algorithms discussed in this paper.

Table 1
Summary of iteration complexities

Method Name Algorithm # Number of iterations
SubSearch 2 O(ρ2δ−2 lnρ)
SubBis 3 O(ρ2δ−2 + ρ2 ln ln ρ)
SubSearchNR 4 O(ρ2δ−2 lnρ)
SubBisNR 5 O(ρ2δ−2 + ρ2 lnρ)
SmoothBis 7 O(ρδ−1 + ρ ln lnρ)

18 PETER RICHTÁRIK

7. Applications. In this section we apply the fastest of the algorithms developed
in this paper—the bisection algorithm based on smoothing SmoothBis —to several
problems of the form (P).

7.1. Minimizing the maximum of absolute values of linear functions. In
this subsection we consider problem (P) with the objective function from Example 3:

(7.1) min{ϕ∞(x) : x ∈ L}.

Many seemingly unrelated problems can be reformulated in the above form. For
example, by (7.1) one can model

• the truss topology design problem,
• the problem of the construction of a c-optimal statistical design, and
• the problem of finding a solution of an underdetermined linear system having
the smallest ℓ1 norm.

In all the examples above the feasible set L is a hyperplane. We will now show how one
can solve problem (7.1) using the results of Section 5. A different approach for solving
the problems above, simultaneously and in relative scale, was recently proposed by
Richtárik [17, 19]. The iteration complexity is also O(1δ), but the approach uses very
different techniques.

Applying the algorithm. We will work with the last of the three representations
for the objective function from Example 3:

ϕ∞(x) = max{|〈ai, x〉| : i = 1, 2, . . . ,m} = max
y

{〈Ax, y〉 : y ∈ Q2},

with Q2 being the unit simplex inR2m and A the 2m×nmatrix with rows ai,−ai, i =
1, . . . ,m. In addition, assume that the vectors ai, i = 1, 2, . . . ,m, span E∗

1 = Rn. It
seems natural to choose ‖y‖2 :=

∑

i |y(i)| so that ‖y‖2 = 1 for all y ∈ Q2. If we let

d2(y) := ln 2m+

2m
∑

i=1

y(i) ln y(i),

and define 0 × ln 0 := limτ↓0 τ ln τ = 0, then by the following lemma, d2 is a prox-
function on Q2 with center y0 := (1

2m , . . . , 1
2m).

Lemma 18. The prox-function d2 is strongly convex on Q2, with respect to ‖ · ‖2,
with convexity parameter σ2 = 1.

Proof. It suffices to show that d2(y) ≥ 1
2‖y − y0‖22. This can be proved by

elementary means using only the Cauchy-Schwarz inequality (see, eg. Borwein and
Lewis [4, Exercise 3.3.25(d)]) or, using differentiation and properties of convex func-
tions (Nesterov [13, Lemma 3]).

It is easy to see that D2 = sup{d2(y) : y ∈ Q2} = ln 2m (the supremum is
attained at each of the boundary vertices). Finally, let us compute the norm of the
linear operator A:

‖A‖1,2 = max
‖x‖1=1

‖Ax‖∗2 = max
‖x‖G=1

‖Ax‖∞ = max
‖x‖G=1

ϕ(x)
(3.5)

≤ ρ.

In view of (5.9) we have γµ ≤ ρ2

µ . It is shown in Nesterov [13, Lemma 4] that

ϕµ(x) = µ ln

(

1
2m

m
∑

i=1

[

e〈ai,x〉/µ + e〈−ai,x〉/µ
]

)

.

CONVEX MINIMIZATION IN RELATIVE SCALE 19

Since ∂ϕ(0) = conv{±ai : i = 1, 2, . . . ,m} is a centrally symmetric subset of Rn,
we may assume that a good rounding, with ρ = O(

√
n), is available to us. It can

be computed efficiently, in O(n2m lnm) arithmetic operations. For details about
algorithms we refer to [1, 10, 14, 22, 23].

Complexity. If follows from (5.13) that Algorithm 7 has the complexity

O
(√

n lnm
(

ln lnn+ 1
δ

)

)

.

This improves the result of Nesterov [14], where the author gives the bound

O
(√

n lnm
δ lnn

)

.

