
SOME ALGORITHMS FOR LARGE-SCALE LINEAR

AND CONVEX MINIMIZATION IN RELATIVE SCALE

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Peter Richtárik

August 2007

c© 2007 Peter Richtárik

ALL RIGHTS RESERVED

SOME ALGORITHMS FOR LARGE-SCALE LINEAR AND CONVEX

MINIMIZATION IN RELATIVE SCALE

Peter Richtárik, Ph.D.

Cornell University 2007

This thesis is concerned with the study of algorithms for approximately solv-

ing large-scale linear and nonsmooth convex minimization problems within a pre-

scribed relative error δ of the optimum. The methods we propose converge in

O(1/δ2) or O(1/δ) iterations of a first-order type. While the theoretical lower

iteration bound for approximately solving (in the absolute sense) nonsmooth con-

vex minimization problems in the black-box computational model of complexity

is O(1/ǫ2), the algorithms developed in this thesis are able to perform better by

effectively utilizing the information about the structure of the problems.

Chapter 1 contains a brief account of the relevant part of complexity theory

for convex optimization problems. This is done in order to be able to better

communicate the proper setting of our work within the current literature. We

finish with concise synopses of the following chapters.

In Chapter 2 we study the general problem of unconstrained convex minimiza-

tion in relative scale. Algorithms of this type are hard to find in the literature and

are known perhaps only for a narrow class of specialized transportation problems.

It was recently suggested by Nesterov [23], [22] that this problem can be efficiently

treated via a conic reformulation and by utilizing the information gained from the

computation of a pair of John ellipsoids for the subdifferential of the objective

function evaluated at the origin. Our main contribution is the improvement of the

theoretical performance of the algorithms in the cited papers by incorporating a

simple bisection idea. We also show that it is possible to design potentially more

practical “nonrestarting” versions of these methods at no or only negligible cost in

their theoretical guarantees.

In Chapter 3 we consider the geometric problem of finding the intersection of

a line and a centrally symmetric convex body Q given as the convex hull of a

collection of points. Our algorithms produce a sequence of ellipsoids inscribed in

Q, “converging” towards the intersection points. It turns out that in doing so

we simultaneously solve a number of closely related problems such as the problem

of finding the minimum ℓ1 norm solution of a full rank underdetermined linear

system, minimizing the maximum of absolute values of linear functions, or linear

optimization over the polytope polar to Q. We finish the discussion by describing

applications to truss topology design and optimal design of statistical experiments.

BIOGRAPHICAL SKETCH

Peter was born at midnight in mid-September of 1977 in Nitra, the historical center

Slovakia. In 1996 he started his studies at Comenius University in Bratislava,

simultaneously at the Faculty of Management and Faculty of Mathematics, Physics

and Informatics. He graduated in 2001 with two bachelor’s and one master’s

degree, all summa cum laude. In the Fall of 2002, he was fortunate to begin his

Ph.D. studies at the School of Operations Research and Industrial Engineering

at Cornell University located in gorgeous Ithaca. In the Summer of 2003 Peter

married Marianna Ivanová and three years later, Amália was born. These were

the greatest moment of his personal life. He received his Doctor of Philosophy

degree in Operations Research in August 2007 and will be joining the Department

of Mathematical Engineering (INMA) of Catholic University of Louvain, Belgium,

as a postdoctoral researcher starting in September 2007.

iii

To my wife Marianna,

daughter Amália,

and everybody I love.

iv

ACKNOWLEDGEMENTS

This thesis would not be possible without the constant support, limitless kind-

ness and inspiration pouring from the heart and mind of my advisor, Professor

Michael J. Todd. His patience and optimism in times of slow progress always

managed to recharge my batteries. Mike has been a terrific person and a true role

model. Although I was not aware of it during the process, I can see clearly now

that under his guidance I have learned to think creatively about problems and see

light by asking the right questions. For all of this I am enormously indebted to

him.

I wish to express my thanks to the members of my special committee, Profes-

sors Adrian S. Lewis, Stephen A. Vavasis and Leonard Gross. I have truly enjoyed

Adrian’s “Nonlinear Programming” and “Convex Analysis” courses. His way of

exposition seems to have settled in me as an ideal for my own carrier. I must

express my gratitude to Professor Charles Van Loan who, during his sabbatical,

agreed to serve as a proxy for Stephen Vavasis at my defense. His “Matrix Compu-

tations” course, a rare blend of intuition and computation, was both illuminating

and entertaining.

There a number of other Cornell faculty who influenced me greatly in various

ways. For example, Professor James Renegar introduced me to the field of mathe-

matical programming in my first year, and I happened to fall in love with it. Jim

also seemed to truly enjoy my budding photography skills. Alexander Bendikov’s

and Leslie Trotter’s teaching style for some reason reminded me of home. Although

I am tempted to go on and tell a little story about every faculty I had the privi-

lege to spend time with and learn from, this would surely take several pages. Let

me therefore at least mention some names. Tom Coleman, Shane Henderson, Sid

v

Resnick, Genna Samorodnitsky, David Shmoys, Éva Tardos, Huseyin Topaloglu

and David Williamson — all of these have in one way or other made the academic

part of my stay at Cornell exciting.

I have to mention at least some of the great number of friends whose company

I have enormously enjoyed. Thanks to Stefan Wild and Pascal Tomecek, I became

involved with playing ice hockey in the final three years at Cornell. It was fantastic!

Being a part of the “CS Megahurtz” team, chasing the puck around the ice in

shoes with sharp knives attached to them, participating in the Cornell intramurals

and winning “silver” in my final year in Ithaca and being able to form a Slovak

offensive trio with Miloš Hašan and Alexander Erdélyi every now and then was

simply unforgettable. Yurii Zinchenko has been an incredible person and friend.

He is responsible for teaching me my first table tennis skill — the top spin — and

for the many hours I had henceforth spent in the ORIE PhD lounge with my office

mates Chandrashekhar Nagarajan and Bikramjit Das and with Frans Schalekamp,

drilling our spin.

The list of friends and stories could develop into a chapter of its own. Allow me

therefore to resort only to listing the names of those who first come to mind at the

moment: Damla Ahipasaoglu, Tuncay Alparslan, Aaron Archer, Dhruv Bhargava,

Nikolai Blizniouk, Broňa Brejová, Greg Bronevetsky, Tim Carnes, Millie Chu,

Martin Dindoš, Nikolas Diener, Sam Ehrlichman, Ruženka Hostinská, Martina

Gančárová, Souvik Ghosh, Minbok Kim, Dmitriy Levchenkov, Retsef Levi, Dennis

Leventhal, Baldur Magnusson, Martin Pál, Chris Provan, Filip Radlinski, Ranjith

Rajagopalan, Bharath Rangarajan, Parthanil Roy, Spyridon Schismenos, Deniz

Sezer, Van Anh Truong, Tomáš Vinař, Tuohua Wu and Anke van Zuylen.

This research was partially supported by NSF through grants DMS-0209457

vi

and DMS-0513337 and by ONR through grant N00014-02-0057. I would not have

been able to complete the work without this support.

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . viii
List of Figures . x

1 Introduction 1
1.1 Optimization . 1
1.2 Complexity of optimization problems 2

1.2.1 Minimizing a Lipschitz function on the unit box with a zero-
order oracle . 2

1.2.2 Complexity of convex optimization problems in the first-
order black-box model . 5

1.2.3 An intrinsic problem of the black-box assumption 7
1.2.4 Structural optimization with second-order information . . . 8

1.3 A brief overview of the thesis . 9
1.4 The setting and some notation . 11

2 Improved algorithms for unconstrained nonsmooth convex mini-
mization in relative scale 14
2.1 Introduction . 14

2.1.1 Constrained sublinear minimization 16
2.1.2 Ellipsoidal rounding and key inequalities 19

2.2 Algorithms based on a subgradient subroutine 22
2.2.1 A constant step-length subgradient algorithm 22
2.2.2 Basic algorithmic ideas . 24
2.2.3 Bisection improvement . 26
2.2.4 Non-restarting algorithms 31

2.3 Algorithms based on smoothing . 36
2.3.1 The setting . 38
2.3.2 Smoothing and an efficient smooth method 41
2.3.3 The main result . 43
2.3.4 A direct representation of the objective function 45

2.4 Applications . 47
2.4.1 Minimizing the maximum of absolute values of linear functions 48
2.4.2 Minimizing the sum of absolute values of linear functions . . 50
2.4.3 Minimizing the maximum of linear functions over a simplex 52
2.4.4 Comparison of algorithms 55

2.5 Combining the rounding and subgradient phases 56
2.5.1 Khachiyan’s ellipsoidal rounding algorithm 56
2.5.2 Preliminaries . 61
2.5.3 Properties of a general rounding sequence 63

viii

2.5.4 Alternating rounding and subgradient steps 67
2.5.5 Rounding the observed part of a set 72

3 Ellipsoid algorithms for computing the intersection of a centrally
symmetric body with a line in relative scale 78
3.1 Introduction . 78
3.2 Problem formulations . 80

3.2.1 Supports, gauges and polarity 80
3.2.2 The first five problems . 86
3.2.3 Convex combinations of rank-one operators 90
3.2.4 The main problem . 92
3.2.5 Common origin of the many optimization problems 95
3.2.6 Convexity and smoothness 97
3.2.7 Optimality conditions . 103

3.3 Algorithms . 110
3.3.1 A multiplicative weight update algorithm 110
3.3.2 Ingredients of a rank-one update algorithm 112
3.3.3 Line search . 124
3.3.4 An algorithm with “increase” steps only 129
3.3.5 An algorithm with both “increase” and “decrease” steps . . 137
3.3.6 Bounding the unknown constant 140

3.4 Interpretation . 146
3.4.1 (P3): The Frank-Wolfe algorithm on the unit simplex 147
3.4.2 (P2): An ellipsoid method for LP 149
3.4.3 (D2): An Iteratively Reweighted Least Squares Algorithm . 150

3.5 Applications . 152
3.5.1 Truss topology design . 153
3.5.2 Optimal design of statistical experiments 156

Bibliography 159

ix

LIST OF FIGURES

1.1 Optimization problems are generally intractable. 4

2.1 Epigraph of a sublinear function. 17
2.2 Tight examples of rounding convex sets by ellipsoids. 20
2.3 Bisection step k. 30
2.4 Restarting from x0 versus starting from the current best point. . . 33
2.5 Algorithms of Chapter 2. 55
2.6 A single step of Khachiyan’s ellipsoidal rounding algorithm. 58
2.7 Illustration of Lemma 2.5.8. 66

3.1 Polarity (Example 3.2.11). 92
3.2 Geometry of Lemma 3.2.12 and Lemma 3.2.13. 94
3.3 Support functions of Q and B(w) and their polars. 96
3.4 Common origin of the many optimization problems. 96
3.5 Example 3.2.21. 103
3.6 The graph of ψ2 (Example 3.2.21). 103
3.7 Geometry at optimality. 107
3.8 Algorithm 10 can fail to converge to the optimum. 113
3.9 The weights w(κ) for κ ∈ [−wj ,∞]. 114
3.10 Geometry of line-search (Example 3.3.9). 122
3.11 The polar algorithm. 150
3.12 Three optimal trusses. 155
3.13 Performance of Algorithm 12 on three TTD problems. 156

x

Chapter 1

Introduction

1.1 Optimization

Continuous optimization is the study of maximization or minimization of a contin-

uous real-valued function ϕ (objective function) over some set Q (feasible region).

It is customary in the literature to focus on minimization problems since maxi-

mization can always be treated as the minimization of −ϕ. For simplicity, let us

assume that Q ⊆ Rn. Our general optimization problem therefore takes on the

following form:

ϕ∗ ← minimize ϕ(x)

subject to x ∈ Q. (OP)

A feasible point x∗ is globally optimal (a global minimizer) if ϕ(x∗) ≤ ϕ(x) for

all x ∈ Q. It is locally optimal (a local minimizer) if ϕ(x∗) ≤ ϕ(x) for all feasible

points x from some neighborhood of x∗. If ϕ(x) ≤ ϕ∗ + ǫ for some x ∈ Q, then

x is an ǫ-approximate minimizer in absolute scale. If ϕ∗ > 0, then x ∈ Q is a

δ-approximate minimizer in relative scale if ϕ(x) ≤ (1 + δ)ϕ∗.

Optimization problems can be naturally classified as follows:

• Unconstrained problems (if Q = Rn).

• Constrained problems (if Q Rn).

• Smooth problems (if ϕ is smooth).

• Nonsmooth problems (if ϕ is not smooth).

1

2

Linear programming is the case with the objective function ϕ being linear

and Q being a polyhedron. Convex optimization is the case with ϕ and Q being

convex. In this thesis we will deal predominantly with solving nonsmooth convex

optimization problems in relative scale.

