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ABSTRACT

As expressions are developed which describe planetesimal collisions, it is instructive to find
probability distributions for planetesimal parameters which maximize growth of the planetes-
imal system. Finding such optimal distributions provides clues as to the general efficiency of
planet formation, and may help astronomers to determine whether young systems are likely
to form planets.

We consider one such collision expression (Stewart & Leinhardt 2009) and propose a
simple parametric model of a planetesimal system defining its structure and the way in which
collisions occur, which allows us to pose the question of finding systems in which collisions
lead to maximum expected growth. We show that this leads to what is known in the opti-
mization literature as a “standard quadratic program”. In general, the quadratic function to be
minimized is non-convex, which makes the problem computationally intractable. We describe
several algorithms for solving problems of this type, and present probability distributions for
mass with approximately optimal growth factors.

Assuming that the planetesimal velocity distribution is known, we find that there are many
probability distributions of mass that are close to optimal. This might lead one to naively as-
sume that planet formation is a relatively optimal process -however, this result ignores the
dependence of planetesimal velocity on mass, and further work is required to determine the
effects of the coupling of mass and velocity distributions through physical processes such as
aerodynamic drag, turbulence and gravitational scattering. However, this work has demon-
strated that optimal solutions for planetesimal growth do not depend strongly on the initial
mass distribution.
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1 INTRODUCTION

The protoplanetary discs are believed to be the favoured sites of
planet formation. Initially composed of gas mixed with interstellar
dust grains of varying sizes, this material will eventuallyassemble
itself into planets, satellites, comets, asteroids and other orbiting
debris observed in our Solar System and in others. Planet formation
theories rely crucially on the criteria which govern fragmentation
or coagulation of planetesimals undergoing collisions (Safronov
1972; Weidenschilling & Cuzzi 1993). This is true not just for core
accretion theory (Pollack 1996), which requires planets toform in
a bottom-up process directly from the collision of dust grains, but
also for planet formation by gravitational instability, asthe grains
are expected to undergo potentially enhanced collisional evolution
in the spiral structures induced by marginally unstable protostel-
lar discs (Rice et al. 2004; Clarke & Lodato 2009), or inside the
collapsing gaseous envelopes of disc fragments (Boley & Durisen
2010; Nayakshin 2011).

Collisionally growing planetesimals1 encounter several ob-
stacles in their evolution towards objects approaching planetary
masses. The first is environmental in origin: aerodynamic drag ex-
erted by the gas on the dust tends to remove angular momentum,
causing radial drift onto the central star (Weidenschilling 1977).
This drag is most effective upon grains of approximately metre
sizes, removing dust from the system on timescales as short as a
few hundred years.

The second obstacle to grain growth is fragmentation as
an outcome of planetesimal-planetesimal collisions (Jones et al.
1996). The probability of fragmentation typically increases with
grain size until the planetesimals are of approximately decimetre
size. Once past this bottleneck, the probability of fragmentation
begins to decrease with increasing size, and the planetesimals can
grow more efficiently. At smaller grain sizes and lower collision

1 In this paper, we define “planetesimals” to be rocky bodies between mil-
limetre and kilometre size.
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velocities, the bouncing barrier (Zsom et al. 2010; Windmark et al.
2012) can also prevent further growth.

Stewart & Leinhardt (2009) developed a velocity-dependent
model to describe fragmentation, which compares the reduced mass
kinetic energy of the system (QR) with the catastrophic disruption
criterion (Q∗

RD), where the latter quantity is fitted to a mixture of
numerical and experimental data (see section 2 for more details).
By doing this, they identify a universal law for the mass of the
largest remnant of two-body collisions,mlr, where the number of
bodies remaining after the collision is unknown.

If we are to understand the efficiency with which protostellar
disc systems will form planets, it is useful to investigate to what
extent planetesimal growth is optimized, and what distributions of
mass and velocity are required to produce optimized growth.For
an optimization approach to function fully, an accurate description
of the combined mass-velocity probability distribution isrequired,
as the gas in the protostellar disc exerts size/mass-dependent forces
such as turbulence and aerodynamic drag, encoding a mass depen-
dence to any velocity distribution.

The exact form of this combined distribution is currently un-
clear (Dullemond & Dominik 2005), but our understanding is im-
proving as numerical modelling progresses (see for exampleOrmel
& Cuzzi 2007; Garaud et al. 2013, and references within). In the
meantime, we can progress byassuming the mass and velocity
probability distributions are independent(and recognising the lim-
itations that assumption brings). This allows us to immediately ap-
ply a series of standard optimization techniques. While more lim-
ited in physical application, our results shed light on the efficiency
of planet formation.

The structure of the paper is as follows: we begin by describ-
ing equations which govern two-body planetesimal collisions de-
rived by Stewart & Leinhardt (2009) in section 2. In section 3we
propose a discrete multibody model, which formalizes i) thestruc-
ture of a planetesimal system based on a number of parameters,
notably the masses and velocities of the planetesimals in the sys-
tem and their distribution, and ii) a probabilistic scheme in which
collisions occur between planetesimals in the system. Thisallows
us to consider the notion of an expected growth factor of a planetes-
imal system and to search for systems with optimal (i.e., as large as
possible) growth factors. Our model has several limiting assump-
tions; the ramifications of our results are discussed in section 5 and
the work is summarized in section 6.