7.2. Minimizing the sum of absolute values of linear functions. Consider
problem (P) with the following objective function:

ϕ1(x) =

m
∑

i=1

|〈ai, x〉|.

As usual, we assume that the vectors a1, a2, . . . , am span E∗
1.

Applying the algorithm. Let E1 = E∗
1 = Rn and E2 = E∗

2 = Rm and let us
represent ϕ1 as

(7.2) ϕ1(x) = max
y

{〈Ax, y〉 : y ∈ Q2},

where Q2 = {y ∈ Rm : |y(i)| ≤ 1, i = 1, 2, . . . ,m} and A is the m× n matrix with
rows a1, . . . , am. Usually we first find a rounding of ∂ϕ1(0) and using the rounding
operator define a norm on E1. Because of the simple structure of Q2, we will instead
start by defining ‖y‖2 := (

∑

i(y
(i))2)1/2 and noting that this leads to a

√
m-rounding

of Q2:

(7.3) B(I, 1) ⊆ Q2 ⊆ B(I,
√
m),

with I : Rm → Rm denoting the identity operator. We will show now how this
naturally leads to a rounding operator defined on E1 enjoying the same quality of
rounding.

Lemma 19 (Nesterov [15, Lemma 2]). If the vectors a1, . . . , am span Rm, then
‖x‖1 := ‖Ax‖∗2 defines a norm on Rn. Moreover, if we let G := ATA (a positive
definite matrix), then ‖ · ‖1 ≡ ‖ · ‖G and B(G, 1) ⊆ ∂ϕ(0) = ATQ2 ⊆ B(G,

√
m).

Let us define d2(y) :=
1
2‖y‖22, so that the convexity parameter of this prox-function

is σ2 = 1. It follows from (7.3) that D2 = max{d2(y) : y ∈ Q2} ≤ 1
2m. Finally,

‖A‖1,2 = max{‖Ax‖∗2 : ‖x‖1 = 1} = max{‖x‖1 : ‖x‖1 = 1} = 1.

Complexity. It follows from (5.13) that Algorithm 7 has the complexity

O
(√

m
(

1
δ + ln lnm

))

.

This improves the following bound of Nesterov [15]

O
(√

m lnm
δ

)

.

20 PETER RICHTÁRIK

7.3. Minimizing the maximum of linear functions over a simplex. The
motivation for this problem is the computation of the value of a two-person zero-sum
matrix game with nonnegative coefficients: Let Â ∈ Rm×n be a real matrix with
nonnegative entries and rows a1, . . . , am. Consider the following game. There are two
players: a row player (R) and a column player (C). Player R chooses a probability
distribution y over the rows of matrix Â and C chooses a probability distribution
x over the columns. After that, C pays yT Âx dollars to R. Assume the players
are conservative, that is, C wishes to minimize his worst-case loss and R wants to
maximize his worst-case win. That is, C prefers to choose strategy

x∗ ∈ arg min
x∈∆n

max
y∈∆m

yT Âx,

and similarly, R wishes to choose strategy

y∗ ∈ arg max
y∈∆m

min
x∈∆n

yT Âx.

The set ∆n (resp. ∆m) denotes the unit simplex in Rn (resp. Rm). A classical result
by von Neumann [24] says that4

ϕ∗ := min
x∈∆n

max
y∈∆m

yT Âx = max
y∈∆m

min
x∈∆n

yT Âx.

The value ϕ∗ is called the value of the game. Note that if we let Q1 := ∆n and

ϕ(x) = max{〈ai, x〉 : i = 1, 2, . . . ,m},

then we can write ϕ∗ = minx{ϕ(x) : x ∈ Q1}.
Applying the algorithm. First observe that

∂ϕ(0) = conv{ai : i = 1, 2, . . . ,m},

which fails to satisfy (2.1) due to the assumption on nonnegativity of the entries of Â.
To remedy this situation, we will follow a trick suggested Nesterov [14]. Notice that
we are interested in ϕ as defined on ∆n only, which is a subset of the nonnegative
orthant. Let us therefore define

ϕ̂(x)
def
= max{〈ai, |x|〉 : i = 1, 2, . . . ,m},

where |x| = (|x1|, . . . , |xn|) and observe that ϕ̂(x) = ϕ(x) for all x ∈ Rn
+, and

∂ϕ̂(0) = conv
m
⋃

i=1

{g : −ai ≤ g ≤ ai}.

