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ABSTRACT

As expressions are developed which describe planetesotizians, it is instructive to find
probability distributions for planetesimal parametersaliimaximize growth of the planetes-
imal system. Finding such optimal distributions providkss as to the general efficiency of
planet formation, and may help astronomers to determinghghgoung systems are likely
to form planets.

We consider one such collision expression (Stewart & Leitiha009) and propose a
simple parametric model of a planetesimal system definggtiticture and the way in which
collisions occur, which allows us to pose the question ofifigadystems in which collisions
lead to maximum expected growth. We show that this leads tat vehknown in the opti-
mization literature as a “standard quadratic program”.dnegal, the quadratic function to be
minimized is non-convex, which makes the problem componatily intractable. We describe
several algorithms for solving problems of this type, angspnt probability distributions for
mass with approximately optimal growth factors.

Assuming that the planetesimal velocity distribution is¥um, we find that there are many
probability distributions of mass that are close to optini&lis might lead one to naively as-
sume that planet formation is a relatively optimal procekewever, this result ignores the
dependence of planetesimal velocity on mass, and furthdt isoequired to determine the
effects of the coupling of mass and velocity distributiom®tigh physical processes such as
aerodynamic drag, turbulence and gravitational scatietifowever, this work has demon-
strated that optimal solutions for planetesimal growth dodepend strongly on the initial

mass distribution.

Key words: planets and satellites: formation - methods: analytical

1 INTRODUCTION

The protoplanetary discs are believed to be the favoured sit
planet formation. Initially composed of gas mixed with nstellar
dust grains of varying sizes, this material will eventualsemble
itself into planets, satellites, comets, asteroids anérotibiting
debris observed in our Solar System and in others. Plarmatgtion
theories rely crucially on the criteria which govern fragiaion
or coagulation of planetesimals undergoing collisionsfr($ev
1972; Weidenschilling & Cuzzi 1993). This is true not just fore
accretion theory (Pollack 1996), which requires planet®tm in
a bottom-up process directly from the collision of dust gsaibut
also for planet formation by gravitational instability, e grains
are expected to undergo potentially enhanced collisior@ligon
in the spiral structures induced by marginally unstableqstel-
lar discs (Rice et al. 2004; Clarke & Lodato 2009), or inside t
collapsing gaseous envelopes of disc fragments (Boley &senr
2010; Nayakshin 2011).
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Collisionally growing planetesimaisencounter several ob-
stacles in their evolution towards objects approachingeikry
masses. The first is environmental in origin: aerodynamag @x-
erted by the gas on the dust tends to remove angular momentum,
causing radial drift onto the central star (Weidenschillit®77).
This drag is most effective upon grains of approximately rmet
sizes, removing dust from the system on timescales as sb@t a
few hundred years.

The second obstacle to grain growth is fragmentation as
an outcome of planetesimal-planetesimal collisions (Sceteal.
1996). The probability of fragmentation typically increaswith
grain size until the planetesimals are of approximatelyirdetre
size. Once past this bottleneck, the probability of fragiaton
begins to decrease with increasing size, and the planetbtsoan
grow more efficiently. At smaller grain sizes and lower

L In this paper, we define “planetesimals” to be rocky bodigs/éen mil-
limetre and kilometre size.



2 Duncan Forgan and Peter Ricitik

velocities, the bouncing barrier (Zsom et al. 2010; Windkredral. 10° — 3
2012) can also prevent further growth. , SV 00 em s “ ]
Stewart & Leinhardt (2009) developed a velocity-dependent 10" sl = "=~ Yw= 1000 cms s

model to describe fragmentation, which compares the retiness
kinetic energy of the systend)Xz) with the catastrophic disruption
criterion @Qzp), Where the latter quantity is fitted to a mixture of
numerical and experimental data (see section 2 for morélgjeta
By doing this, they identify a universal law for the mass oé th
largest remnant of two-body collisionsy,;.., where the number of
bodies remaining after the collision is unknown.

If we are to understand the efficiency with which protostella
disc systems will form planets, it is useful to investigateathat
extent planetesimal growth is optimized, and what distiiins of ‘ ‘ ‘
mass and velocity are required to produce optimized grofi. 10° 10° 10 10°
an optimization approach to function fully, an accuratecdgsion R, (em)
of the combined mass-velocity probability distributionégjuired,
as the gas in the protostellar disc exerts size/mass-depefaices
such as turbulence and aerodynamic drag, encoding a mass-dep
dence to any velocity distribution.