2 TWO-BODY PLANETESIMAL COLLISIONS IN THE
STEWART-LEINHARDT PARADIGM

The model of Stewart & Leinhardt (2009) describes the collision of
two planetesimals, with massesmi andmi′ , and velocitiesvj and
vj′ . The reduced mass kinetic energy is:

QR =
mredv

2
rel

2mtot
, (1)

wheremred =
mim

i′

mtot
is the reduced mass of the projectile and the

target,mtot = mi + mi′ , andvrel is the relative velocity between
the two objects. This is then compared to the catastrophic disrup-
tion criterionQ∗

RD, which is defined as the value ofQR such that
the mass of the largest remnantmlr is equal to half the total mass.
Q∗

RD is fitted as a function of a radius equivalent to the total mass
contained in a sphere at density1g cm−3, RC1:

Figure 1. Q∗

RD plotted againstRC1 for several values of the relative ve-
locity Vrel. Note the turnover at objects with typical size of tens of metres.

RC1 =

„

3mtot

4π

« 1

3

. (2)

The expression forQ∗

RD is:

Q∗

RD = qsR
9µ

3−2φ

C1 v2−3µ
rel + qgR3µ

C1v
2−3µ
rel , (3)

whereµ andφ are constants based on material properties, andqs

andqg are scaling parameters. As with most models of planetesi-
mal collisions, two regimes can be observed in this equation: the
“strength” regime, where collisional outcomes are governed by the
bodies’ tensile strengths, and the “gravity” regime, wherethe grav-
itational field is more significant. The fitting of these parameters is
based on data derived from numerical simulations of low velocity
collisions using PKDGRAV (Richardson 2000; Leinhardt 2000),
and previous results for high velocities (Stewart & Leinhardt 2009
and references within). We plotQ∗

RD in Figure 1 for several val-
ues of relative velocity. Note that forµ > 2/3 (which is typically
the case),Q∗

RD will always decrease with increasing relative veloc-
ity, and hence collisions are more likely to produce fragments with
masses less than half the total available mass.

The growth factor—the mass of the largest remnant divided
by the sum of the masses of the colliding bodies—is given by

G
def
=

mlr

mtot
= 1 −

QR

2Q∗

RD

. (4)

As required by the definition ofQ∗

RD, it can be seen that when
QR = Q∗

RD, we haveG = 1/2. The total number of fragments re-
maining after the collision is not quantified. In the strength regime,
the largest remnant is a single fragment, whereas in the gravity
regime the largest remnant is typically a re-accumulated rubble
pile.

This symmetric definition of target and projectile differs
somewhat to previous disruption models (i.e., swappingi and i′

in this model has no effect on the expression formlr). The mass
of the largest remnant can be expressed as a function of the masses
and velocities of the two bodies:

mlr = mlr(mi, mi′ , vj , vj′). (5)
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By inputting probability distributions for mass and velocity—
distributions characterizing the frequency with which a planetes-
imal of a given mass and velocity appears in a planetesimal
system—we can calculate anexpected growth factor of the system.
We are interested in investigating which probability distributions
result in the largest expected growth factor.

3 DISCRETE MULTIBODY MODEL (DMM)

In this section we introduce an idealized model describing

(i) the structureof a planetesimal system(a collection of bod-
ies/planetesimals each of which has mass and velocity belonging
to a prescribed discrete set of masses and velocities),

(ii) the way the planetesimalsinteract/collideand
(iii) an objective measure of thegrowth potentialof the system:

expected growth factor.

We consider the problem of finding planetesimal systems with
maximum expected growth factor.

3.1 Structure of a Planetesimal System

We say that a planetesimal is oftype Tij if it has massmi and
velocity vj , where0 < m1 < m2 < · · · < mI and0 < v1 <
v2 < · · · < vJ . That is, we considerI ×J planetesimal types. The
values{mi} and{vj} can be obtained by discretization of intervals
of interest; in this section we assume they are given.

Let ∆n
def
= {d ∈ R

n :
P

di = 1, d > 0}. That is,∆n is the
set ofn-dimensional vectors with nonnegative entries/coordinates
adding up to 1 (probability vectors). Fixingp ∈ ∆I andq ∈ ∆J ,
letS(p, q) denote a (finite or infinite) system of planetesimals (bod-
ies) such that apiqj proportion of all planetesimals is of typeTij

(see Figure 2). Let us pause to explore the consequences of this
assumption:

(i) A planetesimal chosen uniformly at random fromS(p, q)

(a) is of typeTij with probabilitypiqj ,
(b) has massmi with probabilitypi =

P

j piqj ,
(c) has velocityvj with probabilityqj =

P

i piqj .

(ii) The distribution of velocities of planetesimals of different
masses is the same.