1.2 Complexity of optimization problems

As a rule, optimization problems with simpler functions and/or simple constraints

are more tractable than more general problems. An intractable problem, loosely

speaking, is one which requires enormous computational effort if we desire to solve

either an instance of high dimension, or if we wish to obtain a solution (or ap-

proximate solution) of high accuracy, or both. It turns out that in some specific

rigorous sense, most optimization problems are simply intractable. The follow-

ing subsection will illustrate this on the problem class of minimizing a Lipschitz

continuous function on the unit box.

1.2.1 Minimizing a Lipschitz function on the unit box with

a zero-order oracle

Nesterov [19] gives the following example:

Example 1.2.1. Consider the class of γ-Lipschitz continuous functions, with re-

spect to the ℓ∞ norm, on the unit box in Rn. That is, we assume that |ϕ(x) −

ϕ(y)| ≤ γ‖x−y‖∞ for all x, y ∈ Q := {x ∈ Rn : 0 ≤ x(i) ≤ 1, i = 1, 2, . . . , n}, for

all functions ϕ of this class. Our goal is to find a global minimizer on Q, within

absolute error ǫ, of a function from this class.

What computational effort do we have to be prepared to spend to solve an

3

instance from this problem class? It turns out that the most straightforward

approach, called the uniform grid method, is optimal under the zero-order black-

box model. In this model we assume that the only information that a method can

gather about the problem instance at hand comes from the answers of a zero-order

oracle. That is, at every iteration we ask about a point x ∈ Q and the oracle

answers ϕ(x).

The uniform grid method proceeds as follows. We divide the feasible region into

a fine uniform and then ask the oracle about each of the grid points, one-by-one.

The output of the method is the best point found. It can be shown easily that this

method requires at most
(⌊ γ

2ǫ

⌋

+ 2
)n

(1.1)

calls of the oracle (i.e. iterations) to output an ǫ-minimizer. Using the concept of

a resisting oracle, it can be also proved that no less than

⌊ γ

2ǫ

⌋n

(1.2)

calls of the oracle can guarantee the desired accuracy (if ǫ < γ
2
) for every member

function of this class, whatever method we use, as long as we get our information

from a zero-order oracle. Notice that if γ
ǫ

is large enough, at least some constant

fraction of n, then the bound (1.1) is at most a constant multiple of (1.2). The

uniform grid method can therefore be deemed to be optimal for the problem class

considered.

Note that in spite of the optimality of this method, this problem class is com-

putationally hopeless. The number of iterations grows so rapidly with increasing

dimension and/or accuracy requirements that, in fact, a simple problem from this

class, with parameters γ = 2 and n = 10, could require as much as 312.5 billion

4

Lower bound
(

γ
2ǫ

)n
1030 calls of the oracle

Arithmetic operations per iteration n = 10

Total complexity 1031 arithmetic operations

TRIPS processor (expected in 2010) 1012 arithmetic operations per second

Total time spent in seconds 1019 seconds

One year less than 3.2× 107 seconds

Total time needed in years 312.5 billion years

Figure 1.1: Optimization problems are generally intractable.

years to solve within ǫ = 0.001 of the global minimum on a futuristic supercom-

puter1 planned to be built no sooner than in 2010. This is more than 22 times the

age of our universe! We have taken this example from [19] and boosted the level

of dramatization a bit (see Figure 1.1).

Now imagine we want to solve the above problem with a smaller accuracy, say

ǫ = 0.1. Then we need to perform only 1011 arithmetic operations, which can be

done in a tenth of a second using the TRIPS processor. Note that the time needed

to solve the problem grows much more dramatically with the dimension.

The above example serves the purpose of illustrating several points:

• We cannot hope to find tractable methods if we deal with a prohibitively

large class of optimization problems. It is therefore desirable to concentrate

on well-defined narrow classes of problems with properties allowing for faster

methods (for example, convexity).

1“IBM and the University of Texas at Austin plan to collaborate on building
a processor capable of churning out more than 1 trillion calculations per second–
faster than many of today’s top supercomputers. A chip capable of performing 1
trillion operations, a tera-op, won’t emerge from the project until 2010” (ZDNet
News, August 27, 2003)

5

• Solving large-scale problems with high accuracy may be too much to ask for.

There might be room for finding methods which work well in either high

dimensions and low accuracies or vice versa.

• The oracle model may be too restrictive. Can we design better methods by

using more information than the oracle can give us?

1.2.2 Complexity of convex optimization problems in the

first-order black-box model

A first-order oracle outputs, apart from the value of the objective function at the

point of interest, also some first-order information. In the case of a smooth convex

function, this is the gradient, and in the case of a nonsmooth convex problem, a

(convex) subgradient.

Smooth convex problems

Consider the problem class with smooth convex objective functions with Lipschitz

continuous gradient with constant γ and convex feasibility set Q. Our goal is

to find a ǫ-approximate (in an absolute sense) global minimizer using a method

adhering to the first-order black box model. It has been well known since the 80’s

that the lower complexity bound of this problem class is

O

(√
γ

ǫ

)

.

Optimal methods matching this bound have been developed in [18], see also [19].

6

Nonsmooth convex problems

In the case of nonsmooth convex problems, which is the focus of this thesis, the first

methods proposed were the subgradient methods. They were studied intensively

in the sixties and seventies of the twentieth century by a number of researchers,

among them Y.M. Ermoliev, B.T. Polyak and N.Z. Shor. For a historical account

see, for example, Shor’s book [29].

A subgradient algorithm at every iteration takes a step in the direction of

the negative subgradient (provided by the oracle). The size of the subgradient,

unlike in the smooth setting where it points in a downhill direction, is not in-

formative and cannot drive the algorithm. To see this, think of the function

ϕ(x) = max{−x, 1000x} and consider taking a step in the direction of the negative

subgradient of ϕ at the current iterate, say x = 0.001. The subgradient is g = 1000

and its size has no relation with the distance to the minimizer — the origin. This

simple example suggests that the goal of achieving a certain guaranteed decrease

in the objective value at every iteration is out of the reach of subgradient methods.

Instead, these schemes exploit the fact that the direction of the negative subgra-

dient forms an acute (or at worst right) angle with the direction pointing from

the current iterate towards a minimizer. To ensure convergence, the step lengths

cannot drop too rapidly (they have to add up to infinity) and are usually chosen to

decrease at the rate 1/
√
k, where k is the iteration counter. However, if one wants

to run the method for a fixed number of steps, it turns out that it is theoretically

optimal to choose steps of equal lengths.

Subgradient methods require

O

(
1

ǫ2

)

(1.3)

7

iterations to converge to an approximate minimizer [9], [19]. It is known that

a simple subgradient scheme is optimal for its problem class in the first-order

black-box model, uniformly in the dimension of the problem [17] (the number

of iterations does not depend on the dimension of the variables). In this sense,

subgradient algorithms are likely to be useful in situations with huge dimensions

and low accuracy needs.

1.2.3 An intrinsic problem of the black-box assumption

As recently pointed out by Nesterov [21], [20], [24], there is a certain paradox

with the black box assumption for convex problems. If we want to be able to

apply the subgradient method to a convex problem, we need to know that is is

indeed convex. However, convexity is a very strong global property that is often

verified by inspection of the structure of the problem in a process similar to verifying

differentiability — there is a convex calculus. For example, the following operations

preserve convexity:

• Maximum of any number of convex functions.

• Nonnegative linear (conic) combination of convex functions.

• Composition of a convex function with a linear function.

• Post-composition with an increasing convex function.

For a more exhaustive list we refer the reader to Part IV.2 of [13].

Since we can apply a convex method to a problem only if we have knowledge

about its convexity and because, in turn, this knowledge comes from the structure

of the problem, we actually know something about the problem class that we are

8

willingly forgoing. Is it the case that by strict adherence to the black-box concept

we are not in the position to utilize this potential information to possibly improve

on the lower complexity bound (1.3)? The answer to this question is positive. In

the papers cited above Nesterov consider convex problems with objective func-

tion having an explicit structure and shows how to construct a smooth uniform

ǫ-approximation of this function with Lipschitz continuous gradient with a rea-

sonably small Lipschitz constant of size γ = O(1
ǫ
). He then shows that after we

apply an optimal smooth method to the smooth approximation, we can recover an

ǫ-approximate minimizer of the original nonsmooth convex problem in

O

(√
γ

ǫ

)

= O

(√

O(1/ǫ)

ǫ

)

= O

(
1

ǫ

)

(1.4)

iterations of a first-order type. This is an improvement of one order of magnitude

over the classical bound (1.3).

1.2.4 Structural optimization with second-order informa-

tion

Let us note that unlike in the case of the first-order methods, the usefulness of

structure was fully recognized in the theory of second-order methods already a

long time ago in the seminal work on interior-point methods by Nesterov and

Nemirovski [25]. For a more concise account we refer the reader to [27] and [19].

Since we do not develop any second-order methods in this thesis, we will only

mention the complexity results and give a one-sentence outline of the underlying

idea. The basic strategy is to transform the complexity of the convex objective

function into the feasible set and then instead consider a linear objective function.

The problem can then be equipped, at least theoretically, with a self-concordant

9

barrier function capturing its structure. The information in this barrier function

is then utilized to drive the methods.

Since interior-point algorithms rely on second-order information, they are able

to converge in much fewer iterations. Their theoretical complexity is

O

(√
ν ln

1

ε

)

,

where ν is a parameter of the self-concordant barrier, often representing the dimen-

sion of the problem. This dependence on the accuracy parameter is called linear

convergence. These methods tend to converge faster in practice than in theory, in

terms of their dependence on the goal accuracy, which makes them very attrac-

tive for applications where small error is crucial. One of the disadvantages is the

increased computational cost per iteration. It is generally one order of magnitude

higher, in the dimension of the problem, than in the case of first-order type meth-

ods. In this sense, first-order methods, and especially those with the improved

guarantee (1.4), are very attractive for large-scale applications where there is need

only for medium accuracy, perhaps ǫ ∈ [10−1, 10−4].

1.3 A brief overview of the thesis

In this thesis we develop first-order algorithms for solving large-scale nonsmooth

convex problems in relative scale, utilizing their structure. We develop methods

converging in O(1/δ2) or O(1/δ) iterations — δ corresponds to the desired relative

accuracy. While we have not improved further the dependence on δ, some of our

methods are less sensitive to other parameters which at this point remain hidden

by the O-notation.

10

Synopsis of Chapter 2

In this chapter we improve the algorithms of Nesterov [23], [22] for solving uncon-

strained nonsmooth convex minimization problems within a prescribed error δ in

relative scale.

We develop algorithms based on a subgradient subroutine and on Nesterov’s

smoothing technique [21]. This class of algorithms depends on the availability of

an ellipsoidal rounding of the subdifferential of the objective function at the origin.

Our main improvement is based on a simple bisection idea. We also show how to

modify these methods, at no or only negligible cost in the theoretical complexity,

to allow for perhaps desirable “nonrestarting” behavior. In the final section we

attempt to combine the rounding and optimization phases of the algorithms based

on the subgradient subroutine.

Synopsis of Chapter 3

Our main goal in this part of the thesis is to find the intersection point of a centrally

symmetric convex set Q and a line passing through the origin.

This problem can be treated with the methods of the previous chapter, as

will become apparent from the discussion. The proposed approach involves con-

structing a sequence of ellipsoids inscribed in Q, greedily “converging” towards the

intersection points. The more efficient of our algorithms can be viewed as non-

trivial modifications of Khachiyan’s ellipsoidal rounding algorithm to our problem.

While the generic structure of an iteration is identical to that of Khachiyan, we

employ a different strategy for choosing the update vector and work with a dif-

ferent line search objective function. One aspect of our contribution is therefore

showing that modifications of this type can produce meaningful sequences of ellip-

11

soids. Our algorithms can also be interpreted as performing Frank-Wolfe steps on

the unit simplex.

At the same time we consider several other closely related problems. We show

that our methods simultaneously solve all of them in O(1/δ) iterations of a first-

order type. One of these problems is the problem of minimizing the maximum

of absolute values of the linear functionals over a hyperplane. Another is the

problem of finding the smallest ℓ1 norm solution of a full-rank underdetermined

linear system. We also consider maximization of a linear functional over a centrally

symmetric polytope, the polar of Q.

Our analysis is similar to that of [15] and [33]. For related work we refer the

reader also to [16], [32] and [1].

1.4 The setting and some notation

The general setting of this thesis is a finite-dimensional real vector space E. We

follow a coordinate-free approach by not fixing any basis. Since we also do not

wish to assume the existence of a pre-existing geometry (inner product), we instead

characterize linear functionals on E in the functional-analytic spirit through the

use of the dual space E∗ — the space of all linear functionals on E. By 〈g, x〉 we

mean the action of the linear functional g ∈ E∗ on x ∈ E. By n we denote the

dimension of E (and hence of E∗).