The exact form of this combined distribution is currently- un
clear (Dullemond & Dominik 2005), but our understandingns i
proving as numerical modelling progresses (see for exa@pteel 1
& Cuzzi 2007; Garaud et al. 2013, and references within)hin t Ret — (%) ’ @
meantime, we can progress lgsuming the mass and velocity m
probability distributions are independe(dnd recognising the lim-  The expression fof%, is:
itations that assumption brings). This allows us to immiedlyaap-
ply a series of standard optimization techniques. Whileaion- on
ited in physical application, our results shed light on tffiziency Qrp = @R3P 02 + qu R w2, (3)
of planet formation. . )

The structure of the paper is as follows: we begin by describ- Whereu and¢ are constants based on material properties,¢and
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Figure 1. Q% plotted againsiic; for several values of the relative ve-
locity V,..;. Note the turnover at objects with typical size of tens ofneset

ing equations which govern two-body planetesimal collisiale- andg, are scaling parameters. As with most models of planetesi-
rived by Stewart & Leinhardt (2009) in section 2. In sectiowd mal collisions, two regimes can be observed in this equatten
propose a discrete multibody model, which formalizes i)sttrec- strength” regime, where collisional outcomes are goverig the
ture of a planetesimal system based on a number of parametersPodies’ tensile strengths, and the “gravity” regime, whtteegrav-
notably the masses and velocities of the planetesimalssisys-  Itational field is more significant. The fitting of these pasers is
tem and their distribution, and ii) a probabilistic schemenhich based on data derived from numerical simulations of lowaigjo
collisions occur between planetesimals in the system. dltosvs collisions using PKDGRAV (Richardson 2000; Leinhardt 200
us to consider the notion of an expected growth factor of agiks- and previous resu_lts_ for high velocm_es (_Stewart & Leindi#?009
imal system and to search for systems with optimal (i.eaaglas ~ and references within). We pl@j,, in Figure 1 for several val-
possible) growth factors. Our model has several limitinguagp- ~ Ues of relative velocity. Note that for > 2/3 (which is typically
tions; the ramifications of our results are discussed irigeétand the case)xp will always decrease with increasing relative veloc-
the work is summarized in section 6. ity, and hence collisions are more likely to produce fragtaavith

masses less than half the total available mass.
The growth factor—the mass of the largest remnant divided
by the sum of the masses of the colliding bodies—is given by

2 TWO-BODY PLANETESIMAL COLLISIONS IN THE

STEWART-LEINHARDT PARADIGM e M _ g Qr . 4)
Mtot QQ;}D

The model of Stewart & Leinhardt (2009) describes the dolti®f
two planetesimals, with masses, andm,., and velocities; and
v;. The reduced mass kinetic energy is:

As required by the definition of%p, it can be seen that when
Qr = Qrp, We haveG = 1/2. The total number of fragments re-
maining after the collision is not quantified. In the stréngtgime,
the largest remnant is a single fragment, whereas in theitgrav
Qn = MiredVpel ) regime the largest remnant is typically a re-accumulatdibleu
27711075 ’ plle

This symmetric definition of target and projectile differs
somewhat to previous disruption models (i.e., swappiragnd i’
in this model has no effect on the expressionsfas.). The mass
of the largest remnant can be expressed as a function of theesia
and velocities of the two bodies:

mim;,

wherem...q = Ty is the reduced mass of the projectile and the
target,m:or = m; + my, andv,.; is the relative velocity between
the two objects. This is then compared to the catastroplsiwi ok

tion criterionQ%p, which is defined as the value ¢fr such that
the mass of the largest remnant,. is equal to half the total mass.
Q%p is fitted as a function of a radius equivalent to the total mass
contained in a sphere at densitycm ™3, Req: Mir = Mip (M, Myr, V5, v50). 5)
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By inputting probability distributions for mass and velyei-
distributions characterizing the frequency with which angtes-
imal of a given mass and velocity appears in a planetesimal
system—we can calculate arpected growth factor of the system
We are interested in investigating which probability disitions
result in the largest expected growth factor.

3 DISCRETE MULTIBODY MODEL (DMM)
In this section we introduce an idealized model describing

(i) the structureof a planetesimal systeiga collection of bod-
ies/planetesimals each of which has mass and velocity gieign
to a prescribed discrete set of masses and velocities),

(i) the way the planetesimalsteract/collideand

(iii) an objective measure of thgrowth potentialof the system:
expected growth factor

We consider the problem of finding planetesimal systems with
maximum expected growth factor.

3.1 Structure of a Planetesimal System

We say that a planetesimal is tfpe T;; if it has massm; and
velocity v;, where0 < m; < ma < --- < myand0 < v <

vg < --- < wy. Thatis, we considef x J planetesimal types. The
values{m;} and{v; } can be obtained by discretization of intervals

of interest; in this section we assume they are given.

LetA, £{deR" : Sd; =1, d > 0}. Thatis,A, is the

set ofn-dimensional vectors with nonnegative entries/coordisnat
adding up to 1 (probability vectors). Fixinge Ay andg € Ay,
letS(p, q) denote a (finite or infinite) system of planetesimals (bod-
ies) such that @;q; proportion of all planetesimals is of typg;
(see Figure 2). Let us pause to explore the consequencessof th
assumption:

(i) A planetesimal chosen uniformly at random frahp, q)
(a) is of typeT;; with probability p;q;,
(b) has mass; with probabilityp; = >_ . piq;,
(c) has velocity; with probabilityg; = =, pig;.