It is clear that (ii) is not physical, due to a variety of different fac-
tors. However, it remains a useful simplification for the time being,
and remains an issue to be resolved in future work (see later sec-
tions).

3.2 Modeling Collisions

We assume that the probability that planetesimals of typesTi,j and
Ti′,j′ collide (we care about the order) is equal to the probabilityof
randomly selecting two planetesimals of these types fromS(p, q)
(with replacement); that is, it is given by

(piqj)(pi′qj′) = piqjpi′qj′ . (6)

For finite systems this is equivalent to saying that collisions
between any two planetesimals (not types) is equally likely. One
can easily verify that the probabilities in (6) add up to unity:

X

i,j,i′,j′

piqjpi′qj′ = (
X

i

pi)(
X

j

qj)(
X

i′

pi′)(
X

j′

qj′) = 1. (7)

Figure 2. The area of the rectangle corresponding to(mi, vj), which is
equal topiqj , gives the proportion of the planetesimals in the system
S(p, q) of typeTij .

We further assume that when planetesimals of typesTi,j and
Ti′,j′ collide, thegrowth factorcan be written as

G(i, j, i′, j′) = 1 − 1
2
M(i, i′)V (j, j′), (8)

where, apart from constants,M(i, i′) depends onmi andmi′ only,
V (j, j′) depends onvj andvj′ only, M(i, i′) = M(i′, i) > 0 and
V (j, j′) = V (j′, j) > 0.

In the rest of the text we will treatM andV as matrices in
R

I×I andR
J×J , respectively. For instance,M(i, i′) will be the

entry in thei-th row andi′-th column ofM .
Defineνi,i′ = 2

M(i,i′)
. That is,ν = νi,i′ is the maximum

value for which1 − 1
2
M(i, i′)ν is nonnegative.

Note that the above assumption is satisfied for the 2-body col-
lision model described in section 2. Indeed, in view of (1), (2) and
(3), the growth factor (4) is of the form (8), where

M(i, i′) =
0.5mimi′

qs(
3
4π

)
3µ

3−2φ m

3µ
3−2φ

+2

tot + qg(
3
4π

)µmµ+2
tot

, (9)

V (j, j′) = |vj + vj′ |
3µ, (10)

µ = 0.4, φ = 7, qs = 500 andqg = 10−4. These four constants
describe weak aggregates (other constants for strong rockscan be
found in Stewart & Leinhardt 2009). We will assume weak aggre-
gate parameters throughout this work.

3.3 Maximizing the Expected Growth Factor

In view of (6) and (8), it is sensible to define theexpected growth
factor of a planetesimal systemS(p, q) as follows:

F (p, q)
def
=

X

i,j,i′,j′

piqjpi′qj′G(i, j, i′, j′). (11)

Consider now the problem of finding probability vectorsp, q
maximizing the expected growth factor:

F ∗ def
= max

p∈∆I , q∈∆J

F (p, q). (12)

In other words, we are looking for such distributions of masses and
velocities in a planetesimal system for which the average growth
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factor is as large as possible. For reasons that will be clearlater, we
shall also consider the problem of finding the optimalp for fixedq:

F ∗(q)
def
= max

p∈∆I

F (p, q). (13)

Note that

F ∗ = max
q∈∆J

F ∗(q). (14)

In the light of (7), (8) and (11), we can write the expected
growth factor in a simpler form:

F (p, q) = 1 − 1
2

0

@

X

i,i′

pipi′M(i, i′)

1

A

0

@

X

j,j′

qjqj′V (j, j′)

1

A

= 1 − 1
2
(pT Mp)(qT V q). (15)

Plugging (15) into (12), and noting that the expressionspT Mp
andqT V q must be nonnegative since all entries of the two matrices
M, V and vectorsp, q are, we obtain the following reformulation
of (12):

F ∗ = 1 − 1
2

„

min
q∈∆J

qT V q

«„

min
p∈∆I

pT Mp

«

. (16)

Note that ifV is given by (10), thenV (1, 1) is the smallest
element ofV , whenceV (1, 1) 6 minq∈∆J

qT V q. On the other
hand,q∗ = e1 = (1, 0, 0, . . . , 0)T attains this lower bound and
hence

V (1, 1) = min
q∈∆J

qT V q. (17)

This means that it is optimal for all planetesimals to have the
smallest velocity possible. This is not surprising as the mass of
the largest remnant is a decreasing function of the impact velocity.
However, it is unrealistic to assume, even though it is theoretically
optimal in our model, that all planetesimals in a system willhave
equal velocity. Even if we did, this velocity would depend onthe
choiceof v1, which is in the hand of the modeler and not in the
hands of nature (the modeler constructs the set{v1, . . . , vJ}). We
will thus henceforth assume that the distribution of velocities q is
known (determined via other means than from our model). With
this in mind, let us define

θ
def
= qT V q. (18)

Note thatθ is the impact velocity of an average collision.
It thus seems that problem (13) is a better match for our model

than problem (16). The former then reduces to the following op-
timization problem which is known in the optimization literature
under the namestandard quadratic programor standard QP:

min
p∈∆I

h

f(p)
def
= pT Mp

i

. (19)

If p∗ is the optimal solution of (19), then in view of (16), the
optimal expected growth factor is equal to

F ∗ = 1 − θ
2
f(p∗).