It is particularly interesting to note that ∂ϕ̂(0) is a sign-invariant set, one that with
every point g contains all points obtained by arbitrarily changing the signs of the
coordinates of g. In fact, ∂ϕ̂(0) is the smallest sign-invariant set containing ∂ϕ(0).
Nesterov shows that sign-invariant convex bodies admit a more efficient rounding
algorithm than the more general centrally-symmetric sets mainly due to the possibility
of working only with diagonal positive definite matrices defining the rounding.

4For a modern proof based on Fenchel duality, we refer to, for example, Exercise 4.2.16 in Borwein
and Lewis [4].

CONVEX MINIMIZATION IN RELATIVE SCALE 21

Instead of rounding ∂ϕ(0) one can therefore find an ellipsoidal rounding of ∂ϕ̂(0)
(defined by a diagonal positive definite matrix G) with ρ = O(

√
n) and then deduce

inequality (3.5), which holds for all x ∈ Rn
+ (Nesterov [14, Lemma 5]). Smoothing of

ϕ (and hence of ϕ̂ on the domain of interest) can be performed in complete analogy
with the situation in Subsection 7.1. The choice of the representation of the objective
function, the choice of the prox-function forQ2 and the implied bounds are all identical
(the only change is that the dimension drops from 2m to m).

Complexity. The iteration complexity of Algorithm 3 as applied to the problem of
computing the value of a two-person matrix game with nonnegative coefficients is:

O
(√

n lnm
(

1
δ + ln lnn

)

)

.

This improves the result of Nesterov [14, Algorithm 4.4], where the author gives the
bound

O
(√

n lnm
δ lnn

)

.

8. Computational experiments. In this section we perform computational
tests on problems of the structure described in Section 7.1:

min{ϕ∞(x) ≡ max{|〈ai, x〉|, i = 1, . . . ,m} : 〈d, x〉 = 1}.(8.1)

All experiments were done on a Windows XP desktop with Intel Core 2 Quad Q8300
CPU @2.5GHz with 3.46GB of RAM. Algorithm 7 is run with constants β, τ as given
in (5.14). Rounding of the centrally symmetric set ∂ϕ∞(0) = conv{±ai, i = 1, . . . ,m}
was in all cases done by Khachyian’s algorithm [9] with ρ = 1.1

√
n.

8.1. Data: truss topology design. The data A = [a1, . . . , am] ∈ Rn×m and
d ∈ Rn was generated using a formulation of the truss topology design (TTD) problem
in the form (8.1). For details of the the derivation we refer to [3, Section 1.3.5]
and [15, 19]. A brief description of the problem will suffice for our purposes: A 2D
rectangle of size a × b is discretized into a × b equidistant nodes. The a nodes “on
the left” are attached to a wall and a 2D force is applied at all the remaining nodes.
There are a total of a(b − 1) free nodes, the vector of forces is thus of dimension
n = 2a(b − 1). In our formulation this vector is d (and always represents a single
horizontal unit force applied at the right middle node in the rightward direction). The
TTD problem ttd(a, b) is the problem of designing a structure of bars with endpoints
in the nodes, with total weight of all the bars limited, such that the total compliance
of the truss is minimized. Compliance is a quantity proportial to the work performed
by the system after the forces are applied until the nodes and bars are displaced to
equilibrium. Dimension m represents the total number of potential bars. In all of the
problems we allow any two nodes to be connected, overlapping bars are not allowed.

8.2. Rounding. Table 2 lists six ttd(a, b) test problems and quantities L0, R0, q0
and ρ obtained after the initial rounding phase (i.e., computation ofG satisfying (3.1)).
For convenience, matrix A has in each case been scaled so that the optimal value of
each problem is 1. This does not affect the algorithms (see Section 6.1) and allows for
straightforward comparison between methods that work in relative scale and absolute
scale due to the fact these two notions then coincide.