A linear operator U : E → E∗ is positive semidefinite (we write U � 0) if

〈Ux, x〉 ≥ 0 for all x ∈ E. If the inequality is strict for x 6= 0, it is positive definite

(U ≻ 0). It is self-adjoint if 〈Ux2, x1〉 = 〈Ux1, x2〉 for all x1, x2 ∈ E.

By gg∗ : E → R, for g ∈ E∗, we mean the (rank-one) operator defined by

gg∗x := 〈g, x〉g.

12

Coordinates. Sometimes it is convenient to identify both E and E∗ with Rn

and to treat the vectors of these spaces as column vectors. A linear operator from

E to E∗ is then treated as a n× n real matrix, and 〈·, ·〉 means the standard inner

product in Rn.

Let us briefly mention what we mean by this. We fix a pair of dual bases in E

(say x′1, . . . , x
′
n) and in E∗ (say g′1, . . . , g

′
n). That is, 〈g′i, x′j〉 is equal to 1 if i = j

and 0 otherwise. If x̂ (resp. ĝ) denotes the column vector of coordinates of vector

x (resp. ĝ) relative to basis {x′i} (resp. {g′i}), then

〈g, x〉 = 〈
∑

ĝig
′
i,
∑

x̂ix
′
i〉 =

∑

ĝix̂i = 〈ĝ, x̂〉,

where the last expression now denotes the standard inner product in Rn. Hence

by identifying x with x̂ and g with ĝ, the expression 〈g, x〉 takes on the form of a

standard inner product of two vectors in Rn.

The use of coordinates in E and E∗ follows this general rule: the theorems are

stated coordinate-free while some proofs may require fixing a pair of bases in the

way described above.

A pair of primal spaces and their conjugates. In Section 2.3 of Chapter 2

we work with a pair of finite-dimensional real vector spaces E1 and E2 (possibly

of different dimension) and their duals E∗
1 and E∗

2. If A : E1 → E∗
2 is linear then

its adjoint is the linear operator A∗ : E2 → E∗
1 defined via

〈Ax, y〉 = 〈A∗y, x〉 (x ∈ E1, y ∈ E2).

More notation. Lower-case Greek letters such as α, β, γ, δ, κ, τ and ǫ denote

scalars or real-valued functions; lower-case Roman letters (mainly from the begin-

ning of the alphabet) such as a, b, c, d, g are elements of E∗, while x, y, z, all possibly

13

with subscripts, are elements of E. While this is the general rule, we allow for local

inconsistencies when it seems more natural to choose different notation.

The m-dimensional unit simplex is denoted by ∆m := {w ∈ Rm
+ :

∑

i wi = 1}.

For a vector w ∈ Rm we will use the notation |w| = (|w1|, . . . , |wm|)T , ‖w‖1 =

∑

i |wi| and ‖w‖∞ = maxi |wi|. Section 2.3 of Chapter 2 is an exception and

by ‖ · ‖1 and ‖ · ‖2 we mean two fixed norms defined on the spaces E1 and E2,

respectively. By sign(·) we denote the sign function on the reals.

Chapter 2

Improved algorithms for unconstrained

nonsmooth convex minimization in

relative scale

2.1 Introduction

The theory of modern convex optimization almost uniformly assumes boundedness

of the feasible set. This assumption is usually artificially enforced even for naturally

unconstrained problems via the so-called “big M” method. A clear advantage of

dealing with bounded sets is the availability of a scale in which one can measure

the absolute accuracy of a solution. However, there always seems to be the issue of

keeping a balance between the size of the artificially imposed bounds (large feasible

sets tend to slow algorithms down) and the possibility of exclusion of minimizers

from the feasible sets in so doing. Since there is no natural absolute scale for

measuring the solutions of an unconstrained problem, it seems to be reasonable to

be looking for solutions that are approximately optimal in relative scale. Results

of this type, however, are very rare in the convex optimization literature. This

contrasts with the literature on combinatorial optimization where approximation

algorithms are studied extensively.

Nesterov [23] recently showed that the above obstacles can be overcome for

the problem class of minimizing a convex homogeneous function over an affine

subspace. The essence of his approach involves the computation of an ellipsoidal

rounding of the subdifferential of the objective function (at the origin) by uti-

14

15

lizing the knowledge about the structure of the problem. This family of prob-

lems encompasses essentially all unconstrained convex minimization problems via

a dimension-lifting procedure. However, certain assumptions about the ellipsoidal

rounding effectively limit the class of problems that can be treated.

In this chapter we improve the algorithms of Nesterov [23], [22] for solving

unconstrained nonsmooth convex minimization problems within a prescribed er-

ror δ in relative scale. Our central idea was independently used by Chudak and

Eleutério [6] to obtain the same theoretical improvement in the context of con-

crete combinatorial applications. The methods we propose converge in O(1/δ2) or

O(1/δ) iterations of a first-order type.

The text is organized as follows. In the introductory section we formally de-

scribe the problem, briefly describe the dimension-lifting procedure and prove es-

sential inequalities coming from an ellipsoidal rounding of the subdifferential of

the objective function evaluated at the origin. In Section 2.2 we develop algo-

rithms based on a subgradient subroutine. We first describe Nesterov’s results and

then improve them by incorporating a simple bisection idea. We also show how to

modify our methods, at no or only negligible cost in the theoretical complexity, to

allow for a perhaps desirable “nonrestarting” behavior. Section 2.3 is devoted to

the development of improved algorithms based on Nesterov’s smoothing technique.

The methods of this part are considerably faster then those based on the subgra-

dient routine. After this, in Section 2.4, we apply our results to several specific

choices of the objective function. One of those applications, for example, comes

from game theory. The final section contains a collection of results related to the

idea of combining the rounding and optimization phases of the algorithms from

Section 2.2.

16

2.1.1 Constrained sublinear minimization

The central problem of this chapter is

ϕ∗ := min
x∈L

ϕ(x), (P)

where L is an affine subspace of a finite-dimensional real vector space E not con-

taining the origin and ϕ : E→ R is a sublinear function — convex and (positively)

homogeneous of degree one. The last property means that the function is linear

on every ray emanating from the origin: ϕ(τx) = τϕ(x) for all τ ≥ 0 and x ∈ E.

Note that convexity and homogeneity imply subadditivity. By E∗ we denote the

dual of E, the space of linear functionals on E. Let us define n := dimE = dimE∗.

We will further make the assumption that the zero vector lies in the interior of

the (convex) subdifferential1 of ϕ evaluated at the origin:

0 ∈ int ∂ϕ(0). (2.1)

Given the properties of ϕ, condition (2.1) essentially amounts to requiring that

the origin is the unique global minimizer of ϕ. The above assumptions imply that

∂ϕ(0) is a full-dimensional compact and convex subset of E∗ and that we can write2

ϕ(x) = max{〈g, x〉 : g ∈ ∂ϕ(0).} (2.2)

1For x ∈ E the set ∂ϕ(x), called the (convex) subdifferential of ϕ at x, is the
subset of E∗ defined by

g ∈ ∂ϕ(x) ⇔ ϕ(y) ≥ ϕ(x) + 〈g, y − x〉, ∀y ∈ E.

Elements of ∂ϕ(x) are called subgradients.
2There is a one-to-one correspondence between finite sublinear functions and

nonempty compact convex sets via the relation ϕ(x) = max{〈g, x〉 | g ∈ G} (this
is the support function of G). It then follows from the definition of the subdiffer-
ential that G = ∂ϕ(0). We refer the reader to Rockafellar’s book [28], a classic in
the convex analysis literature. An detailed account of the properties of sublinear
functions and subdifferentials of convex functions can be found in Chapters IV
and V of Hiriart-Urruty and Lemaréchal [13]. For a more compact and up-to-date
treatment see Borwein and Lewis [5] (Corollary 4.2.3).

17

That is, ϕ is the support function of its subdifferential at the origin. For geometric

understanding of the situation implied by the assumptions it is helpful to note that

the epigraph of ϕ is a convex cone in E×R+ whose only intersection with E×{0}

is the origin (see Figure 2.1.1).

0E

E× {1}

ϕ

Figure 2.1: Epigraph of a sublinear function.

Approximate solution

Our aim is to find an approximate solution of (P), within relative error δ. Let us

formalize this concept:

Definition 2.1.1. Point x ∈ L is a δ-approximate solution to (P) if

ϕ(x) ≤ (1 + δ)ϕ∗.

In proving theorems we will often use the following equivalent characterization:

ϕ(x)− ϕ∗ ≤ δ

1 + δ
ϕ(x).

18

Treating unconstrained convex minimization

We have claimed in the introduction that the general unconstrained convex mini-

mization problem can be reformulated as a constrained sublinear problem. Let us

briefly describe the construction. If φ : E→ R is a convex function, its perspective

is the function ϕ : E×R++ → R defined by

ϕ(x) := ϕ(y, τ) = τφ
(y

τ

)

.

This function is clearly linear on every feasible ray leaving from the origin. In fact,

it can be shown that ϕ is convex on its domain (see, for example, Proposition 2.2.1

in [13]). It is not in general possible to extend ϕ onto the entire space E×R if we

want to preserve both convexity and finiteness. However, there are at least some

important classes of functions for which this can be done. Consider the following

example:

Example 2.1.2 (Example 1, [23]). Let

φ(y) = max{|〈ai, y〉+ b(i)| : i = 1, 2, . . . , m}

with y ∈ E, a1, . . . , am ∈ E∗ and b ∈ Rm. If we let x = (y, τ) and a′i = (ai, b
(i)) for

i = 1, 2, . . . , m then for τ > 0 we get

ϕ(x) = ϕ(y, τ) = τφ
(y

τ

)

= τ max
1≤i≤m

|〈ai, y/τ〉+ b(i)|

= max
1≤i≤m

|〈ai, y〉+ b(i)τ |

= max
1≤i≤m

|〈a′i, x〉|,

where the last equality defines a new inner product on E ×R. Clearly, ϕ can be

extended to a sublinear function defined on the entire space. Assumption (2.1)

will be satisfied if 0 ∈ int ∂ϕ(0) = conv{±a′i : i = 1, 2, . . . , m}.

19

2.1.2 Ellipsoidal rounding and key inequalities

John ellipsoids

As a pre-processing phase, we first find a positive definite operator U : E → E∗

giving rise to a pair of central ellipsoids in E∗, one being contained in ∂ϕ(0)

and the other containing it. This can be done, for example, using Khachiyan’s

algorithm [15] which we describe in Subsection 2.5.1. Until then we will simply

assume the availability of radii 0 < γ0 ≤ γ1 such that

B(U, γ0) ⊆ ∂ϕ(0) ⊆ B(U, γ1), (2.3)

where

B(U, γ) := {g ∈ E∗ :
√

〈g, U−1g〉 ≤ γ}

defines an ellipsoid in E∗ with radius γ.

The theoretical guarantees of the algorithms presented in this chapter depend

on the quantity α := γ0

γ1
, which characterizes the quality of the ellipsoidal rounding

(2.3). It is clearly always the case that 0 < α ≤ 1, with bigger α corresponding

to a tighter rounding and, as we will see, faster algorithms. The following result,

a celebrated theorem of John [14], gives lower bounds on the quality of rounding

admitted by full-dimensional convex sets:

Proposition 2.1.3 (John [14]). Any convex body Q ⊂ E∗ admits a rounding by

concentric ellipsoids with 1
α
≤ dimE∗. If Q is centrally symmetric, then there

exists a rounding with 1
α
≤
√

dimE∗.

Example 2.1.4. To see that the above result gives tight bounds, consider the

following example (see Figure 2.2 for a conveniently scaled picture for n = 2). The

rounding obtained by the inscribed and circumscribed balls of

20

1. a regular n-simplex has quality 1
α

= n,

2. the n-cube (a centrally symmetric body) has quality 1
α

=
√
n.

a regular 2-simplex

1
1

2-cube

1

√
2

Figure 2.2: Tight examples of rounding convex sets by ellipsoids.

Geometry induced by rounding

The rounding operator U defines an inner product on E via 〈x, y〉U := 〈Ux, y〉,

which in turn induces the norm ‖x‖U :=
√

〈x, x〉U . The dual space E∗ can be

equipped with the dual norm ‖g‖∗U :=
√

〈g, U−1g〉. Notice that these norms are

themselves sublinear functions and as such admit a representation similar to (2.2):

‖x‖U = max{〈g, x〉 : ‖g‖∗U ≤ 1} (2.4)

with ∂‖ · ‖U(0) = {g ∈ E∗ : ‖g‖∗U ≤ 1} and

‖g‖∗U = max{〈g, x〉 : ‖x‖U ≤ 1} (2.5)

with ∂‖ · ‖∗U(0) = {x ∈ E : ‖x‖U ≤ 1}. Also observe that the first and last sets in

(2.3) are balls in E∗, with respect to the dual norm induced by U , of radii γ0 and

γ1, respectively.