In section 4 we describe several approaches to solving (19),
i.e., to finding the optimal distribution of masses.

Table 1.Summary of the optimization algorithms investigated in this work.

Method Exact? Scalable?

Convex Optimization whenf convex Moderately
2-Coordinate Descent whenf convex Yes
Nesterov1/2-solution 1/2-solution Extremely

Least Squares Convexification Approximate Yes

3.4 Individual Growth Factors

It will be useful to define growth factors for each massmi, i =
1, . . . , I . That is, we defineFi(p, q) to be the expected growth fac-
tor in a random collision with a planetesimal with massmi:

Fi(p, q)
def
=
X

i′,j,j′

pi′qjqj′G(i, i′, j, j′)

=
X

i′,j,j′

pi′qjqj′ (1 − 1
2
M(i, i′)V (j, j′))

= 1 − 1
2

 

X

i′

M(i, i′)pi′

!

0

@

X

j,j′

qjqj′V (j, j′)

1

A

= 1 − 1
2
(eT

i Mp)(qT V q)

(18)
= 1 − θ

2
eT

i Mp, (20)

whereei ∈ R
I is the i-th coordinate vector. Note that by

comparing (11) and (20), using the fact thatp =
P

i piei, we see
that

F (p, q) =

I
X

i=1

piFi(p, q). (21)

That is, the expected growth factor of a system is equal to an
average (expectation) of the individual expected growth factors.

4 OPTIMIZATION METHODS AND RESULTS

In this section we describe several approaches to solving the stan-
dard QP problem (19). We illustrate these approaches with exam-
ples and computational insights. Table 1 summarizes the optimiza-
tion techniques we have employed in this work.

4.1 Convex Optimization

If M is positive semidefinite (i.e., ifxT Mx > 0 for all x), then
f is convex, and problem (19) is solvable using efficient convex
optimization algorithms such as interior-point methods (Nesterov
& Nemirovski (1994)) or gradient methods (Nesterov (2004)).

Example 1.For illustration, consider a system withI = 10
planetesimals, each with massmi = 10i, i = 1, 2, . . . , 10. It turns
out thatM is positive definite and hencef is convex. Using the
CVX convex optimization package for MATLAB, we find this sys-
tem’s optimal distribution isp1 = 0.5959, p10 = 0.4041, and
pi = 0 for i ∈ {2, . . . , 9}. This solution is pairing up low mass
and high mass planetesimals, and “missing” the more destructive
moderate mass region. By slightly favouring the low mass bin, the
distribution reduces the probability of massive particlescolliding
without completely removing them from the system.

The above example is an exception rather than a rule however;

c© RAS, MNRAS000, 1–10
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Figure 3. Top Left: Optimal growth factor for each mass is close to 1. That is, foreach planetesimal in the system there is another one such that if they collide,
the growth factor will be at least0.99998. Top Right: Worst-case growth factor decreases (gets worse) with increasing mass. That is, in the worst case, growth
factor of large planetesimals may be small.Bottom left: Bestp found. We plot the contribution of each planetesimal mass inthe system to the overall expected
growth factor. What is being plotted for each massmi is piFi(p, q) (see Equation (21)).Bottom right: Expected growth factors forindividual planetesimals
of massmi for bestp found, i.e., ap yielding the maximum (total) expected growth factor≈ 97%. For massmi we plotFi(p, q). We have usedθ = 3, 200.

this is becauseM will generally not be positive definite. In such
a case, convex optimization algorithms are not applicable and we
must try other algorithms. From now on we will hence disregard
convex optimization as an approach to solving (19).

It turns out that even whenf is not convex, a standard QP can
be solved exactly provided thatI is small (e.g.,I 6 100) – we
refer the reader to Bomze & de Klerk (2001) for further details.
However, known approaches do not work well whenI is large, and
this is the regime we are interested in here. We will hence need to
settle forsuboptimal methods- methods which are not guaranteed
theoretically to find the optimal solution - which are able towork
in the high dimensional mode.

4.2 A Least-Squares Convexification Approach

As we depict in the bottom right panel of Figure 3, optimal solu-
tions p∗ often appear to showindividual bodies at all masses ex-
periencing similar growth rate, i.e.,Fi(p

∗, q) does not change with
i.

In view of (20), this empirical observation leads to the follow-
ing algorithmic idea: let usexplicitly searchfor probability vector
p for which Mp is as close to a vector consisting of identical en-
tries as possible. Lettinge ∈ R

I be the vector of all ones,̄p ∈ R
I ,

and‖x‖
def
= (
P

i x2
i )

1/2, this can be achieved by solving the least-
squares problem

min
p̄>0

h

g(p)
def
= ‖Mp̄ − e‖2

i

(22)

and then settingp = p̄/(eT p̄) so as to normalize the output
for it to form a probability vector.

Note thatg is quadratic andconvex.Hence, we have replaced

the nonconvex (and hence hard) QP (19) by the convex (and hence
tractable) QP (22).