Note that for all problems ϕ(x0) is already quite close to the optimal value. It is
within 2.7% of optimum in the ttd(5, 5) case, and within a factor of 2.33 in the ttd(9, 9)

22 PETER RICHTÁRIK

Table 2
Initialization by ellipsoidal rounding (ϕ∗ = 1)

problem n m L0 = ‖x0‖G R0 = ϕ(x0) q0 = R0/L0 ρ = 1.1
√
n

ttd(3, 3) 12 28 0.4005 1.4188 3.5429 3.8105
ttd(5, 5) 40 200 0.4053 1.0266 2.5332 6.9570
ttd(7, 7) 84 748 0.3855 1.9134 4.9634 10.0817
ttd(9, 9) 144 2040 0.3717 2.3301 6.2690 13.2000
ttd(21, 5) 200 3332 0.5257 2.1363 4.0637 15.5563

case. We know from (4.2) that ϕ(x0) ≤ ρ must hold, the actual initial function values
for our problems are much better than this bound. This suggests that the rounding
stage does a very good job in pre-processing the problem for the optimization stage5.

8.3. Nonrestarting vs restarting. In this test we will contrast the behavior of
the nonrestarting variant of the subgradient search scheme (SubSearchNR) against its
restarting version (SubSearch). Let us equip both methods with the additional ability
to quit the subgradient subroutine at step k in case a point x is found for which ϕ(x) <
ϕ(x̂k−1)/c. It is particularly interesting to see what happens for extremely small values
of the decrease factor: we will choose c = 1 + 10−8. This choice essentially means
that the subgradient subroutine will be left immediately after a point is found which
is better than the current best point (it also means that the theoretical complexity of
both methods blows up). The nonrestarting method should have a clear advantage: it
starts the next subgradient subroutine from the current best point, and hence it should
not take too long before a new better point is found. In contrast, the restarting version
starts the whole process again from x0. Both methods will run their next call of the
subgradient subroutine with smaller stepsizes. Method SubSearchNR with extremely
small c can in view of (4.13) be interpreted as a subgradient method which adjusts
its stepsize as soon as it gets new information about the distance of the current best
point to the set of minimizers, which happens everytime a new best point is found.

Table 3
Nonrestarting vs restarting: ttd(9, 9)

SubSearchNR SubSearch

δ̂ δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01
10% 117 (3) 631 (6) 2,821 (69) 107,722 (433)
9% 134 (3) 703 (9) 3,666 (98) 122,493 (495)
8% 181 (31) 827 (15) 5,473 (116) 150,703 (592)
7% 207 (4) 1084 (12) 6,830 (167) 201,754 (862)
6% 223 (2) 1387 (9) 7,591 (213) 292,715 (1,125)
5% 420 (33) 1744 (5) 8,572 (278) 374,557 (1,468)

The results of this comparison, for the ttd(9, 9) problem, are given in Table 3.
For both methods we list the number of lower level subgradient iterations N it takes
to achieve a certain relative accuracy level δ̂ (this is not the target accuracy δ that
enters the method as an input). The number in the parentheses is the number of
subgradient steps in the last call of the subgradient subroutine, the one in which the
δ̂-approximate point was found. The difference between the two methods is clear.
For any given accuracy δ̂, the total number of subgradient steps of the nonrestarting
method (SubSearchNR) is approximately equal to the number of subgradient steps
of the last call of the subgradient subroutine in the restarting version (SubSearch).

5For an O(1/δ) algorithm in which the rounding and optimization stages coincide, see [19].

CONVEX MINIMIZATION IN RELATIVE SCALE 23

Notice that the choice of δ has huge effect on the performance of both methods as it
directly affects the stepsize of the subgradient subroutines. Smaller δ leads to bigger
N ∼ (1+ 1

δ2), which in turn leads to smaller stepsize κ = R√
N+1

. A similar but milder

effect occurs for the smooth methods as well: small δ increases N , which decreases
the smoothing parameter µ, which increases the Lipschitz constant Lµ of ∇ϕµ, which
in turn leads to smaller steps via (8.3) (t = Lµ/2).