21

Subgradients in the primal space

By defining

∂Uϕ(x) := {h ∈ E : ϕ(y) ≥ ϕ(x) + 〈h, x〉U , ∀y ∈ E},

the subgradients of ϕ can be thought of as being elements of E as opposed to

elements of E∗. This will enable us to talk about taking steps in E in the “direction”

of a negative subgradient. Note that there is a one-to-one correspondence linking

the two concepts:

∂Uϕ(x) = U−1[∂ϕ(x)]. (2.6)

Inequalities

In view of (2.2) and (2.4), taking the maximum of the linear functional 〈·, x〉 over

the sets in (2.3) gives

γ0‖x‖U ≤ ϕ(x) ≤ γ1‖x‖U for all x ∈ E, (2.7)

which together with subadditivity of ϕ implies that ϕ is γ1-Lipschitz:

ϕ(x+ h) ≤ ϕ(x) + ϕ(h) ≤ ϕ(x) + γ1‖h‖U .

From now on let us adopt the following notation. By x∗ we denote an arbitrary

optimal solution of (P) and by x0 we denote the minimum norm element of the

feasible region – the projection of the origin onto L. From (2.7) we then obtain

αϕ(x0) ≤ γ0‖x0‖U ≤ γ0‖x∗‖U ≤ ϕ∗ ≤ ϕ(x0) ≤ γ1‖x0‖U . (2.8)

Dividing by γ0 we get

ϕ(x0)

γ1
≤ ‖x0‖U ≤ ‖x∗‖U ≤

ϕ∗

γ0
≤ ϕ(x0)

γ0
. (2.9)

22

Because ‖x∗ − x0‖U =
√

‖x∗‖2U − ‖x0‖2U by the Pythagoras theorem and since

x0 6= 0 due to the assumption that L does not pass through the origin, we also

obtain

‖x∗ − x0‖U < ‖x∗‖U ≤
ϕ∗

γ0
≤ ϕ(x0)

γ0
. (2.10)

2.2 Algorithms based on a subgradient subroutine

Subgradient algorithms were studied intensively in the sixties and seventies of the

twentieth century by a number of researchers, among them Y.M. Ermoliev, B.T.

Polyak and N.Z. Shor. See, for example, Shor’s book [29] and Goffin’s paper

on convergence rates [9]. For our purposes we will only need a result about the

performance of a standard constant step-length subgradient algorithm applied to

a convex Lipschitz function. This algorithm, together with a simple proof, can be

found, for example, in Section 3.2.3 of Nesterov’s book [19].

In the first subsection we start by briefly discussing the constant step-length

subgradient method and its performance guarantee.

2.2.1 A constant step-length subgradient algorithm

The subgradient algorithm we are going to describe works in a more general setting

than that of problem (P). For the sake of this subsection only, consider the problem

of minimizing a convex Lipschitz continuous function ϕ : E → R with Lipschitz

constant γ over a simple closed convex set Q1:

ϕ∗ := min{ϕ(x) : x ∈ Q1}. (Psubgrad)

By simple set we mean one allowing for easy computation of projections onto it.

In this setting E is assumed to be equipped with an inner product. Problem (P)

23

is a special case of (Psubgrad) with

• ϕ having additional properties,

• γ = γ1 and Q1 = L, and

• E made Euclidean by the introduction of the inner product induced by U .

Proposition 2.2.1. If ‖x∗−x0‖ ≤ R for some x0 ∈ E, minimizer x∗ of (Psubgrad)

and R > 0, then the output

x = Subgrad(ϕ,Q1, x0, R,N)

of Algorithm 1 run on an instance of problem (Psubgrad) satisfies:

ϕ(x)− ϕ∗ ≤ γR√
N + 1

. (2.11)

Proof. Follows directly from Theorem 3.2.2 in [19].

Algorithm 1 (Subgrad) Constant step-length subgradient scheme

1: Input: ϕ,Q1, x0, R,N ;

2: κ = R/
√
N + 1;

3: for k = 0 to N − 1

4: pick g ∈ ∂ϕ(xk); if g = 0 then xk is optimal and exit;

5: xk+1 = projQ1

(

xk − κ g
‖g‖

)

;

6: end for

7: Output: xk with best objective value

Remark 2.2.2. For Proposition 2.2.1 it suffices to require that ϕ be Lipschitz on

the ball around x∗ with radius R.

24

2.2.2 Basic algorithmic ideas

As the previous subsection indicates, the basic idea for solving (P) will be that of

using the subgradient method (Algorithm 1). The main issue with this algorithm,

apart from the fact that it is slow (it requires O(1/ǫ2) to output an ǫ-optimal

solution in the additive sense), is the need to supply an initial point x0 and bound

R satisfying ‖x∗ − x0‖ ≤ R.

The particular choice of x0 as the projection of the origin onto the feasible set

of (P) makes sense from at least two reasons. First, notice that if the ellipsoidal

rounding of ∂ϕ(0) is perfectly tight (α = 1), then by (2.7) we have ϕ(x) ≡ ‖x‖U

and therefore x0 is the optimal solution of (P). In fact, notice that (2.9) implies

ϕ(x0) ≤
ϕ∗

α
, (2.12)

and hence x0 is a (1
α
− 1)-approximate solution of (P). The better the rounding,

the better the guarantee. Second, (2.10) gives us the readily available upper bound

R = ϕ(x0)/γ0. Of course, ϕ∗/γ0 would be better, but we do not know it.

Good but unavailable upper bound

Let us formally apply Algorithm 1 to (P) with R = ϕ∗/γ0. To achieve the required

relative accuracy, it then suffices to run it for N = ⌊α−2δ−2⌋ iterations because by

Proposition 2.2.1

ϕ(x)− ϕ∗ ≤ γ1R√
N + 1

≤ ϕ∗

α
√

1
α2δ2

= δϕ∗.

Available but bad upper bound

Since the previous upper bound is unknown, let us use the worse (but available)

bound R = ϕ(x0)/γ0. To guarantee a solution within relative error δ, we need to

25

use N = ⌊α−4δ−2⌋ iterations. The argument is exactly the same as in the case

above except we start by replacing ϕ(x0) with ϕ∗/α in view of (2.12).

Iteratively updated upper bound

To move towards the better of the two extremes, Nesterov [23] proposed a scheme

(Algorithm 2) which uses the subgradient method as a subroutine and which itera-

tively decreases the known upper bound. His algorithm starts by running the sub-

gradient method forO(α−2δ−2) iterations with the available upper bound ϕ(x0)/γ0.

In case the subgradient subroutine is doing well and manages to decrease the ob-

jective value by a constant fraction, then the previously available upper bound also

decreases by the same fraction. This improved bound is then used to run the next

subgradient subroutine, again starting from x0.

Algorithm 2 (SubSearch) Subgradient search scheme.

1: Input: ϕ,L, x0, γ0, γ1, β > 0, δ;

2: x̂0 = x0, α = γ0/γ1, c = eβ , k = 1;

3: N =
⌊

c2

α2

(
1 + 1

δ

)2
⌋

;

4: x̂k = Subgrad(ϕ,L, x0, ϕ(x̂k−1)/γ0, N);

5: while ϕ(x̂k) <
1
c
ϕ(x̂k−1) do

6: k = k + 1;

7: x̂k = Subgrad(ϕ,L, x0, ϕ(x̂k−1)/γ0, N);

8: end while

9: Output: x̂k

The performance of Algorithm 2 is substantially better than the naive one-time

application of the subgradient method with the bad but available upper bound.

Of course, it underperforms the one-time application of the subgradient method

26

with the good but unknown upper bound – by a factor of O(ln 1
α
).

Proposition 2.2.3 (Nesterov [23], Theorem 3). Algorithm 2 returns

a δ-approximate solution of (P) and takes at most

e2β

α2

(

1 +
1

δ

)2(

1 +
1

β
ln

1

α

)

steps of the subgradient method. If β is chosen to be a constant, then the number

of steps is

O

(
1

α2δ2
ln

1

α

)

. (2.13)

Proof. Assume that the algorithm stops at iteration k, failing to satisfy the while

clause at Step 5. In view of (2.8) we have

αϕ(x0) ≤ ϕ∗ ≤ ϕ(x̂k−1) <

(
1

c

)k−1

ϕ(x0),

and by comparing the first and the last term in this chain of inequalities we con-

clude that the number of calls of the subgradient subroutine is at most 1 + 1
β

ln 1
α
.

The bound on the number of lower level steps is obtained by multiplying this by

N from Step 3 of the algorithm. It remains to show that the output is as specified.

Indeed, using the termination rule from Step 5 and applying Proposition 2.2.1 to

the last call of the subgradient subroutine we get

ϕ(x̂k)− ϕ∗ ≤
γ1

ϕ(x̂k−1)

γ0√
N + 1

≤
eβ

α
ϕ(x̂k)√
N + 1

≤ δ

1 + δ
ϕ(x̂k).

2.2.3 Bisection improvement

Each outer iteration of Algorithm 2, possibly except the last one, produces a

guaranteed upper bound on the distance of x0 from the set of minimizers of (P) —

27

better by a constant factor than the one available before. Loosely speaking, we will

show that by allowing for guesswork it is possible to get a theoretical and practical

improvement in the performance of this algorithm (the same improvement was

independently obtained by Chudak and Eleutério [6] in the context of combinatorial

applications). The key observation is formulated in the following lemma.

Lemma 2.2.4. If ϕ∗/γ0 ≤ R and N = ⌊α−2β−2⌋ for some β > 0, then

x = Subgrad(ϕ,L, x0, R,N)

satisfies

ϕ(x)

γ0
≤ (1 + β)R.

Proof. By Proposition 2.2.1 we have ϕ(x)−ϕ∗ ≤ γ1R/
√
N + 1 ≤ γ0βR and hence

ϕ(x)

γ0
≤ ϕ∗

γ0
+ βR ≤ R(1 + β).

Lemma 2.2.4 essentially states that for any positive R we can, at the cost

of O(α−2β−2) iterations of the subgradient method (Algorithm 1), either get a

certificate that ϕ∗/γ0 ≤ (1 + β)R or that R ≤ ϕ∗/γ0. In any case we either get

a new upper or lower bound on ϕ∗/γ0. The initial lower and upper bounds come

from (2.9): if we set L0 := ‖x0‖U and R0 := ϕ(x0)/γ0 then

ϕ(x0)

γ1
≤ L0 ≤

ϕ∗

γ0
≤ R0,

with q0 := R0/L0 ≤ 1
α
. Assuming (1+β)R ≤ R0, the new lower and upper bounds

are either (L1, R1) = (L0, (1 + β)R), or (L1, R1) = (R,R0), depending on the

outcome of the procedure suggested in Lemma 2.2.4 (see Figure 2.3). This bisection

step is then repeated until the ratio qk := Rk/Lk gets down to a sufficiently small

28

value. It turns out that it is efficient to choose β = θ(1) and bisect only until qk

decreases down to a constant value and then “finish the job” by taking O(α−2δ−2)

additional subgradient steps, much in the way as we have seen with the “good but

unavailable” upper bound.

The following lemma states how much of improvement in qk can be obtained

by a single bisection step.

Lemma 2.2.5. Assume Lk−1 and Rk−1 are lower and upper bounds on ϕ∗/γ0,

respectively, with qk−1 > 1 + β, and let

R :=

√

Lk−1Rk−1

1 + β
.

If we run the subgradient method as indicated in Lemma 2.2.4 and if Lk and Rk

are the new bounds, then

qk ≤
√

1 + β
√
qk−1. (2.14)

Proof. First notice that the assumption qk−1 > 1 + β implies that Lk−1 < R <

(1 + β)R < Rk−1. Recall that we either have (Lk, Rk) = (Lk−1, (1 + β)R) or

(Lk, Rk) = (R,Rk−1) and observe that R is chosen so that the value of qk is the

same under both eventualities:

(1 + β)R

Lk−1
=
Rk−1

R
.

Putting these observations together,

qk =
Rk−1

R
=
√

1 + β
√
qk−1.

The ideas outlined above lead to Algorithm 3 whose performance is analyzed

in Theorem 2.2.6.

29

Algorithm 3 (SubBis) Subgradient bisection scheme.