Let us now give a theoretical justification for the above ap-
proach, which, so far, has been motivated by an empirical observa-
tion only.Assumethat if (19) is solvedwithoutrequiring thatp > 0,
the solutionp∗ will, in fact, satisfyp∗

> 0 anyway. In that case,
the Karush-Kuhn-Tucker optimality conditions (see, e.g.,Nocedal
& Wright (1999)) imply that

∇g(p∗) = λe (23)

for some constantλ. However, a simple computation shows
that∇g(p∗) = 2Mp∗, whence2Mp∗ = λe, which is what we
wanted to show.

In summary, if the constraintp > 0 “need not be enforced”, it
is the thatFi(p

∗, q) = const for all i.

4.3 A Cyclic 2-Coordinate Descent Method

Here we propose a simple algorithm for approximately solving (19)
based on the following idea: given an approximate solutionp ∈
∆I , one can try to improve it by picking two distinct planetesimals
i, j ∈ {1, . . . , I} (i.e., two distinct coordinates of the vectorp) and
reallocating their total weightpi + pj among them in an optimal
way. That is, we replacepi by p+

i > 0 andpj by p+
j > 0 such that

p+
i +p+

j = pi +pj , so as to minimize(p+)T Mp+, keeping all the
other weights constant:p+

l = pl for l other thani andj. It turns
out that there is a closed-form solution forp+

i andp+
j . Hence, we

propose the following iterative algorithm:

(i) Cycle through all pairsi, j and reallocate weights.

c© RAS, MNRAS000, 1–10
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(ii) If, in the last cycle, no reallocation leads to a “sufficient”
decrease in the function value, stop. Otherwise, proceed to(i).

Variants of the algorithm we propose above have appeared
in the literature under various names. For instance, in machine
learning, a similar method is known under the namesequential
minimal optimization(Platt (1998)), in optimization it is known
asblock coordinate descent(Nesterov (2012), Richtárik & Takáč
(2012b), Richtárik & Takáč (2012a), Richtárik & Takáˇc (2012c))
or 2-coordinate descent(Necoara et al. (2012), Beck (2012)).

In these variations the choice of the pair(i, j) may be random
as opposed to cyclic (randomized methods), or more than 2 coordi-
nates are allowed to be changed at a time (block methods), or the
reallocation is allowed to be sub-optimal.

4.3.1 Exponential Discretization

In all experiments in section 5 we let the masses{mi, i =
1, 2, . . . , I} form a uniform discretization, in log scale, of the in-
terval [m, m] = [10−6, 104]. That is, we choose

mi = αi−1m, i = 1, . . . , I, (24)

where α = (m/m)1/(I−1). Note that i − 1 = (log mi −
log m1)/ log α.

Example 2.If I = 4, then matrixM defined in(9) is given by
M = 10−3 × M̄ , where

M̄ =

2

6

6

4

0.05109400875 0.00020300759 0.00000021786 0.00000000023

0.00020300759 0.11803378641 0.00046897376 0.00000050330

0.00000021786 0.00046897376 0.27267327547 0.00108337909

0.00000000023 0.00000050330 0.00108337909 0.62990141905

3

7

7

5

.

In general,M is nonnegative, symmetric and satisfies the fol-
lowing properties: a)M(i, i) 6 M(i + 1, i + 1) for all i, b)
M(i, j − 1) 6 M(i, j) for all 2 6 j 6 i and c)M(i, j) >

M(i, j + 1) for i 6 j 6 I − 1.

4.3.2 2-Coordinate Descent via Nested Discretizations

It it natural to expect that the numerical problem of solvingthe
standard QP (19), even approximately, will be more difficultif
I is large. On the other hand, one would expect that as the dis-
cretization of the interval[m, m] gets finer, the solution stabilizes
in some sense. This leads to the following algorithmic idea:we
form a sequence ofnested exponential discretizationsof the inter-
val [m, m], solving the finer-level problem using the 2-coordinate
descent method started from the solution of the problem at the
coarser level.

More formally, if at level k we have Ik masses{m =
mk

1 , . . . , mk
Ik

= m} then at levelk+1 we consider2Ik−1 masses
{mk+1

1 , . . . , mk+1
2Ik−1}. It can be easily seen that for the exponen-

tial discretization described above, necessarily the following nest-
ing property holds:mk+1

2i−1 = mk
i for i = 1, . . . , Ik. That is, the

masses at levelk correspond to the odd-numbered ones. Addition-
ally, the “old” matrix M is a submatrix corresponding to the odd
numbered rows and columns of the “new”M . Letpk ∈ R

Ik be an
approximate solution of (19) at discretization levelk. Then we can
definepk+1 ∈ R

2Ik−1 as follows:pk+1
2i−1 = pk

i for i = 1, . . . , Ik

andpk+1
i = 0 otherwise, and run the 2-coordinate descent method

for this finer discretization, usingpk+1 as the starting point.
In Figure 4 we show the optimal probability vectorspk for

k = 1, 2, 3. At level k = 1 we useI1 = 3 masses, at levelk = 2
we useI − 2 = 2 · 2 − 1 = 5 masses, and finally at levelk = 3
we useI3 = 2 · 5 − 1 = 9 masses. Note that ask increases, the
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Figure 4. Optimal solutions obtained by the 2-coordinate descent method
with nested discretization. Three levels were used:I1 = 3 (red),I2 = 5