(ii) The distribution of velocities of planetesimals of féifent
masses is the same.

It is clear that (ii) is not physical, due to a variety of ditéat fac-
tors. However, it remains a useful simplification for thedibyeing,
and remains an issue to be resolved in future work (see later s
tions).

3.2 Modeling Collisions

We assume that the probability that planetesimals of typgsand
T ;» collide (we care about the order) is equal to the probalulity
randomly selecting two planetesimals of these types f&{m ¢)
(with replacement); that is, it is given by

(pia;)(Pivqjr) = Pid;Pir Gy - (6)
For finite systems this is equivalent to saying that coltisio

between any two planetesimals (not types) is equally likeiye
can easily verify that the probabilities in (6) add up to ynit

> piagpedy = Q_p)Q_a)Q_pi)Q_ar) =1 ()

Ty
ENEIRY)
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Figure 2. The area of the rectangle corresponding#e;, v;), which is
equal top;q;, gives the proportion of the planetesimals in the system
S(p, q) of typeT;;.

We further assume that when planetesimals of tyfiesand
T ;+ collide, thegrowth factorcan be written as

G(i,j,i',5") =1 = 1M i,V (5,5, €)

where, apart from constant®{ (i, ") depends om:; andm,. only,
V(4,4") depends om; andv,, only, M (z,3") = M(4',4) > 0 and
V(5,3 =V('j) =0.

In the rest of the text we will treat/ and V' as matrices in
R™T andR7*7, respectively. For instancé/ (i, ') will be the
entry in thei-th row andi’-th column of M.

Definev; ;» = ﬁ That is,v = v; is the maximum
value for whichl — 1 M (i, i")v is nonnegative.

Note that the above assumption is satisfied for the 2-body col
lision model described in section 2. Indeed, in view of (2),4nd
(3), the growth factor (4) is of the form (8), where

.. 0.5mimi/
M(i,i') = o, - ©
qs(%)372¢mto; ¢ +Qg(%)“mfo+t
V(5,5') = s + vy, (10)

pw=04,¢=17¢gs =500 andg, = 10~*. These four constants
describe weak aggregates (other constants for strong oackbe
found in Stewart & Leinhardt 2009). We will assume weak aggre
gate parameters throughout this work.

3.3 Maximizing the Expected Growth Factor

In view of (6) and (8), it is sensible to define th&pected growth
factor of a planetesimal systet$\(p, ¢) as follows:

def P A
Flp,q) = Y piaspirayGi i’ 5").

Ty
ENEXIRY)

(11)

Consider now the problem of finding probability vecters;
maximizing the expected growth factor

« def

(12)

max
PEAL, gEA

F(p,q).

In other words, we are looking for such distributions of nessand
velocities in a planetesimal system for which the averagsvtr
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factor is as |ar9_e as possible. For reasons that Wi_” be tﬁlﬁa'r, we Table 1. Summary of the optimization algorithms investigated irs thiork.
shall also consider the problem of finding the optimé#dr fixedq:
" def Method Exact? Scalable?
F*(q) = max F(p,q). (13)
peAT Convex Optimization wherf convex  Moderately
Note that 2-Coordinate Des_cent thﬁcor_lvex Yes
Nesterovl /2-solution 1/2-solution Extremely
= mix F*(q). (14) Least Squares Convexification Approximate Yes
qEA

In the Iight of _(7), (8) and (11), we can write the expected 3.4  Individual Growth Eactors
growth factor in a simpler form:
It will be useful to define growth factors for each mass, i =

1,...,1. Thatis, we defind’(p, q) to be the expected growth fac-

F(p,q) =1-3 Zpipi’M(iv i') Z 44V (5,5") tor in a random collision with a planetesimal with mass
i1’ J»J
=1— L7 T def RV
1 2(p Mp)(q Vq) (15) Fz(p: q) :e Z pi’qjqj/G(7'77',a.77]/)

Plugging (15) into (12), and noting that the expressipha/p st , ,
andg” V¢ must be nonnegative since all entries of the two matrices =Y peasgy (1= M35,V (5, 5")
M,V and vector®, q are, we obtain the following reformulation i34
of (12):

=1-1 <Z M(i,i/)pi'> > 44V (55"
il 3,37
* 1 _ 1 . T . T
Fr=l1-3 (qrglAan Vq) <prglAnIp Mp) - (18 =1-%(ei Mp)(¢"'Vq)
(18) T
Note that if V' is given by (10), theri/(1,1) is the smallest =1 Fe; Mp, (20)
. T
elemen*t ofV, whenceV'(1,1) < Jmingea, 4 Vq. On the other wheree; € R! is thei-th coordinate vector. Note that by
hand,¢* = e1 = (1,0,0,...,0)" attains this lower bound and comparing (11) and (20), using the fact that= ", pie:, we see
hence
that
V(1,1) = min ¢ Vq. a7) !
a€dy F(p,q) =Y _ piFi(p,q). (21)

This means that it is optimal for all planetesimals to hawe th ] = .
smallest velocity possible. This is not surprising as thessnaf That is, the expected growth factor of a system is equal to an
the largest remnant is a decreasing function of the impdotitg. average (expectation) of the individual expected growetoiz.