1: Input: ϕ,L, x0, γ0, γ1, β, δ;

2: k = 0, x̂0 = x0, L0 = ‖x0‖U , R0 = ϕ(x0)/γ0;

3: α = γ0/γ1, c = 2(1 + β), N =
⌊

1
α2β2

⌋

;

4: while Rk/Lk > c do

5: k = k + 1, R =
√

Lk−1Rk−1

1+β
, x = Subgrad(ϕ,L, x0, R,N);

6: if ϕ(x)/γ0 ≤ (1 + β)R then

7: Rk = ϕ(x)/γ0, Lk = Lk−1, x̂k = x;

8: else

9: Lk = R;

10: if ϕ(x)/γ0 ≤ Rk−1 then

11: Rk = ϕ(x)/γ0, x̂k = x;

12: else

13: Rk = Rk−1, x̂k = x̂k−1;

14: end if

15: end if

16: end while

17: N =
⌊

c2

α2

(
1 + 1

δ

)2
⌋

, x̂k+1 = Subgrad(ϕ,L, x0, R,N);

18: Output: x̂k+1

30

L0 = ϕ(x0)
γ1

Lk−1 R0 = ϕ(x0)
γ0

Rk−1
ϕ∗

γ0

R

‖x0 − x∗‖U

(1 + β)R

Figure 2.3: Bisection step k.

Theorem 2.2.6. Algorithm 3 returns a δ-approximate solution of (P) and takes

at most

1

α2β2

(

1 + log2 log2

1

α

)

+
4(1 + β)2

α2

(

1 +
1

δ

)2

steps of the subgradient subroutine. If β is chosen to be a constant, then the number

of steps is

O

(
1

α2δ2
+

1

α2
ln ln

1

α

)

. (2.15)

Proof. Let us first analyze the bisection phase (the while loop). Repeated use of

Lemma 2.2.5 gives

qk ≤ (1 + β)
1
2 q

1
2

k−1

≤ (1 + β)
1
2 (1 + β)

1
4 q

1

4

k−2

. . .

≤ (1 + β)
1
2 (1 + β)

1
4 · · · (1 + β)

1

2k q
1

2k

0

≤ (1 + β)
(

1
α

) 1

2k .

The smallest integer k for which (1 + β)
(

1
α

) 1

2k ≤ 2(1 + β) is k∗ :=
⌈
log2 log2

(
1
α

)⌉

and hence the total number of lower-level subgradient method iterations of the

bisection phase is at most Nbis = 1
α2β2

(
1 + log2 log2

(
1
α

))
. The guarantee (2.15)

follows by adding Nbis and the number of iterations needed for the finalization

31

phase (Step 17). It remains to show that the output of the algorithm is as specified.

Notice that ϕ(x̂k+1)/γ0 ∈ [Lk, Rk] = [Lk, ϕ(x̂k)/γ0] and hence

ϕ(x̂k)

ϕ(x̂k+1)
≤ Rk

Lk
= qk ≤ c.

Now we just need to apply Proposition 2.2.1 to the subgradient subroutine call of

Step 17 of the algorithm using the inequality above:

ϕ(x̂k+1)− ϕ∗ ≤ γ1√
N + 1

ϕ(x̂k)

γ0
≤ 1√

N + 1

cϕ(x̂k+1)

α
≤ δ

1 + δ
ϕ(x̂k+1).

2.2.4 Non-restarting algorithms

Algorithms SubSearch and SubBis (Algorithms 2 and 3) use the subgradient

subroutine always started from one point, denoted x0, which is defined as the

projection of the origin onto the feasibility set. This point is indeed special as it

allows for the key inequalities (2.9) and (2.10) which in turn drive the analysis

in both algorithms. The first of these inequalities makes x0 indispensable as the

starting point of the very first subgradient subroutine call in both algorithms,

making it possible to construct initial lower and upper bounds on ϕ∗/γ0. It is

hard to think of a different readily computable point that could serve the same

purpose.

The issue we are going to touch upon in this subsection concerns the use of

x0 as the starting point in all subsequent calls of the subroutine. In our view,

restarting from this particular point seems to be convenient for the sake of the

proofs rather than efficient algorithmically. Let us elaborate on this a bit. Both

algorithms mentioned above can be viewed as simultaneously optimizing (solving

(P)) and searching for a good upper bound on ‖x0 − x∗‖U in order to look less

32

like the “do-it-all-with-the-available-but-bad-upper-bound” and more like the “do-

it-all-with-the-good-but-unavailable-upper-bound” algorithm. Combining these two

goals is possible because ϕ∗/γ0 is both the optimal value of (P) (up to the known

constant factor γ0) and an upper bound on ‖x0 − x∗‖U . It seems likely that the

optimization goal could be attained faster if we could use the current best point,

as opposed to x0, to start every call of the subroutine. Although both algorithms

gather information about increasingly better iterates {x̂k}, this knowledge is used

only to update the upper bound on ‖x0 − x∗‖U in the next call of the subgradient

subroutine and not to start the subroutine itself from a better point. There is a

good reason for that though. Even if some point x̂k obtained along the way in one

of the algorithms is much better than x0 in terms of its objective value, there are

no theoretical guarantees that ‖x̂k−x∗‖U will be smaller. Starting the subgradient

subroutine from such a point thus means combining a probable advantage with a

possible disadvantage. A simple observation reveals that the disadvantage factor

is under control. Following Figure 2.4, note that for any feasible x̂k we have

‖x̂k − x∗‖U ≤ ‖x̂k‖U + ‖x∗‖U ≤
ϕ(x̂k)

γ0

+
ϕ∗

γ0

≤ 2
ϕ(x̂k)

γ0

.

This means that whenever the subgradient method outputs some point x̂k, we

have an upper bound on ‖x̂k − x∗‖U on tap and hence on next call we can run

the method starting at x̂k with R = 2ϕ(x̂k)/γ0, which is exactly twice the upper

bound we would use when restarting from x0.

Nonrestarting version of SubSearch

Algorithm 4 is a modified version of Algorithm 2 in the spirit of the above discus-

sion. The theoretical performance stays the same.

33

x0

x∗

x̂k

ϕ(x̂k)
γ0

2ϕ(x̂k)
γ0

Figure 2.4: Restarting from x0 versus starting from the current best point.

Theorem 2.2.7. Algorithm 4 outputs a δ-approximate solution of (P). The num-

ber of calls of the subgradient subroutine is at most 1+2 ln 1
α

and the total number

of lower-level subgradient steps is hence at most

4e

α2

(

1 +
1

δ

)2(

1 + 2 ln
1

α

)

= O

(
1

α2δ2
ln

1

α

)

. (2.16)

Proof. The proof of the upper bound on the number of the outer level iterations

is exactly the same as for Algorithm 2. If the algorithm terminates with k = 1,

it is identical to Nesterov’s, and the result follows (we can drop the constant 4 in

this case). If k > 1, the analysis is analogous except the 2c (instead of just c) in

the definition of N and 2 in the definition of R cancel out:

ϕ(x̂k)− ϕ∗ ≤ γ1R√
N + 1

≤ γ1

2c
α

(
1 + 1

δ

)
2ϕ(x̂k−1)

γ0

≤ 1

c
(
1 + 1

δ

)cϕ(x̂k) =
δ

1 + δ
ϕ(x̂k).

34

Algorithm 4 (SubSearchNR) Nonrestarting subgradient search scheme.

1: Input: ϕ,L, x0, γ0, γ1, δ;

2: x̂0 = x0, α = γ0/γ1, c =
√
e, k = 1;

3: N =
⌊

c2

α2

(
1 + 1

δ

)2
⌋

, R = ϕ(x̂0)/γ0;

4: x̂k = Subgrad(ϕ,L, x̂0, R,N);

5: while ϕ(x̂k) <
1
c
ϕ(x̂k−1) do

6: k = k + 1;

7: N =
⌊

4c2

α2

(
1 + 1

δ

)2
⌋

, R = 2ϕ(x̂k−1)/γ0;

8: x̂k = Subgrad(ϕ,L, x̂k−1, R,N);

9: end while

10: Output: x̂k

Nonrestarting bisection algorithm

The following fact plays the role of Lemma 2.2.4 in the design and analysis of a

nonrestarting bisection algorithm (Algorithm 5).

Lemma 2.2.8. Let x̂k−1 ∈ L be arbitrary. If ϕ∗/γ0 ≤ R and N = ⌊α−2β−2⌋ for

some β > 0, then

x̂k := Subgrad(ϕ,L, x̂k−1, R + ‖x̂k−1‖U , N)

satisfies

ϕ(x̂k)

γ0
≤ (1 + β)R+ β‖x̂k−1‖U ≤ (1 + β)R + β

ϕ(x̂k−1)

γ0
. (2.17)

Proof. First notice that ‖x̂k−1 − x∗‖U ≤ ‖x̂k−1‖U + ‖x∗‖U ≤ ‖x̂k−1‖U + ϕ∗/γ0 ≤

‖x̂k−1‖U +R and hence by Proposition 2.2.1 we get

ϕ(x̂k)− ϕ∗ ≤ γ1
R + ‖x̂k−1‖U√

N + 1
≤ γ0β(R+ ‖x̂k−1‖U).

Dividing the above inequality by γ0 and rearranging the expression gives the result.

The second inequality follows from (2.7).

35

The idea with updating lower and upper bounds is the same as in the restarting

version of the algorithm. Let qk := Rk/Lk, as before. The improvement guaranteed

by a single bisection step is given in the following result.

Lemma 2.2.9. Assume Lk−1 and Rk−1 = ϕ(x̂k−1)/γ0 are lower and upper bounds

on ϕ∗/γ0, respectively, with qk−1 > 2(1 + β), and let

R :=

√

Lk−1Rk−1

1 + β
.

If we run the subgradient method as indicated in Lemma 2.2.8 and if Lk and Rk

are the new bounds, then

qk ≤
(√

1
2

+ β

)

qk−1. (2.18)

Proof. Because qk−1 > 2(1+β) > 1+β, we are in the same situation as in Lemma

2.2.5 and so Lk−1 < R < (1 + β)R < Rk−1. Notice that the upper bound gets

always updated to the value corresponding to the best point found so far, that

is, Rk = ϕ(x̂k)/γ0. So we either have Rk ≤ (1 + β)R + βRk−1, in which case the

lower bound stays unchanged, or Lk = R (and Rk ≤ Rk−1, possibly with equality).

Therefore

qk =
Rk

Lk
≤ max

{
(1 + β)R + βRk−1

Lk−1
,
Rk−1

R

}

.

Notice that R is chosen so that the two expressions in the maximum above are

equal, neglecting the βRk−1 portion of the first. The first expression must therefore

be bigger and hence

qk ≤
(1 + β)R + βRk−1

Lk−1

=
√

1 + β
√
qk−1 + βqk−1

=
(√

1+β
qk−1

+ β
)

qk−1

<

(√
1
2

+ β

)

qk−1.

36

Theorem 2.2.10. Algorithm 5 run with β chosen to be a constant such that β̂ :=
√

1
2

+ β < 1 returns a δ-approximate solution of (P) and takes

O

(
1

α2δ2
+

1

α2
ln

1

α

)

(2.19)

steps of the subgradient subroutine.

Proof. Let us first analyze the bisection phase. Repeated use of Lemma 2.2.9 gives

qk ≤ β̂kq0 ≤ β̂k 1
α
.

The smallest integer k for which the last quantity drops below c = 2(1 + β) is

k∗ :=
⌈

ln(α−1c−1)

ln β̂−1

⌉

= O(ln 1
α
) and hence the total number of lower-level subgradient

method iterations of the bisection phase isNbis = O
(

1
α2 ln 1

α

)
. The guarantee (2.19)

follows by addingNbis and the number of iterations needed for the finalization phase

(Step 12). It remains to show that the output of the algorithm is as specified. The

analysis, however, is identical to that in Theorem 2.2.7.

Note that the nonrestarting version of the bisection algorithm has a slightly

worse complexity bound — we have lost one logarithm in (2.19) in comparison with

(2.15). However, the bisection strategy still manages to separate the δ from the

logarithmic term as compared to the bound (2.16) for the SubSearch algorithm.

2.3 Algorithms based on smoothing

We have seen in Section 2.2 that problem (P) allows for simple algorithms that

require O(δ−2) iterations of the subgradient method. We have improved Nes-

terov’s subgradient search algorithm (Algorithm 2), which needs O(α−2δ−2 ln 1
α
)

iterations, by incorporating a simple bisection idea and obtained Algorithm 3 with

37

Algorithm 5 (SubBisNR) Nonrestarting subgradient bisection scheme.