8.4. Relativity speedup. In this test we compare the fastest of our methods,
SmoothBis (Algorithm 7), to Smooth (Algorithm 6) applied to the smoothed version
of each problem directly, in the spirit of Theorem 15. We set δ = 0.01 for SmoothBis

and ǫ = 0.01 for Smooth (these settings have the same meaning as ϕ∗ = 1 in all test
problems). For each of the test problems and both algorithms we list the number of
iterations N of the smooth subroutine (each comprising two subproblems of the form

(8.2)), time t in seconds, and the accuracy δ̂, ǫ̂ at termination. Both algorithms are
run for the full number of iterations, as prescribed by theory. The results are given
in Table 4 and the bar structure of the resulting optimal trusses in Figure 8.4. Note
that the method working in relative scale (SmoothBis) is faster on all test problems
except ttd(3, 3), both in terms of speed and iteration count. That is, we do not pay
for obtaining a result in relative scale; quite to the contrary, we benefit from it.

Table 4
Relativity speedup

Smooth (Alg 6), ǫ = 0.01 SmoothBis (Alg 7), δ = 0.01

problem N t ǫ̂ N (saving) t (saving) δ̂
ttd(3, 3) 2,594 0.2” < 10−20 2,990 0.3” < 10−20

ttd(5, 5) 7,863 1.1” 5.6× 10−4 6,030 (23.3%) 0.9” (21.0%) 4.9× 10−4

ttd(7, 7) 15,091 7.3” 3.6× 10−4 9,344 (38.2%) 4.2” (42.5%) 3.2× 10−4

ttd(9, 9) 22,245 54.4” 6.3× 10−4 13,053 (41.3%) 32.2” (40.8%) 5.7× 10−4

ttd(21, 5) 27,891 140.5” 4.8× 10−4 15,961 (42.8%) 77.7” (44.7%) 4.3× 10−4

bb

bb

bb

bb

bb

bb

bb

bb

bb

ttd(3, 3)

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

ttd(5, 5)

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

ttd(7, 7)

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

ttd(9, 9)

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

bb

ttd(21, 5)

Fig. 2. Bar structure of optimal trusses (δ = 0.001)

8.5. Bisection speedup. Let us now compare the smooth bisection scheme,
SubBis (Algorithm 7), with Algorithm 3.9 of Nesterov [14] (let us call it SmoothSearch)—
a smooth analogue of Algorithm 2 in which the role of the subgradient subroutine

24 PETER RICHTÁRIK

Subgrad is replaced by Smooth. The iteration complexity of SmoothSearch is

√
8eρ(1 + ln ρ)

√

ln(2m)(1 + 1
δ),

with each step comprising of two operations of type (8.2). Table 5 compares the
methods on a single problem, ttd(9, 9), for several target relative accuracies δ. Results
similar to these were observed also for the other test problems and we therefore do not
list them. In particular, for each δ and both methods, we list the number of iterations
N , running time t in seconds and the accuracy level δ̂ at termination. Both methods
are run for the full number of iterations as prescribed by the iteration complexity
analysis. For the faster method (SmoothBis) we also list the percentage savings in
iteration count and time as compared to the slower method. Notice that for both
algorithms, the number of iterations increases linearly with decreasing δ, as predicted
by the theory. In all cases the termination accuracy is higher than the target accuracy
by a bit more than an order of magnitude. Finally, observe that the advantage of
SmoothBis grows, both in speed and number of iterations, with increasing accuracy
demand.

Table 5
Bisection speedup: ttd(9, 9)

SmoothSearch SmoothBis

δ N t real δ N (saving) t (saving) real δ
0.05 6,145 18.1” 2.2× 10−3 3,289 (46.5%) 12.3” (32.0%) 2.4× 10−3

0.01 29,555 68.9” 4.8× 10−4 13,053 (55.8%) 33.7” (51.1%) 5.7× 10−4

0.005 58,818 125.0” 2.4× 10−4 24,694 (58.0%) 57.3” (54.2%) 3.0× 10−4

0.001 292,919 575.3” 4.8× 10−5 116,153 (60.4%) 225.9” (60.7%) 6.0× 10−5

0.0005 585,546 1078.1” 2.4× 10−5 229,065 (60.9%) 440.7” (59.1%) 3.0× 10−5

8.6. Algorithm 6. Steps 4–5 of Algorithm 6 are of the form

(8.2) min{〈s, x〉+ t‖x− x̄‖2G : 〈d, x〉 = 1, ‖x− x0‖G ≤ R},

where 〈d, x̄〉 = 1 and t > 0. The solution is given by

(8.3) x = x0 − 1
2(t+α)G

−1(s′ + λd), where

s′ = s+ 2tG(x0 − x̄), λ = 〈s′, x0〉, v = ‖s′ + λd‖∗G, α =

{

v
2R − t, v ≥ 2Rt,

0, otherwise.