However, it is unrealistic to assume, even though it is tbécally
optimal in our model, that all planetesimals in a system héive
equal velocity. Even if we did, this velocity would depend the 4 OPTIMIZATION METHODS AND RESULTS
choiceof vy, which is in the hand of the modeler and not in the
hands of nature (the modeler constructs the{set. .., vs}). We

will thus henceforth assume that the distribution of veiesig is
known (determined via other means than from our model). With
this in mind, let us define

In this section we describe several approaches to solvingttm-
dard QP problem (19). We illustrate these approaches wamex
ples and computational insights. Table 1 summarizes thmzat-
tion techniques we have employed in this work.

g % Vg (18) 4.1 Convex Optimization

Note thatf is the impact velocity of an average collision. If M is positive semidefinite (i.e., it Mz > 0 for all ), then
It thus seems that problem (13) is a better match for our model f iS convex, and problem (19) is solvable using efficient canve
than problem (16). The former then reduces to the followipg o Optimization algorithms such as interior-point methodegt¢rov

timization problem which is known in the optimization ligture & Nemirovski (1994)) or gradient methods (Nesterov (2004))
under the namstandard quadratic prograror standard QP Example 1. For illustration, consider a system with = 10
planetesimals, each with mass = 10¢,7 = 1,2, ..., 10. It turns
min |f(p) d:eprMp . (19) out that M is positive definite and hencgis convex. Using the
PEAT CVX convex optimization package for MATLAB, we find this sys-
If p* is the optimal solution of (19), then in view of (16), the tem's optlmal distribution 191 = 0.5959, p1o = 0.4041, and
optimal expected growth factor is equal to pi = 0 fori € {2,..., 9}. This squUo_n Is pairing up low mass
and high mass planetesimals, and “missing” the more destrec
F*=1-— %f(p*). moderate mass region. By slightly favouring the low massthim

distribution reduces the probability of massive partictesliding
In section 4 we describe several approaches to solving (19), without completely removing them from the system.
i.e., to finding the optimal distribution of masses. The above example is an exception rather than a rule however;

© RAS, MNRASO000, 1-10
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Figure 3. Top Left: Optimal growth factor for each mass is close to 1. That isefmh planetesimal in the system there is another one sudhttiey collide,
the growth factor will be at least 99998. Top Right: Worst-case growth factor decreases (gets worse) withasarg mass. That is, in the worst case, growth
factor of large planetesimals may be smBbttom left: Bestp found. We plot the contribution of each planetesimal masisérsystem to the overall expected
growth factor. What is being plotted for each massis p; F’; (p, ¢) (see Equation (21)Bottom right: Expected growth factors fandividual planetesimals
of massm; for bestp found, i.e., g yielding the maximum (total) expected growth facter97%. For massn; we plot F; (p, ¢). We have useé = 3, 200.

this is becausé/ will generally not be positive definite. In such
a case, convex optimization algorithms are not applicabtevee
must try other algorithms. From now on we will hence disregar
convex optimization as an approach to solving (19).

It turns out that even whefiis not convex, a standard QP can
be solved exactly provided thdtis small (e.g.,/ < 100) — we
refer the reader to Bomze & de Klerk (2001) for further detail
However, known approaches do not work well whes large, and
this is the regime we are interested in here. We will hencel hee
settle forsuboptimal methodsmethods which are not guaranteed
theoretically to find the optimal solution - which are ableatork
in the high dimensional mode.

4.2 A Least-Squares Convexification Approach

As we depict in the bottom right panel of Figure 3, optimalusol
tions p* often appear to showdividual bodies at all masses ex-
periencing similar growth rate, i.eF; (p*, ¢) does not change with
1.

In view of (20), this empirical observation leads to thedolt
ing algorithmic idea: let ugxplicitly searchfor probability vector
p for which Mp is as close to a vector consisting of identical en-
tries as possible. Lettinge R’ be the vector of all oneg, € R,

and||z|| £' (3=, 22)!/2, this can be achieved by solving the least-
squares problem

min [g(p) = |[M5 — ]’ (22)

p>0

and then setting = 5/(e”p) so as to normalize the output
for it to form a probability vector.
Note thatyg is quadratic andonvexHence, we have replaced

© RAS, MNRASO00Q, 1-10

the nonconvex (and hence hard) QP (19) by the convex (ané&henc
tractable) QP (22).