1: Input: ϕ,L, x0, γ0, γ1, β, δ;

2: k = 0, x̂0 = x0, L0 = ‖x0‖U , R0 = ϕ(x0)/γ0;

3: α = γ0/γ1, c = 2(1 + β), N =
⌊

1
α2β2

⌋

;

4: while Rk/Lk > c do

5: k = k + 1, R =
√

Lk−1Rk−1

1+β
, x̂k = Subgrad(ϕ,L, x̂k−1, R,N);

6: if ϕ(x̂k)/γ0 ≤ (1 + β)R + βϕ(x̂k−1)/γ0 then

7: Lk = Lk−1, Rk = ϕ(x̂k)/γ0;

8: else

9: Lk = R, Rk = ϕ(x̂k)/γ0;

10: end if

11: end while

12: N =
⌊

4c2

α2

(
1 + 1

δ

)2
⌋

, R = 2ϕ(x̂k)
γ0

, x̂k+1 = Subgrad(ϕ,L, x̂k, R,N);

13: Output: x̂k+1

38

the slightly better O(α−2δ−2 + δ−2 ln ln 1
α
) guarantee. That is, we have improved

the dependence on the rounding parameter α, but not on the error parameter δ.

We start in the following subsection by briefly describing Nesterov’s smoothing

technique [21] and the implied algorithm for smooth minimization of nonsmooth

functions. It is not our intention to describe the approach in full generality; rather,

we will adapt the results to the setting of problem (P) – the minimization of a

nonnegative sublinear (convex and homogeneous) function vanishing only at the

origin.

2.3.1 The setting

In [21] Nesterov considers a rather general nonsmooth convex optimization problem

and shows that it is possible to solve it in O(ǫ−1) iterations of a gradient-type

method, if a solution within absolute error ǫ is sought. His novel approach involves

two phases. The first is a pre-processing phase in which one approximates the

objective function by a smooth function with Lipschitz continuous gradient. The

second phase amounts to running an optimal smooth method of the type [18], [19]

(Section 2.2) with complexity O(ǫ−1/2) applied to the smooth function.

We will describe the model for sublinear functions. Consider the following more

general version of problem (P), with ϕ replaced by an arbitrary sublinear function

and L (or L intersected with a large ball) replaced by a compact and convex subset

Q1 of E1 := E:

ϕ∗ := min
x
{ϕ(x) : x ∈ Q1}. (P ′)

Notice that ϕ can be written as

ϕ(x) = max
g
{〈g, x〉 : g ∈ ∂ϕ(0)}, (2.20)

39

To allow for some modeling flexibility, the purpose of which will be clear later,

we will instead consider the following family of representations of the objective

function:

ϕ(x) = max
y
{〈Ax, y〉 : y ∈ Q2}. (2.21)

Here we are introducing a new finite-dimensional real vector space E2, a linear

operator A : E1 → E∗
2 and a compact and convex set Q2 ⊂ E2.

Definition 2.3.1. The adjoint of A is the operator A∗ : E2 → E∗
1 defined via

〈Ax, y〉 = 〈A∗y, x〉 ∀ x ∈ E1, y ∈ E2.

We assume that the spaces E1 and E2 are equipped with norms ‖ · ‖1 and ‖ · ‖2

respectively3, and the dual spaces E∗
1 and E∗

2 with the corresponding dual norms

‖g‖∗1 := max{〈g, x〉 : ‖x‖1 ≤ 1} and ‖h‖∗2 := max{〈h, y〉 : ‖y‖2 ≤ 1}, (2.22)

for g ∈ E∗
1 and h ∈ E∗

2.

Definition 2.3.2. The norm of A is defined by

‖A‖1,2 := max
x,y
{〈Ax, y〉 : ‖x‖1 = 1, ‖y‖2 = 1}. (2.23)

One can similarly define ‖A∗‖2,1.

It follows easily from the definition that

‖A‖1,2 = max
x
{‖Ax‖∗2 : ‖x‖1 = 1} = ‖A∗‖2,1 = max

y
{‖A∗y‖∗1 : ‖y‖2 = 1}.

(2.24)

3The numbers are subscripts referring to the spaces in which the norms are
defined and are not intended to suggest the use of the ℓ1 and ℓ2 norms.

40

Example 2.3.3 (Example 1 in [21]). Consider the function

ϕ∞(x) := max
i
{|〈ai, x〉| : i = 1, 2, . . . , m},

where x ∈ E1 = Rn, ai ∈ E∗
1 = Rn and 〈g, x〉 =

∑n
i=1 gixi. Note that in the

following three representations of ϕ∞ the structure of the set Q2 gets simpler as

the dimension of the space E2 increases.

1. E2 = E∗
2 = Rn, Q2 = conv{±ai : i = 1, 2, . . . , m} and A = I. This seems

to be the most natural and straightforward representation.

2. E2 = E∗
2 = Rm, Q2 = {y ∈ Rm :

∑m
i=1 |yi| ≤ 1} and A is the m× n matrix

with rows a1, . . . , am. In this case we have

ϕ∞(x) = max

{
m∑

i=1

yi〈ai, x〉 :

m∑

i=1

|yi| ≤ 1

}

.

3. E2 = E∗
2 = R2m, Q2 is the unit simplex in R2m and A is the 2m× n matrix

with rows composed of a1, . . . , am and −a1, . . . ,−am:

ϕ∞(x) = max

{
m∑

i=1

(y′i − y′′i)〈ai, x〉 :
m∑

i=1

y′i + y′′i = 1, y′i, y
′′
i ≥ 0

}

.

If we let

θ(y) := min
x
{〈A∗y, x〉 : x ∈ Q1},

then because both Q1 and Q2 are convex and compact and 〈A∗y, x〉 ≡ 〈y, Ax〉 is

bilinear, we can apply a standard minimax result4 and rewrite (P ′) as follows:

ϕ∗ = θ∗ := max
y
{θ(y) : y ∈ Q2}. (P ′′)

4A minimax result is a theorem which asserts that minx∈Q1
maxy∈Q2

ρ(x, y) =
maxy∈Q2

minx∈Q1
ρ(x, y), under certain conditions imposed on the sets Q1 and Q2

and the function ρ. For example, the equality holds if both sets are convex and
compact subsets of a finite-dimensional real vector space and ρ is bilinear. A classic
reference is J. von Neumann and O. Morgenstern [34]. For a modern treatment
based on Fenchel duality see chapters 3 and 4 of J.M. Borwein and A.S. Lewis [5],
and, in particular, Exercise 4.2.16(c).

41

2.3.2 Smoothing and an efficient smooth method

In the first phase of Nesterov’s approach, the objective function of (P ′) is ap-

proximated by a smooth convex function with Lipschitz continuous gradient. An

approximation with error O(ǫ) has gradient with Lipschitz constant of O(1/ǫ).

The second phase consists of applying to (P) (with the objective function replaced

by its smooth approximation) an efficient smooth method (Algorithm 6) requir-

ing O(1/
√
ǫ) iterations of a gradient type. The smooth algorithm is capable of

producing points x̂ and ĝ feasible to both (P ′) and (P ′′), respectively, such that

ϕ(x̂) − θ(ĝ) = O(1/ǫ). Because ϕ∗ = θ∗, these points are approximate optimizers

in their respective problems (in the absolute sense).

The smoothing approach assumes the availability of prox-functions d1 and d2

for the sets Q1 and Q2, respectively. These are continuous and strongly convex

nonnegative functions defined on these sets, with convexity parameters σ1 and σ2,

respectively. Let x0 be the center of the set Q1 (think Q1 = L):

x0 := arg min
x
{d1(x) : x ∈ Q1}. (2.25)

For example, if d1(x) := 1
2
‖x‖21 (so σ1 = 1) and Q1 is the intersection of L and a

large-enough ball centered at the origin, then x0 coincides with its earlier definition.

We assume that d1 vanishes at its center and hence the above properties imply

d1(x) ≥ 1
2
σ1‖x− x0‖21.

In the example above, we subtract ‖x0‖21/2 from d1 and then the inequality holds

as an equation. In an analogous fashion we define the center y0 of Q2 and assume

that d2 vanishes at y0. Therefore

d2(y) ≥ 1
2
σ2‖y − y0‖22.

42

Finally, let D1 and D2 satisfy

D1 ≥ max
x
{d1(x) : x ∈ Q1}

and

D2 ≥ max
y
{d2(y) : y ∈ Q2}.

Proposition 2.3.4 (Nesterov [21], Theorem 1). For µ > 0, the function

ϕµ(x) := max
y
{〈Ax, y〉 − µd2(y) : y ∈ Q2}, (2.26)

is a continuously differentiable uniform approximation of ϕ:

ϕµ(x) ≤ ϕ(x) ≤ ϕµ(x) + µD2 ∀ x ∈ E1. (2.27)

Moreover, if we denote by yµ(x) the (unique) maximizer from (2.26), then the

gradient of ϕµ(x) is given by ∇ϕµ(x) = A∗yµ(x) and is Lipschitz continuous with

constant

γµ =
1

µσ2
‖A‖21,2. (2.28)

The smooth version of (P ′) therefore is

min
x
{ϕµ(x) : x ∈ Q1}. (P ′

smooth)

The main result of [21] is the following:

Theorem 2.3.5 (Nesterov [21], Theorem 3). If we apply Algorithm 6 to problem

(P ′
smooth) with smoothing parameter

µ =
2‖A‖1,2

N + 1

√

D1

σ1σ2D2

(2.29)

and if

x = Smooth(ϕµ, γµ,Q1, x0, N),

43

then5

ϕ(x)− ϕ∗ ≤ 4‖A‖1,2

N + 1

√

D1D2

σ1σ2

.

Algorithm 6 (Smooth) Efficient smooth method.

1: Input: ψ, γ,Q1, x0, N ;

2: for k = 0 to N do

3: Compute ψ(xk) and ∇ψ(xk);

4: yk = arg min{〈∇ψ(xk), x− xk〉+ γ
2
‖x− xk‖21 : x ∈ Q1};

5: zk = arg min{∑k
i=0

i+1
2
〈∇ψ(xi), x− xi〉+ γ

σ1
d1(x) : x ∈ Q1};

6: xk+1 = 2
k+3

zk + k+1
k+3

yk;

7: end for

8: Output: yN

2.3.3 The main result

We will use the above theorem in the same way as Proposition 2.2.1 to devise a

O(1/δ)-algorithm for finding a δ-approximate solution of (P). Algorithms of this

type, formulated for several specific choices of objective functions, were suggested

already in [23] and [22]. These methods are similar in spirit to Algorithm 2, recur-

sively updating an upper bound on ϕ∗. We give a single and faster algorithm appli-

cable to the problems considered in the cited papers. Our contribution lies mainly

in improving the theoretical complexity by incorporating a bisection speedup. As

in the previous section, it is possible to formulate a nonrestarting version of our

algorithm by sacrificing the double logarithm in the theoretical complexity for a

single one.

5The original theorem states the result as a gap between ϕ(x) and θ(y) for a
certain y ∈ Q2.

44

Preliminaries

Let us return to problem (P), using the representation (2.21) for the objective

function (hence Q1 = L), and approach it with the tools described in the previous

subsections. Let E1 := E and assume that U : E1 → E∗
1 defines an ellipsoidal

rounding of ∂ϕ(0) = A∗Q2 such that (2.3) holds with γ0 = 1. Notice that the

inequalities (2.7), (2.9) and (2.10) are implied by the former. To be able to obtain

an algorithm guaranteeing a δ-approximate output in relative scale, the choice of

the primal norm as the norm coming from the rounding is crucial:

‖x‖1 := ‖x‖U ∀ x ∈ E1.

If we wish to apply Algorithm 6, we need to supply it a bounded subset of L (which

is unbounded) containing the minimizer. Observe that as long as ϕ∗ ≤ R for some

positive number R, (2.10) guarantees that all minimizers of (P) lie in the set

Q1(R) := L ∩ {x : ‖x− x0‖U ≤ R},

where x0 — the projection of the origin onto L in the U -norm — is the center of

Q1(R) as defined in (2.25) if we choose the prox-function for Q1(R) to be

d1(x) := 1
2
‖x− x0‖2U .

In this case σ1 = 1 and D1 = max{d1(x) : x ∈ Q1(R)} = 1
2
R2. We leave the

choice of d2 purposely open to allow for fine-tuning for particular applications.

A direct consequence of Theorem 2.3.5 with the settings described above is the

following analogue of Lemma 2.2.4:

Lemma 2.3.6. If ϕ∗ ≤ R, β > 0 and we set

N =

⌊

2
√

2‖A‖1,2

β

√

D2

σ2

⌋

45

for some β > 0,

µ =

√
2‖A‖1,2R

N + 1

√
1

σ2D2

and γµ as in (2.28), then

x = Smooth(ϕµ, γµ,Q1(R), x0, N)

satisfies

ϕ(x) ≤ (1 + β)R.

The above lemma leads to a bisection algorithm (Algorithm 7) in the same

way as we have seen it in the section on subgradient algorithms. The main result

follows:

Theorem 2.3.7. Algorithm 7 returns a δ-approximate solution of (P) and takes

at most

2
√

2‖A‖1,2

β

√
D2

σ2

(

log2 log2

1

α

)

+ 2
√

2(1 + β)‖A‖1,2

(

1 +
1

δ

)√
D2

σ2

steps of the smooth optimization subroutine. If β is chosen to be a constant, then

the number of steps is

O

(

‖A‖1,2

√

D2

σ2

(
1

δ
+ ln ln

1

α

))

. (2.30)

Proof. The analysis is completely analogous to the proofs from the previous section.