(blue) andI3 = 9 (black).
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Figure 5. Best solution found forI = 385 masses using 2-coordinate de-
scent method with nested discretizaton with 5 levels started with I1 = 25

masses. The method was run 10 times from different random starting prob-
ability vectorsp1 ∈ ∆25. The two lines represent the minimum (red) and
maximum (blue) values ofpi (normalized so thatmaxi pi for each of the
10 runs is equal to 1). Note that despite the use of random starting points,
the method consistently finds a similar curve. Expected growth factor in all
cases≈ 99% (θ = 1, 000).

curve is being shifted downwards. This is to be expected as the
sum of all probabilities for each curve is equal to 1, and the number
of masses increases. In fact, the curves will converge towards zero
ask → ∞. We address the problem of convertingp into a true
probability distribution function in section 5.3.

In Figure 5 we perform a more serious computation: we com-
pute the near optimal probability vectorp∗ = p5 using the 2-
coordinate descent method with nested discretization,k = 5 levels
andI1 = 25. The calculation is repeated ten times, each time with
an initial startingp selected at random from∆25, i.e. the initialp
is of length 25, with values randomly selected under the constraint
that their sum be unity.
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4.4 Nesterov1/2-Solutions

Definef∗ = minp∈∆I
f(p) andf∗ = maxp∈∆I

f(p). Fixing δ ∈
[0, 1], we say thatp is aδ-solution of (19) if

f(p) − f∗ 6 δ(f∗ − f∗). (25)

Let us extend this definition to the maximization problem (12):
Vectorp is aδ-solution of (12) if

F ∗ − F (p, q) 6 δ(F ∗ − F∗),

whereF∗ = minp F (p, q). Note that ifp is a δ-solution of (19),
thenp is aδ-solution of (12). Indeed,

F ∗ − F (p, q)
(16),(15)

= (1 − θ
2
f∗) − (1 − θ

2
f(p))

= θ
2
(f(p) − f∗)

(25)
6

θ
2
δ(f∗ − f∗)

= δ[(1 − θ
2
f∗) − (1 − θ

2
f∗)]

= δ(F ∗ − F∗).

Nesterov (1999) proved that there always exists a1
2
-solutionp of

(12) of the formp = (ei + ej)/2 for somei 6= j. In other words,
for any collection of masses{m1, . . . , mI} one can form a simple
system consisting of just two such that the expected growth factor
of the simple system is “closer” to the optimal growth factorthan
to the worst-case growth factor:

F (p, e1) ∈ [ 1
2
(F ∗ − F∗), F

∗].

Since the growth factor of the worst-case system is nonnegative,
this implies that the growth factor of the simple system is not worse
than one half of the growth factor of the optimal system.
Physically, Nesterov 1/2-solutions do not possess probability dis-
tributions that are likely to be seen in planetesimal systems. They
are however interesting mathematically, and can be used as abasis
for finding a more physically realistic near-optimal distribution.

5 RESULTS & DISCUSSION

In this section we comment on some computational insights gained
from solving the standard QP (19) withθ = qT V q = 3000 andM
as described in Section 3. As our methods can only return a sub-
optimalp, we run the output from one method as input for another,
to refinep, and tend towards larger values of the expected growth
factorF (p, q).

5.1 Optimum Growth Factors for Individual Planetesimals

Before attempting to find probability distributions which optimize
the total growth factor, it is instructive to investigate individual
particle-particle collisions.

The top left panel of Figure 3 shows for eachmi (x-axis) the
value

max
j

Fi(ej , q) = max
j

1 − θ
2
eT

i Mej = 1 − θ
2

min
j

Mij .

That is, for each massmi in the system we find a massmj in the
system which leads to the best (highest) growth factor. It can be
seen that in general, for anymi there is a counterpartmi′ such that
a collision results in a growth factor close to unity. This corresponds
to high mass particles being able to accrete low mass particles with
ease.

The top right panel shows the worst case growth factor. That
is, we plot

minFi(ej , q) = min
j

1 − θ
2
eT

i Mej = 1 − θ
2

max
j

Mij .

In a sense, this particular plot illustrates some of the mostba-
sic obstacles to planet formation, where the growth factor dips be-
low 50% once the particle reaches a mass around 10 grams. The dip
towards zero corresponds to massive particles colliding and shatter-
ing.

In the bottom left and right panels of Figure 3 we consider the
bestp for this discretisation level, leading to the expected growth
factor

E[G] = F (p, q) ≈ 0.97,

i.e., 97%. In the left panel, for each massmi we plot the quantity
piFi(p, q), which in view of (21) is thecontribution of all planetes-
imals of massmi to the expected growth factorF (p, q). We ob-
serve thatplanetesimal types of light masses contribute more to the
overall growth factor than planetesimal types of larger masses.We
do not have a good explanation for the spikes - it is conceivable that
these are simply a byproduct of the particular numerical scheme
used and not an indication of a genuine physical phenomenon.