Let us now give a theoretical justification for the above ap-
proach, which, so far, has been motivated by an empiricarobs
tion only. Assumehat if (19) is solvedvithoutrequiring thap > 0,
the solutionp™ will, in fact, satisfyp™ > 0 anyway. In that case,
the Karush-Kuhn-Tucker optimality conditions (see, e\p¢edal
& Wright (1999)) imply that

Va(p®) = Xe (23)

for some constank. However, a simple computation shows
thatVg(p*) = 2Mp*, whence2Mp* = Ae, which is what we
wanted to show.

In summary, if the constraint > 0 “need not be enforced”, it
is the thatF;(p*, q) = const for all .

4.3 A Cyclic 2-Coordinate Descent Method

Here we propose a simple algorithm for approximately sgyiD)
based on the following idea: given an approximate solufioa
Ay, one can try to improve it by picking two distinct planetealm
i,7 € {1,...,1} (i.e., two distinct coordinates of the vectgrand
reallocating their total weight; + p; among them in an optimal
way. That is, we replacg; by p;” > 0 andp; by p]” > 0 such that
pi +p] = pi+p;, so as to minimizép™) " Mp™, keeping all the
other weights constanﬁ;‘ = p,; for [ other thani andj. It turns
out that there is a closed-form solution fof andp. Hence, we
propose the following iterative algorithm:

(i) Cycle through all pairg, j and reallocate weights.
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(i) If, in the last cycle, no reallocation leads to a “suféioi”
decrease in the function value, stop. Otherwise, proceéjl to

Variants of the algorithm we propose above have appeared
in the literature under various names. For instance, in mach
learning, a similar method is known under the naseguential
minimal optimization(Platt (1998)), in optimization it is known
asblock coordinate descerfNesterov (2012), Richtarik & Takat
(2012b), Richtarik & Takat (2012a), Richtarik & Tak§2012c))
or 2-coordinate descerfNecoara et al. (2012), Beck (2012)).

In these variations the choice of the p@irj) may be random
as opposed to cyclic (randomized methods), or more thant2ieoo
nates are allowed to be changed at a time (block methodsfgor t
reallocation is allowed to be sub-optimal.

4.3.1 Exponential Discretization

In all experiments in section 5 we let the masdes;,
1,2,...,1} form a uniform discretization, in log scale, of the in-
terval [m,m] = [10~%, 10*]. That is, we choose

mi=a "tm, i=1,...,1, (24)

where o (m/m)"Y~V. Note thati — 1
log m1)/ log a.

Example 2.1f I = 4, then matrixM defined in(9) is given by
M =10"2 x M, where
0.00020300759
0.11803378641

0.00046897376
0.00000050330

= = (logm; —

0.00000021786
0.00046897376
0.27267327547
0.00108337909

0.00000000023
0.00000050330
0.00108337909
0.62990141905

0.05109400875
0.00020300759
0.00000021786
0.00000000023

M =

In general, M is nonnegative, symmetric and satisfies the fol-
lowing properties: a)M (i,7) < M (i + 1,4 + 1) for all ¢, b)
M(i,j —1) < M(i,j) forall 2 < j < iand c)M(i,5) >
M(@,j+1)fori<j<I-—1.

4.3.2 2-Coordinate Descent via Nested Discretizations

It it natural to expect that the numerical problem of solvihg
standard QP (19), even approximately, will be more diffigtilt

I is large. On the other hand, one would expect that as the dis-

cretization of the intervalm, m] gets finer, the solution stabilizes
in some sense. This leads to the following algorithmic idea:
form a sequence ofested exponential discretizatiookthe inter-
val [m,m], solving the finer-level problem using the 2-coordinate
descent method started from the solution of the problem et th
coarser level.

More formally, if at level K we have I, masses{m

mf,...,mf_=m} thenatlevek+1we consideRl, —1 masses
{mb* . mkfl 11t can be easily seen that for the exponen-
1 s Mar g

tial discretization described above, necessarily thefdhg nest-
ing property holdsm%™, = m¥ fori = 1,...,I;. That is, the
masses at levdl correspond to the odd-numbered ones. Addition-
ally, the “old” matrix M is a submatrix corresponding to the odd
numbered rows and columns of the “neW!. Letp* € R+ be an
approximate solution of (19) at discretization le¥elThen we can
definep ' € R**~! as follows:pht!, = phfori =1,... I
andpf+1 = 0 otherwise, and run the 2-coordinate descent method
for this finer discretization, using®*! as the starting point.

In Figure 4 we show the optimal probability vectqs$ for
k=1,2,3. Atlevel £k = 1 we usel; = 3 masses, at levdl = 2
weusel —2 =2-2—1 = 5 masses, and finally at levél= 3

we usels = 2 -5 — 1 = 9 masses. Note that &sincreases, the

107 L L L L )

Figure 4. Optimal solutions obtained by the 2-coordinate descenhatkt
with nested discretization. Three levels were usgd= 3 (red),Io = 5
(blue) andls = 9 (black).