2.3.4 A direct representation of the objective function

We can get rid of the dependence on ‖A‖1,2 in (2.30) by identifying E2 with E∗
1

(and consequently E1 with E∗
2). In this case we can simply choose A = I and

46

Algorithm 7 (SmoothBis) Smoothed bisection scheme.

1: Input: ϕ, α, β, δ, x0;

2: k = 0, x̂0 = x0, L0 = ‖x0‖U , R0 = ϕ(x0);

3: c = 2(1 + β), N =
⌊

2
√

2‖A‖1,2

β

√
D2

σ2

⌋

;

4: while Rk/Lk > c do

5: k = k + 1;

6: R =
√

Lk−1Rk−1

1+β
, µ =

√
2‖A‖1,2R

N+1

√
1

σ2D2
, γµ =

‖A‖2
1,2

µσ2
;

7: x = Smooth(ϕµ, γµ,Q1(R), x0, N);

8: if ϕ(x) ≤ (1 + β)R then

9: Rk = ϕ(x), Lk = Lk−1, x̂k = x;

10: else

11: Lk = R;

12: if ϕ(x) ≤ Rk−1 then

13: Rk = ϕ(x), x̂k = x;

14: else

15: Rk = Rk−1, x̂k = x̂k−1;

16: end if

17: end if

18: end while

19: R = ϕ(x̂k);

20: N =
⌊

2
√

2c‖A‖1,2(1 + 1
δ
)
√

D2

σ2

⌋

, µ =
√

2‖A‖1,2R

N+1

√
1

σ2D2
, γµ =

‖A‖2
1,2

µσ2
;

21: x̂k+1 = Smooth(ϕµ, γµ,Q1(R), x0, N);

22: Output: x̂k+1

47

consider the following structural model for the objective function:

ϕ(x) = max
g
{〈g, x〉 : g ∈ Q2}.

Let us set ‖g‖2 = ‖g‖∗1 = ‖g‖∗U and select the following prox-function for Q2

(with center at the origin):

d2(g) = 1
2
(‖g‖∗U)2.

Clearly σ2 = 1 and D2 ≤ 1
2α2 — the second inequality follows from the ellipsoidal

rounding inclusion (2.3) and the assumption γ0 = 1. Also observe that since

‖ · ‖∗2 ≡ ‖ · ‖1, we have

‖A‖1,2 = max{‖Ax‖∗2 : ‖x‖1 = 1} = max{‖x‖1 : ‖x‖1 = 1} = 1.

Substituting for the values of these parameters into (2.30) gives the following guar-

antee:

O

(
1

αδ
+

1

α
ln ln

1

α

)

.

Remark 2.3.8. Observe that, in principle, we do not lose generality by “excluding”

A because we can simply set the “new” Q2 to be equal to the “old” A∗Q2. However,

this sacrifice in modeling flexibility means that Q2 always coincides with ∂ϕ(0),

which has to be of a simple structure for the algorithm to work efficiently. This is

mainly due to the need to compute derivatives of ϕµ, which amounts to solving a

concave quadratic maximization problem over Q2 (2.26). If this problem can not

be solved efficiently (say in a closed form), the method will likely be impractical.

2.4 Applications

In this section we apply the fastest of the algorithms developed in this chapter —

the bisection algorithm based on smoothing (SmoothBis) — to several problems

of the form (P).

48

2.4.1 Minimizing the maximum of absolute values of linear

functions

In this subsection we consider problem (P) with the objective function from Ex-

ample 2.3.3:

min{ϕ∞(x) : x ∈ L}. (2.31)

Many seemingly unrelated problems can be reformulated into the above form. For

example, by (2.31) we can model:

• the truss topology design problem,

• the problem of the construction of a c-optimal statistical design, and

• the problem of finding a solution of an underdetermined linear system with

the smallest ℓ1 norm.

In all the examples above the feasible set L is one-dimensional. We postpone the

discussion of these applications until Chapter 3 since in it we focus on developing

specialized algorithms for solving a certain reformulation of (2.31). Let us at least

show now how we can solve this problem using the results of Section 2.3.

Applying the algorithm

We will work with the last of the three representations for the objective function

from Example 2.3.3:

ϕ∞(x) = max{|〈ai, x〉| : i = 1, 2, . . . , m} = max
y
{〈Ax, y〉 : y ∈ Q2},

with Q2 being the unit simplex in R2m and A the 2m × n matrix with rows

ai,−ai, i = 1, . . . , m. In addition, assume that the vectors ai, i = 1, 2, . . . , m,

49

span E∗
1 = Rn. It seems natural to choose ‖y‖2 :=

∑

i |yi| so that ‖y‖2 = 1 for all

y ∈ Q2. If we let

d2(y) := ln 2m+

2m∑

i=1

yi ln yi

and define 0 × ln 0 := limτ↓0 τ ln τ = 0, then by the following lemma, d2 is a

prox-function on Q2 with center y0 := (1
2m
, . . . , 1

2m
):

Lemma 2.4.1. d2 is strongly convex on Q2, with respect to ‖ · ‖2, with convexity

parameter σ2 = 1.

Proof. It suffices to show that d2(y) ≥ 1
2
‖y− y0‖22. This can be proved by elemen-

tary means using only the Cauchy-Schwarz inequality (see, for example, Exercise

3.3.25(d) in [5]) or, using differentiation and a certain knowledge about convex

functions (Lemma 3 in [21]).

It is easy to see that D2 = sup{d2(y) : y ∈ Q2} = ln 2m (the supremum is

attained at each of the boundary vertices). Finally, let us compute the norm of

the linear operator A:

‖A‖1,2 = max{‖Ax‖∗2 : ‖x‖1 = 1}

= max{‖Ax‖∞ : ‖x‖U = 1}

= max{ϕ(x) : ‖x‖U = 1}

= 1
α
.

The last step follows from inequality (2.7) in view of our assumption that γ0 = 1.

It is shown in Lemma 4 of [21] that the smooth approximation of ϕ is given by

ϕµ(x) = µ ln

(

1

2m

m∑

i=1

[
e〈ai,x〉/µ + e〈−ai,x〉/µ

]

)

.

Since ∂ϕ(0) = conv{±ai, i = 1, 2, . . . , m} is a centrally symmetric subset of Rn,

we may assume that a good rounding, with 1
α

= O(
√
n), is available to us.

50

The complexity

The performance of Algorithm 7 for this problem then by substituting into (2.30)

is

O

(√
n lnm

(

ln lnn +
1

δ

))

.

This improves on the result in [22], where the author gives a bound of

O

(√
n lnm

δ
lnn

)

.

2.4.2 Minimizing the sum of absolute values of linear func-

tions

Consider problem (P) with the following objective function:

ϕ1(x) =

m∑

i=1

|〈ai, x〉|.

As usual, we assume that the vectors a1, a2, . . . , am span E∗
1.

Applying the algorithm

Let E1 = E∗
1 = Rn and E2 = E∗

2 = Rm and let us represent ϕ1 as

ϕ1(x) = max
y
{〈Ax, y〉 : y ∈ Q2}, (2.32)

where Q2 = {y ∈ Rm : |yi| ≤ 1, i = 1, 2, . . . , m} and A is the m × n matrix

with rows a1, . . . , am. Usually we first find a rounding of ∂ϕ1(0) and using the

rounding operator define a norm on E1. Because of the simple structure of Q2,

we will instead start by defining ‖y‖2 := (
∑

i y
2
i)

1/2 and noting that this leads to

a
√
m-rounding of Q2:

B(I, 1) ⊆ Q2 ⊆ B(I,
√
m), (2.33)

51

with I : Rm → Rm denoting the identity operator. We will show now how this

naturally leads to a rounding operator defined on E1 enjoying the same quality of

rounding.

Lemma 2.4.2 (Nesterov [23], Lemma 2). If the vectors a1, . . . , am span Rm, then

‖x‖1 := ‖Ax‖∗2 defines a norm on Rn. Moreover, if we let U := ATA (a positive

definite matrix), then

‖ · ‖1 ≡ ‖ · ‖U

and

B(U, 1) ⊆ ∂ϕ(0) = ATQ2 ⊆ B(U,
√
m).

Proof. Note that ‖x‖1 = ‖Ax‖∗2 = 〈Ax,Ax〉1/2 = 〈Ux, x〉1/2 = ‖x‖U . The equality

∂ϕ(0) = ATQ2 follows from (2.32). In view of (2.33) we obtain

ϕ(x) = max
y∈Q2

〈Ax, y〉 ≤ max
y∈B(I,

√
m)
〈Ax, y〉 = max

‖y‖2≤
√

m
〈Ax, y〉 =

√
m‖Ax‖∗2 =

√
m‖x‖1

and

ϕ(x) = max
y∈Q2

〈Ax, y〉 ≥ max
y∈B(I,1)

〈Ax, y〉 = max
‖y‖2≤1

〈Ax, y〉 = ‖Ax‖∗2 = ‖x‖1.

Let us define

d2(y) := 1
2
‖y‖22,

so that the convexity parameter of this prox-function is σ2 = 1. It follows from

(2.33) that D2 = max{d2(y) : y ∈ Q2} ≤ 1
2
m. Finally, let us compute the norm

of the linear operator A:

‖A‖1,2 = max{‖Ax‖∗2 : ‖x‖1 = 1} = max{‖x‖1 : ‖x‖1 = 1} = 1.

52

The complexity

The performance of Algorithm 7 on this problem then by substituting into (2.30)

is

O

(√
m

(
1

δ
+ ln lnm

))

.

This improves on the result in [23], where the author gives the bound

O

(√
m lnm

δ

)

.

2.4.3 Minimizing the maximum of linear functions over a

simplex

Motivation: The value of a two-person zero-sum matrix game with non-

negative coefficients

Let Â ∈ Rm×n be a real matrix with nonnegative entries and rows a1, . . . , am.

Consider the following game. There are two players: a row player (R) and a

column player (C). Player R chooses a probability distribution y over the rows of

matrix Â and C chooses a probability distribution x over the columns. After that,

C pays yT Âx dollars to R. Assume the players are conservative, that is, C wishes

to minimize his worst-case loss and R wants to maximize his worst-case win. That

is, C prefers to choose strategy

x∗ ∈ arg min
x∈∆n

max
y∈∆m

yT Âx

and similarly, R wishes to choose strategy

y∗ ∈ arg max
y∈∆m

min
x∈∆n

yT Âx.

53

The set ∆n (resp. ∆m) denotes the unit simplex in Rn (resp. Rm). A classical

result by von Neumann [34] says that6

ϕ∗ := min
x∈∆n

max
y∈∆m

yT Âx = max
y∈∆m

min
x∈∆n

yT Âx.

The value ϕ∗ is called the value of the game. Note that if we let Q1 := ∆n and

ϕ(x) = max{〈ai, x〉 : i = 1, 2, . . . , m},

then we can write

ϕ∗ = min
x
{ϕ(x) : x ∈ Q1}.

Applying the algorithm

First note that

∂ϕ(0) = conv{ai : i = 1, 2, . . . , m},

which fails to satisfy (2.1) due to the assumption on nonnegativity of the entries

of Â. To remedy this situation, we will follow a trick suggested in Nesterov [22].

Notice that we are interested in ϕ as defined on ∆n only, which is a subset of the

nonnegative orthant. Let us therefore define

ϕ̂(x) := max{〈ai, |x|〉 : i = 1, 2, . . . , m},

where |x| = (|x1|, . . . , |xn|) and observe that

ϕ̂(x) = ϕ(x) ∀ x ∈ Rn
+

and

∂ϕ̂(0) = conv
m⋃

i=1

{g : −ai ≤ g ≤ ai}.

6For a modern proof based on Fenchel duality see, for example, Exercise 4.2.16
in [5].

54

It is particularly interesting to note that ∂ϕ̂(0) is a sign-invariant set, one that

with every point g contains all points obtained by arbitrarily changing the signs

of the coordinates of g. In fact, ∂ϕ̂(0) is the smallest sign-invariant set containing

∂ϕ(0). Nesterov shows that sign-invariant convex bodies admit a more efficient

rounding algorithm than the more general central-symmetric sets mainly due to

the possibility of working only with diagonal positive definite matrices defining the

rounding.