In the bottom right panel, for each massmi we plot the quan-
tity Fi(p, q), which in view of (20) is the expected growth factor
resulting from a random collision in the system withan individ-
ual planetesimalof type i (i.e., of massmi). We observe thatin
optimal or nearly optimal systems, individual planetesimals of all
masses have approximately the same expected growth factor.

The conclusion based on the bottom left and panels of Figure 3
is that it is the expected growth factors ofindividual planetesimals,
rather than planetesimal types, tend to be about equal in optimised
systems. This is a common feature of highly optimised distribu-
tions, and it motivated us to develop the “least-squares convexi-
fication” algorithm which attempts to explicitly find distributions
which have this feature.

5.2 Best Exponential Law

Consider probability vectorsp = p(β) ∈ ∆I of the formpi =
p1/βi−1, i = 1, 2, . . . , I , whereβ > 1. Clearly,

pi

p1
= 1

βi−1

(24)
= β

−
log(mi/m1)

log α =
“

mi

m1

”

−
log β
log α

. (26)

Note thatpi depends onmi exponentially; that is,log pi depends
on log mi linearly, with slope− log β/ log α.

We run an experiment withI = 50 (α = 1.59986) and com-
putedβ for which pT Mp is minimized (see (19)). We obtained
β = 1.06289 and expected growth factorF (p, q) = 98.89% (we
usedθ = 1, 000 ms−1). The log-linear slope is− log β/ log α =
−0.127; see Figure 6. This is a much shallower slower slope than
is typically observed in protoplanetary discs, e.g. the canonical size
distribution ofa−3/5 (D’Alessio et al. 2001; Natta & Testi 2004;
Williams & Cieza 2011), which we can convert naively assum-
ing constant density spheres to givex ≈ 1.8. This would suggest
that observed grain size distributions are already sub-optimal for
planet formation, even ignoring dynamical effects. However, even
at steeper slopes, the growth rate remains relatively high,suggest-
ing that the parameter space for protostellar discs that, byour defi-
nition, are close to optimal is quite large.
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Figure 6.Best exponential law (forI = 49) leads to a system with98.89%
expected growth factor and has slope−0.127 (black solid line). The red line
corresponds to the vectorp obtained by post-processing the best exponential
law using our 2-coordinate descent method.

5.3 Estimating the Optimal Continuous Density of Masses

Assume an exponential discretization with stepα, as described
above. Let c be an arbitrary constant satisfying1 < c <
max{α, 2}. With each massmi, i = 1, 2, . . . , I , we will associate

intervalKi
def
= [mi − Ai, mi + Ai) recursively as follows:

• A1 = (c − 1)m1,
• Ai+1 = (αi − αi−1)m1 − Ai, i = 1, 2, . . . , I − 1.

Note thatmi + Ai = mi+1 − Ai+1, so that the intervals fully
cover[m1, mI ] and are disjoint. It should be possible to prove that
the ratioAi+1/Ai quickly converges toα when we choosec =
(1 + α)/2. That is, the intervals{Ki} gets larger at an exponential
rate, with factorα, and we approximately have

|Ki+1|/|Ki| ≈ α.

Let p ∈ ∆I be an optimal probability vector and define

vi
def
= pi/|Ki| = pi/(2Ai).

The function that maps a massm ∈ Ki to vi should be seen as the
“empirical probability distribution function of a continuous version
of p”. Note that optimalp necessarily depends on the discretization
constantα, but that one expects that the vector of densitiesv will
not depend on this. Hence, one would expect that the piecewise-
linear curve mapping the masses in[m1, mI ] to vi via

vi(α) = pi(α)/|Ki(α)|

“converges” to some stationary curve on[m1, mI ] asα decreases
to 1, i.e., as solutions of finer discretizations are obtained. How-
ever, numerically computingvi (via computingpi) is challenging
for smallα as this leads to standard quadratic programs with a huge
number of variables.

5.4 Limitations of the Analysis

We have been forced to curtail our analysis with some limiting as-
sumptions, partially through ignorance, and partially through a de-
sire to define a problem that was initially both soluble and compre-
hensible. We now discuss these limits here.

Above all assumptions made here, the most crucial is the inde-
pendence of mass and velocity distributions. It is clear from the ef-
fects of aerodynamic drag, gravitational scattering, turbulence, and
even Poynting-Robertson drag, that the velocity of bodies in planet-
forming systems will be a strong function of their mass (Weiden-
schilling & Cuzzi 1993; Ormel & Cuzzi 2007). The issue is how
to describe this influence. The combined effect of a number of
physical processes is difficult to characterise by models such as
ours. Even simple toy models which describe the processes affect-
ing planetary embryos and planetesimals become rapidly complex
(Ormel & Kobayashi 2012; Laibe et al. 2013; Laibe 2013; Laibe
et al. 2013).