Acknowledgments. The author is very grateful to Mike Todd for numerous
enlightening discussions and encouragement to publish these results.

REFERENCES

[1] D. Ahipaşaoğlu, P. Sun, and M. J. Todd, Linear convergence of a modified Frank-Wolfe
algorithm for computing minimum-volume enclosing ellipsoids, Optimization Methods and
Software, 23 (2008), pp. 5–19.

[2] Alexandre Belloni and Robert M. Freund, On the symmetry function of a convex set,
Math. Program., 111 (2007), pp. 57–93.

[3] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Al-
gorithms, and Engineering Applications, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2001.

CONVEX MINIMIZATION IN RELATIVE SCALE 25

[4] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization, Advanced
Books in Mathematics, Canadian Mathematical Society, 2000.

[5] F. A. Chudak and V. Eleutério, Improved approximation schemes for linear programming
relaxations of combinatorial optimization problems., in IPCO’05, Berlin, 2005.

[6] J.-L. Goffin, On convergence rates of subgradient optimization methods, Mathematical Pro-
gramming, 13 (1977), pp. 329–347.

[7] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms,
Springer-Verlag, Berlin, 1993.

[8] F. John, Extremum problems with inequalities as subsidiary conditions, in Studies and Essays,
Presented to R. Courant on his 60th Birthday January 8, 1948, New York, 1948, Wiley
Interscience, pp. 187–204.

[9] L. G. Khachiyan, Rounding of polytopes in the real number model of computation, Mathemat-
ics of Operations Research, 21 (1996), pp. 307–320.

[10] P. Kumar and E. A. Yıldırım, Minimum volume enclosing ellipsoids and core sets, Journal
of Optimization Theory and Applications, 126 (2005), pp. 1–21.

[11] Yu. Nesterov, A method for unconstrained convex minimization problem with the rate of
convergence O(1

k2), Doklady AN SSSR (translated as Soviet. Math. Docl.), 269 (1983),
pp. 543–547.

[12] , Introductory Lectures on Convex Optimization. A Basic Course, vol. 87 of Applied
Optimization, Kluwer Academic Publishers, Boston, 2004.

[13] , Smooth minimization of non-smooth functions, Mathematical Programming, 103
(2005), pp. 127–152.

[14] , Rounding of convex sets and efficient gradient methods for linear programming prob-
lems, Optimization Methods and Software, (2008), pp. 109–128.

[15] , Unconstrained convex minimization in relative scale, Mathematics of Operations Re-
search, 34 (2009), pp. 180–193.

[16] , Barrier subgradient method, CORE Discussion Paper #2008/60, (October 2008).
[17] P. Richtárik, Some Algorithms for Large-Scale Linear and Convex Minimization in Relative

Scale, PhD thesis, Cornell University, School of Operations Research and Information
Engineering, August 2007.

[18] , Approximate level method, CORE Discussion Paper #2008/83, (December 2008).
[19] , Simultaneously solving seven optimization problems in relative scale, Manuscript, (De-

cember 2008).
[20] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, USA, 1997.

Reprint of the 1970 original, Princeton Paperbacks.
[21] N. Z. Shor, Minimization Methods for Nondifferentiable Functions, Springer-Verlag, Berlin,

1985.
[22] P. Sun and R. M. Freund, Computation of minimum-volume covering ellipsoids, Oper. Res.,

52 (2004), pp. 690–706.
[23] M. J. Todd and E. A. Yıldırım, On Khachiyan’s algorithm for the computation of minimum

volume enclosing ellipsoids, Discrete Applied Mathematics, 155 (2007), pp. 1731–1744.
[24] J. von Neumann and O. Morgenstern, The Theory of Games and Economic Behavior,

Princeton University Press, Princeton, NJ, USA, 1948.