10° ¢
107
-2

10

10°

107

10°F

normalized p.: min and max

-6

107
10

107 10 10 10

m,
Figure 5. Best solution found fof = 385 masses using 2-coordinate de-
scent method with nested discretizaton with 5 levels stasti¢h 7; = 25
masses. The method was run 10 times from different randaningt@rob-
ability vectorsp! € Aas. The two lines represent the minimum (red) and
maximum (blue) values gf; (normalized so thatnax; p; for each of the
10 runs is equal to 1). Note that despite the use of randorinstguoints,
the method consistently finds a similar curve. Expected tirdactor in all
cases 99% (0 = 1,000).

curve is being shifted downwards. This is to be expected @s th
sum of all probabilities for each curve is equal to 1, and tinaiper

of masses increases. In fact, the curves will converge tisvagro
ask — oo. We address the problem of convertipgnto a true
probability distribution function in section 5.3.

In Figure 5 we perform a more serious computation: we com-
pute the near optimal probability vectpi = p° using the 2-
coordinate descent method with nested discretizakiea,5 levels
andl; = 25. The calculation is repeated ten times, each time with
an initial startingp selected at random fro\25, i.e. the initialp
is of length 25, with values randomly selected under the tcaimg
that their sum be unity.
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4.4 Nesterovl/2-Solutions

Define f. = minyea, f(p) andf* = max,ea, f(p). Fixingd €
[0, 1], we say thap is ad-solution of (19) if

Let us extend this definition to the maximization problem)(12
Vectorp is ad-solution of (12) if

F*—F(p,q) <§(F" — F.),

(25)

where F, = min, F(p,q). Note that ifp is a §-solution of (19),
thenp is ad-solution of (12). Indeed,

F*—F(p,q) "2 (1-27)-(1-%f(p)
= Y(f) — fo)
(25)
< 56— )
= S[(1—%f)—(1-Lf)
= §(F*-F.).

Nesterov (1999) proved that there always exis@saolution p of
(12) of the formp = (e; + ¢;)/2 for some: # j. In other words,
for any collection of massegni, ..., m;} one can form a simple
system consisting of just two such that the expected gromdtof
of the simple system is “closer” to the optimal growth fadtean
to the worst-case growth factor:

F(p,e1) € [A(F" — F.), F"].

Since the growth factor of the worst-case system is nonivegat
this implies that the growth factor of the simple system isvaorse
than one half of the growth factor of the optimal system.
Physically, Nesterov 1/2-solutions do not possess prtibabis-
tributions that are likely to be seen in planetesimal systefiney
are however interesting mathematically, and can be usedbasis
for finding a more physically realistic near-optimal distriion.

5 RESULTS & DISCUSSION

In this section we comment on some computational insightsega
from solving the standard QP (19) with= ¢”' V¢ = 3000 and M/

as described in Section 3. As our methods can only return a sub
optimalp, we run the output from one method as input for another,
to refinep, and tend towards larger values of the expected growth
factor F'(p, q).

5.1 Optimum Growth Factors for Individual Planetesimals

Before attempting to find probability distributions whichtonize
the total growth factor, it is instructive to investigatedividual
particle-particle collisions.

The top left panel of Figure 3 shows for eaeh (xz-axis) the
value

m]aXFi(e]-,q) = m]axl — gEiTMEj =1- gmjinMij.

That is, for each mass:; in the system we find a mass; in the

system which leads to the best (highest) growth factor. rit loa
seen that in general, for amy; there is a counterpart;, such that
a collision results in a growth factor close to unity. Thisresponds
to high mass particles being able to accrete low mass pesticith

ease.
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The top right panel shows the worst case growth factor. That
is, we plot

i — mi 0,7 J— 9 -
min Fi(ej,q) = mjlnl —5e; Me;j =1— EmjaxM”.

In a sense, this particular plot illustrates some of the rhast
sic obstacles to planet formation, where the growth facijgs de-
low 50% once the particle reaches a mass around 10 gramsig@he d
towards zero corresponds to massive particles collididgsaatter-
ing.

In the bottom left and right panels of Figure 3 we consider the
bestp for this discretisation level, leading to the expected dgrow
factor

ElG]

F(p,q) =~ 0.97,

i.e., 97%. In the left panel, for each mass we plot the quantity
pi F;(p, q), which in view of (21) is theontribution of all planetes-
imals of massn; to the expected growth factdr(p, ¢). We ob-
serve thaplanetesimal types of light masses contribute more to the
overall growth factor than planetesimal types of larger sesWe
do not have a good explanation for the spikes - it is concé&diat
these are simply a byproduct of the particular numericabsth
used and not an indication of a genuine physical phenomenon.