Future work must attempt to characterise at least some of
the dependence of velocity on mass, and relax the assumptionof
mass and velocity separability. By doing so, the model may also be
able to incorporate the effects of impact angle (see e.g. Leinhardt
& Stewart 2012), and begin addressing more subtle obstaclesto
growth such as the bouncing barrier (Zsom et al. 2010; Windmark
et al. 2012).

In the calculation of expected growth factors, we have as-
sumed that any two bodies in the system have the same probability
of collision. This again is not realistic - the effective cross section
of each body will increase with mass. Also, if the spatial distri-
bution of bodies is a function of size the probability of collision
must reflect this. This is likely to be the case in most disc systems,
which will settle vertically (Goldreich & Ward 1973; Zsom etal.
2011; Laibe et al. 2013). Radial variations in grain size arealso
common in protostellar and debris disc systems (cf Birnstiel & An-
drews 2014 and Müller et al. 2010 respectively). Indeed, the model
itself implicitly assumes that there are a large enough number of
planetesimals in the system that collisions are equivalentto sam-
pling with replacement, i.e. that equation 6 holds. This approxi-
mation will begin to fail in the later stages of planet formation as
the number of bodies of a given mass in a given location beginsto
decrease.

We have also assumed that whenever two bodies collide, it is
the mass of the largest remnant that is the most interesting quantity
(or at least, the expected value). There are two things to note here:

(i) The mass of the other remnants produced as a result of the
collision will play a role in the future growth of the system (Blum
1993; Leinhardt & Stewart 2012), and

(ii) The expected value is only one possible measure of growth
potential. Other measures may be more pertinent (such as thenum-
ber of remnants).

The assumption that two planetesimals with the same mass andve-
locity are indistinguishable is a related issue. We expect chemical
composition (and porosity) of planetesimals to vary, especially with
distance from the star. Porosity in particular is demonstrably impor-
tant in the outcome of planetesimal collisions (Meru et al. 2013).

The snow line (Hayashi 1981; Sasselov & Lecar 2000) is one
example of spatial differentiation, but there are many others, in-
cluding processes such as crystallisation and thermal annealing, or
even the formation of chondrites (Boley & Durisen 2008). As are-
sult, using one set of strength regime parametersqs andφ is not
realistic - these parameters should be varied between impacts for
individual rocks, e.g. collisions that follow strong impacts should
use weak aggregate parameters (Stewart & Leinhardt 2009).

The paradigm set out by Stewart & Leinhardt (2009) is not
the only means by which planetesimal collision can be modelled.
The coagulation equation approach (Dullemond & Dominik 2005)
uses integro-differential equations to evolve a discrete population
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of planetesimals in gas and dust discs, resolving processessuch
as rapid radial drift and differential midplane settling. They come
across similar uncertainty in describing relative velocities, espe-
cially in the case of disc turbulence. Garaud et al. (2013) add
stochasticity to these equations, incorporating probability distribu-
tions for velocities rather than simply using their mean values.

These models do suggest future avenues of research, where
their expressions for relative velocities due to various processes
could be incorporated. Probability distributions for velocity at dif-
ferent particle masses (e.g. Ormel & Cuzzi 2007, who developthese
relative velocity distributions in turbulence) are non-trivial to gen-
erate analytically for all masses, and usually require confirmation
through numerical simulations (e.g. Carballido et al. 2010; Hub-
bard 2012 ). A simple first step would be to assume the distribu-
tion of velocities is Maxwellian, which is indeed the case for suf-
ficiently large particle sizes, and apply optimisation algorithms to
this model. At this stage, it is unclear if the shallow slopesfor mass
probability distributions obtained in this paper will be retained as
the relative velocity is more realistically calculated.

6 CONCLUSIONS

We investigate the applicability of optimisation methods to plan-
etesimal growth. Beginning with a prescription for the growth
of planetesimals after a two-body collision, we develop a discre-
tised multibody model which calculates the expected growthfactor
across a planetesimal population defined by probability distribu-
tions in mass and velocity.

We assume that the mass and velocity distributions are inde-
pendent for simplicity. The matrix constructed as a result is typi-
cally non-convex, and as a result definitively optimal solutions are
not found. We use several algorithms and heuristics to determine
near-optimal solutions, and find that many distributions result in
close to optimal planetesimal growth.

The typical near-optimal mass distribution approximates a
powerlaw, with index less than 1, which is somewhat flatter than
expected from canonical grain size distributions observedin de-
bris discs. Larger powerlaw indices are still quite efficient. Mass
distributions which are close to optimal display uniform growth of
planetesimals at all masses.

This is an oversimplified analysis, especially given the as-
sumption of separable mass and velocity distributions. Even in this
simple case, we find that optimisation is non-trivial, and the true op-
timal distribution cannot be conclusively determined. This is likely
to be the case for mass and velocity distributions that are not sepa-
rated, and we intend to investigate this in future work.

However, what we can demonstrate, even in these simplified
circumstances, is that the principal factor in planetesimal growth is
not the initial distribution of planetesimal mass, but rather the ini-
tial distribution of planetesimal velocities, and how these velocities
evolve with time.
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