In the bottom right panel, for each mass we plot the quan-
tity Fi(p, ¢), which in view of (20) is the expected growth factor
resulting from a random collision in the system wih individ-
ual planetesimabf typei (i.e., of massn;). We observe thain
optimal or nearly optimal systems, individual planetedsref all
masses have approximately the same expected growth factor.

The conclusion based on the bottom left and panels of Figure 3
is that it is the expected growth factorsinflividual planetesimals,
rather than planetesimal types, tend to be about equal imised
systems. This is a common feature of highly optimised diigtri
tions, and it motivated us to develop the “least-squaresyeon
fication” algorithm which attempts to explicitly find didbations
which have this feature.

5.2 Best Exponential Law

Consider probability vectors = p(8) € A; of the formp; =
p1/B87 i =1,2,...,I, whereg > 1. Clearly,
log

- ()7

Note thatp; depends omn; exponentially; that islog p; depends
onlog m; linearly, with slope— log 3/ log a.

We run an experiment with = 50 (o = 1.59986) and com-
puted 3 for which p” Mp is minimized (see (19)). We obtained
B = 1.06289 and expected growth factd?(p, q) = 98.89% (we
usedd = 1,000 ms™ ). The log-linear slope is-log 8/ log o =
—0.127; see Figure 6. This is a much shallower slower slope than
is typically observed in protoplanetary discs, e.g. theoo#al size
distribution ofa~3/® (D'Alessio et al. 2001; Natta & Testi 2004;
Williams & Cieza 2011), which we can convert naively assum-
ing constant density spheres to givex 1.8. This would suggest
that observed grain size distributions are already sulaptfor
planet formation, even ignoring dynamical effects. Howgeegen
at steeper slopes, the growth rate remains relatively Isigggest-
ing that the parameter space for protostellar discs thabubylefi-
nition, are close to optimal is quite large.

@

log(m;/m1)
log o

my
my

24)
7 @ (26)
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Best Exponential Law

Figure 6. Best exponential law (fof = 49) leads to a system with’.89%
expected growth factor and has slop@.127 (black solid line). The red line
corresponds to the vectprobtained by post-processing the best exponential
law using our 2-coordinate descent method.

5.3 Estimating the Optimal Continuous Density of Masses

Assume an exponential discretization with stepas described
above. Letc be an arbitrary constant satisfying < ¢ <
max{«a, 2}. With each mass;, i = 1,2, ..., I, we will associate

. def .
interval K; = [m; — A;, m; + A;) recursively as follows:

o A1 = (c—1)my,
e A1 = (Oél—azil)ml — A, i=1,2,...,1—1.

Note thatm; + A; = mi+1 — Ait1, SO that the intervals fully
cover[m1, mz| and are disjoint. It should be possible to prove that
the ratio A;+1/A; quickly converges tax when we choose =
(14 «)/2. Thatis, the interval§ K; } gets larger at an exponential
rate, with factorw, and we approximately have

|Kia|/|Ki| = a.

Letp € A be an optimal probability vector and define

v € pi/|Ki| = pi/(240).
The function that maps a mass € K; to v; should be seen as the
“empirical probability distribution function of a contious version
of p”. Note that optimap necessarily depends on the discretization
constantw, but that one expects that the vector of densitiesill
not depend on this. Hence, one would expect that the pieeewis
linear curve mapping the massegjin;, m;| to v; via

vi(a) = pi(@)/|Ki()|

“converges” to some stationary curve pn., m;| asa decreases

to 1, i.e., as solutions of finer discretizations are obtaineowH
ever, numerically computing; (via computingp;) is challenging

for smalla as this leads to standard quadratic programs with a huge
number of variables.

5.4 Limitations of the Analysis

We have been forced to curtail our analysis with some lirgitis-
sumptions, partially through ignorance, and partiallyptigh a de-
sire to define a problem that was initially both soluble anchpce-
hensible. We now discuss these limits here.

Above all assumptions made here, the most crucial is the inde
pendence of mass and velocity distributions. It is cleanftbe ef-
fects of aerodynamic drag, gravitational scattering,ulefce, and
even Poynting-Robertson drag, that the velocity of bodigdanet-
forming systems will be a strong function of their mass (Veeid
schilling & Cuzzi 1993; Ormel & Cuzzi 2007). The issue is how
to describe this influence. The combined effect of a number of
physical processes is difficult to characterise by modeth sas
ours. Even simple toy models which describe the processad-af
ing planetary embryos and planetesimals become rapidlytm
(Ormel & Kobayashi 2012; Laibe et al. 2013; Laibe 2013; Laibe
etal. 2013).

Future work must attempt to characterise at least some of
the dependence of velocity on mass, and relax the assumgftion
mass and velocity separability. By doing so, the model msg bé
able to incorporate the effects of impact angle (see e.qHaedt
& Stewart 2012), and begin addressing more subtle obstécles
growth such as the bouncing barrier (Zsom et al. 2010; Wimkma
etal. 2012).

In the calculation of expected growth factors, we have as-
sumed that any two bodies in the system have the same pritpabil
of collision. This again is not realistic - the effective ssosection
of each body will increase with mass. Also, if the spatiatriis
bution of bodies is a function of size the probability of ¢sithn
must reflect this. This is likely to be the case in most dist¢esys,
which will settle vertically (Goldreich & Ward 1973; Zsom at
2011; Laibe et al. 2013). Radial variations in grain size a@s®
common in protostellar and debris disc systems (cf Birh&tign-
drews 2014 and Muller et al. 2010 respectively). Indeee ntiodel
itself implicitly assumes that there are a large enough rernolb
planetesimals in the system that collisions are equivatesam-
pling with replacement, i.e. that equation 6 holds. Thisrapp
mation will begin to fail in the later stages of planet forinatas
the number of bodies of a given mass in a given location bdgins
decrease.

We have also assumed that whenever two bodies collide, it is
the mass of the largest remnant that is the most interestiagtiy
(or at least, the expected value). There are two things t® nerte:

() The mass of the other remnants produced as a result of the
collision will play a role in the future growth of the systemlgm
1993; Leinhardt & Stewart 2012), and

(i) The expected value is only one possible measure of dgrowt
potential. Other measures may be more pertinent (such asithe
ber of remnants).

The assumption that two planetesimals with the same masgeand
locity are indistinguishable is a related issue. We expbetical
composition (and porosity) of planetesimals to vary, esdgavith
distance from the star. Porosity in particular is demotgranpor-
tant in the outcome of planetesimal collisions (Meru et @lL3).

The snow line (Hayashi 1981; Sasselov & Lecar 2000) is one
example of spatial differentiation, but there are many han-
cluding processes such as crystallisation and thermakbdingeor
even the formation of chondrites (Boley & Durisen 2008). Asa
sult, using one set of strength regime parameggrand ¢ is not
realistic - these parameters should be varied between isfarc
individual rocks, e.g. collisions that follow strong impashould
use weak aggregate parameters (Stewart & Leinhardt 2009).

The paradigm set out by Stewart & Leinhardt (2009) is not
the only means by which planetesimal collision can be medell
The coagulation equation approach (Dullemond & Dominik$00
uses integro-differential equations to evolve a discretgufation
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of planetesimals in gas and dust discs, resolving processes
as rapid radial drift and differential midplane settlindiély come
across similar uncertainty in describing relative veliesit espe-
cially in the case of disc turbulence. Garaud et al. (2013) ad
stochasticity to these equations, incorporating probgalistribu-
tions for velocities rather than simply using their mearueal

These models do suggest future avenues of research, where
their expressions for relative velocities due to variouscpsses
could be incorporated. Probability distributions for @ty at dif-
ferent particle masses (e.g. Ormel & Cuzzi 2007, who devislege
relative velocity distributions in turbulence) are noivitil to gen-
erate analytically for all masses, and usually require caraiion
through numerical simulations (e.g. Carballido et al. 204Qb-
bard 2012 ). A simple first step would be to assume the distribu
tion of velocities is Maxwellian, which is indeed the case $af-
ficiently large particle sizes, and apply optimisation aitons to
this model. At this stage, it is unclear if the shallow slof@smass
probability distributions obtained in this paper will beamed as
the relative velocity is more realistically calculated.

6 CONCLUSIONS

We investigate the applicability of optimisation methodsptan-
etesimal growth. Beginning with a prescription for the gtiow
of planetesimals after a two-body collision, we develop scidi-
tised multibody model which calculates the expected grdadtor
across a planetesimal population defined by probabilityritis
tions in mass and velocity.

We assume that the mass and velocity distributions are inde-
pendent for simplicity. The matrix constructed as a resuttypi-
cally non-convex, and as a result definitively optimal Sols are
not found. We use several algorithms and heuristics to ohixer
near-optimal solutions, and find that many distributiorsulein
close to optimal planetesimal growth.

The typical near-optimal mass distribution approximates a
powerlaw, with index less than 1, which is somewhat flattenth
expected from canonical grain size distributions obselivede-
bris discs. Larger powerlaw indices are still quite effitievlass
distributions which are close to optimal display unifornogth of
planetesimals at all masses.

This is an oversimplified analysis, especially given the as-
sumption of separable mass and velocity distributionsnkwehis
simple case, we find that optimisation is non-trivial, aneltttue op-
timal distribution cannot be conclusively determined.sTisilikely
to be the case for mass and velocity distributions that arseyma-
rated, and we intend to investigate this in future work.

However, what we can demonstrate, even in these simplified
circumstances, is that the principal factor in planetebgnawth is
not the initial distribution of planetesimal mass, but eatthe ini-
tial distribution of planetesimal velocities, and how taesglocities
evolve with time.
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