Instead of rounding ∂ϕ(0) one can therefore find an ellipsoidal rounding of

∂ϕ̂(0) (defined by a diagonal positive definite matrix U) with 1
α

= O(
√
n) and then

deduce inequality (2.7), which holds for all x ∈ Rn
+ (Lemma 5, [22]). Smoothing

of ϕ (and hence of ϕ̂ on the domain of interest) can be performed in complete

analogy with the situation in Subsection 2.4.1. The choice of the representation

of the objective function, the choice of the prox-function for Q2 and the implied

bounds are all identical (the only change is that the dimension drops from 2m to

m).

The complexity

The complexity guarantee of Algorithm 3 as applied to the problem of computing

the value of a two-person matrix game with nonnegative coefficients is:

O

(√
n lnm

(
1

δ
+ ln lnn

))

.

This improves on the result in [22] (Algorithm 4.4), where the author gives the

bound

O

(√
n lnm

δ
lnn

)

.

55

2.4.4 Comparison of algorithms

We will conclude this section with a table comparing the complexities of the algo-

rithms we have discussed:

Method Number of iterations Work per iteration

SubSearch O(1
α2δ2 ln 1

α
) O(mn)

SubBis O(1
α2δ2 + 1

α2 ln ln 1
α
) O(mn)

SubSearchNR O(1
α2δ2 ln 1

α
) O(mn)

SubBisNR O(1
α2δ2 + 1

α2 ln 1
α
) O(mn)

SmoothBis O(1
αδ

+ 1
α

ln ln 1
α
) O(mn)

Figure 2.5: Algorithms of Chapter 2.

Let us very briefly put the above results in perspective with the very popular

interior-point methods (IPM) for convex optimization. While IPMs, in theory,

need only O(ln(1
ǫ
)) iterations to find a point within the (absolute) error ǫ of the

optimum, each iteration is considerably more expensive because of the need to

work with second-order information. In this sense, the fastest methods presented

in this chapter are promising for problems where the desired accuracy is not too

high, and the dimension of the problem is huge so that performing even a single

iteration of an IPM is impossible.

Finally, let us note that the computation of an ellipsoidal rounding of the set

Q := conv{±ai : i = 1, 2, . . . , m} of quality 1
α

= O(
√
n) can be performed in

O(n2m lnm) arithmetic operations. Efficient rounding algorithms can be found

in [22], [32], [16], [33] and [1]. See Algorithm 8 from the next section.

56

2.5 Combining the rounding and subgradient phases

In designing the algorithms of this chapter we have assumed the availability of

a good ellipsoidal rounding of a certain convex and compact body containing the

origin in its interior. As a quick introduction into the topic we have merely stated

the celebrated theorem of John (Proposition 2.1.3) guaranteeing the existence of

a rounding of certain quality which depends on the dimension of the underlying

space and on the symmetry properties of the set.

We start in Subsection 2.5.1 by describing the details of a generic algorithm for

rounding a centrally symmetric convex body Q. The discussion will lead us to the

observation that under certain conditions, the rounding algorithm can be viewed

as performing optimization steps for a particular sublinear function – the support

function of Q. This leads to the idea of combining the rounding and optimization

phases, as opposed to strictly adhering to the round-first-optimize-later strategy

employed in the previous sections.

In Subsection 2.5.4 we describe an algorithm of this type and prove its conver-

gence to the optimum. Although the complexity guarantee is nowhere near as good

as the bounds obtained in the previous sections, the basic idea can be refined and

leads to the development of Chapter 3 where we give algorithms with comparable

provable convergence speeds.

2.5.1 Khachiyan’s ellipsoidal rounding algorithm

In this part we describe a simplified version due to Nesterov [22] of a rounding

algorithm of Khachiyan [15] applied to a centrally symmetric convex set Q ⊂ E∗.

Let us note at this point that the general (not centrally symmetric) case can

57

be solved by rewriting it into a related centrally symmetric problem in a setting

of one dimension higher. For more information on ellipsoidal rounding and the

intimately related problem of finding the minimum volume enclosing ellipsoid we

refer the reader to [32], [16], [33], [37] and [1].

The setup

Let a1, . . . , am ∈ E∗ and consider

Q := conv{±ai : i = 1, 2, . . . , m}.

We will assume that the vectors a1, . . . , am span E∗, in which case Q is full-

dimensional. Note that Q = ∂ϕ(0) where ϕ is the support function of Q (see

Example 2.3.3):

ϕ(x) := max
g
{〈g, x〉 : g ∈ Q} = max

i
{|〈ai, x〉| : i = 1, 2, . . . , m}. (2.34)

The next two lemmas are Nesterov’s restatements of Khachiyan’s results. Let

us start by noting that there is a readily available pair of central ellipsoids which

give a
√
m-rounding of Q:

Lemma 2.5.1. If we let U0 := 1
m

∑

i aia
∗
i then

B(U0, 1) ⊆ Q ⊆ B(U0,
√
m).

Proof. The proof we give is due to Nesterov [22]. Since ϕ(x) = maxg{〈g, x〉 : g ∈

Q}, the following inequalities imply the result:

max
g∈B(U0,1)

〈g, x〉 = ‖x‖U0
=

(

1

m

m∑

i=1

〈ai, x〉2
)1/2

≤ max
1≤i≤m

|〈ai, x〉| = ϕ(x),

and

max
g∈B(U0,

√
m)
〈g, x〉 =

√
m‖x‖U0

=
√
m

(

1

m

m∑

i=1

〈ai, x〉2
)1/2

=

(
m∑

i=1

〈ai, x〉2
)1/2

≥ ϕ(x).

58

The following lemma is the central result motivating the algorithm:

Lemma 2.5.2 (Nesterov [22], Lemma 1). For a positive definite operator U : E→

E∗ and arbitrary g ∈ E∗ let

G(U, g) := conv{B(U),±g};

the convex hull of the ellipsoid B(U) := B(U, 1) and the set {±g}. If for arbitrary

0 ≤ λ ≤ 1 we denote U(λ) := (1− λ)U + λgg∗, then (see Figure 2.6)

B(U(λ)) ⊆ G(U, g).

If σ := 1
n
(‖g‖∗U)2 − 1 > 0, then the function

V (λ) := ln
detU(λ)

detU(0)
= ln(1 + λ(n(1 + σ)− 1)) + (n− 1) ln(1− λ)

is maximized at λ∗ := σ
n(1+σ)−1

with V (λ∗) ≥ ln(1 + σ)− σ
1+σ
≥ σ2

2(1+σ)2
.

g

−g B(U)

0 G(U, g)

B(U(λ∗))

Figure 2.6: A single step of Khachiyan’s ellipsoidal rounding algorithm.

The algorithm

The above result is used in an algorithm as follows. We start with the rounding

given by U0 as described in Lemma 2.5.1. At each iteration, we choose g = aj so

59

that the volume of the new ellipsoid B(U(λ∗)) is as large as possible. Lemma 2.5.2

guarantees that the new ellipsoid is contained in G(U, g), which in turn is a subset

of Q, by induction. Therefore, all ellipsoids constructed by the algorithm satisfy

B(U, 1) ⊆ Q. (2.35)

Function V is (proportional to) the logarithm of the ratio of the volumes of the

new and old ellipsoids. Since it is increasing in σ, we choose aj so as to make σ as

large as possible:

j = arg max
1≤i≤m

‖ai‖∗U . (2.36)

The crucial observation is that if there is i for which

‖ai‖∗U ≥ γ
√
n (2.37)

for some arbitrary but fixed parameter γ > 1, then V (λ∗) is bounded below by a

positive constant, which then implies that the volume of the new ellipsoid increases

by a constant fraction depending on γ. In view of Lemma 2.5.1, this leads to an

upper bound on the number of steps. The algorithm terminates when (2.37) can

not be satisfied by any i, which means that

ai ∈ B(U, γ
√
n) ∀i,

which in turn implies

Q ⊆ B(U, γ
√
n). (2.38)

The inclusions (2.35) and (2.38) imply that we have obtained a γ
√
n-rounding of

Q. This informal discussion leads to Algorithm 8 whose theoretical performance

is described in Theorem 2.5.3.

This result is originally due to Khachiyan [15], while the simplified analysis

described above, due to Nesterov [22], serves the purpose of motivating the central

60

discussion of this section. An efficient implementation updates U−1, or a Cholesky

factorization of U , and hence the quantities ‖ai‖∗U , in O(mn) arithmetic operations

per iteration.

Algorithm 8 (EllipsRound) Khachiyan’s ellipsoidal rounding algorithm.

1: Input: a1, . . . , am; γ > 1;

2: k = 0, U0 = 1
m

∑

i aia
∗
i ;

3: j = arg maxi{‖ai‖∗Uk
: i = 1, 2, . . . , m}, gk = aj , ρk = ‖gk‖∗Uk

;

4: while ρk > γ
√
n do

5: λk = 1
n

ρ2
k
−n

ρ2
k
−1
, Uk+1 = (1− λk)Uk + λkgkg

∗
k;

6: k = k + 1;

7: j = arg maxi{‖ai‖∗Uk
: i = 1, 2, . . . , m}, gk = aj, ρk = ‖gk‖∗Uk

;

8: end while

9: Output: Uk

Theorem 2.5.3 (Nesterov [22], Theorem 1). Algorithm 8 produces

a γ
√
n-rounding of Q and terminates in at most

n lnm

2 ln γ − 1 + γ−2

iterations.

Proof. The termination criterion of the algorithm is equivalent to σk := 1
n
ρ2

k− 1 <

γ2 − 1. So if the method is still running at iteration k, Lemma 2.5.2 implies that

ln
detUk+1

detUk
≥ ln(1 + σk)−

σk

1 + σk
≥ 2 ln γ − γ2 − 1

γ2
,

which gives a positive lower bound on V . Now since the volume of B(U, 1) is

proportional to detU1/2, we obtain

detU
1/2
k

detU
1/2
0

=
volB(Uk)

volB(U0)
≤ volQ

volB(U0)
≤ volB(U0, m

1/2)

volB(U0)
= mn/2.

61

To obtain the iteration bound it remains to compare the two displayed inequalities

using the fact that for a positive definite matrix we have detU1/2 = (detU)1/2.

The rounding guarantee follows from the termination criterion.

2.5.2 Preliminaries

In this and the following two subsections we consider problem (P) with objective

function as in (2.34) and a simple affine feasibility set given by a nonzero vector

d ∈ E∗:

ϕ∗ := min
x
{ϕ(x) ≡ max

i
|〈ai, x〉| : 〈d, x〉 = 1}. (P1)

We continue to assume that the vectors a1, . . . , am span E∗. This problem is the

starting point of the development of Chapter 3 and we also call it (P1) there.

Updated projection and the direction of the negative subgradient

Let x0 be as usual — the projection of the origin onto the feasibility set. Suppose

U : E→ E∗ is the positive definite operator coming from a rounding procedure for

Q, and let E be equipped with the norm ‖ · ‖U and E∗ with the dual norm ‖ · ‖∗U .

Notice that in this setting we have

x0 =
U−1d

(‖d‖∗U)2
. (2.39)

As we have seen, a generic step of a rounding algorithm performs the following

update:

U+ := (1− λ)U + λgg∗.

If 0 < λ < 1, then by the Sherman-Morrison formula (see, for example, [10] or [38]),

the updated operator is invertible and its inverse is given by

U−1
+ =

1

1− λ

(

U−1 − λU−1gg∗U−1

1− λ+ λ(‖g‖∗U)2

)

. (2.40)

62

Notice that the second denominator vanishes for a single negative value of λ and

hence the expression is well-defined. Using (2.40) we can compute the updated

version of x0:

x+
0 =

U−1
+ d

(‖d‖∗U+
)2

=
U−1d− λ

κ
〈d, U−1g〉U−1g

〈d, U−1d〉 − λ
κ
〈d, U−1g〉2 =

p− q
r − s ,

where

κ = 1− λ+ λ(‖g‖∗U)2

and

p = U−1d, q = λ
κ
〈d, U−1g〉U−1g, r = 〈d, p〉, s = 〈d, q〉.

Assume now that

〈d, U−1g〉 = 0 (2.41)

and notice that then q = 0 and s = 0 and, in turn, x+
0 = p/r = x0. Now if (2.41)

does not hold, we may write

x+
0 =

p− q
r − s =

p

r
+

s

r − s
(p

r
− q

s

)

.

This is useful because one can easily verify that p
r

= x0 ∈ L and q
s
∈ L and hence

the step leading from x0 to x+
0 is

h1 := x+
0 − x0 =

s

r − s

(
U−1d

〈d, U−1d〉 −
U−1g

〈d, U−1g〉

)

. (2.42)

Note that under the assumption that (2.41) fails, h1 is zero if and only if d and g

are collinear. We have obtained the following result:

Lemma 2.5.4. x+
0 = x0 if and only if either 〈d, U−1g〉 = 0 (d and g are orthogonal

under the inner product defined by U−1) or d and g are collinear.

Our next result asserts that if we choose g to be a subgradient of ϕ at x0, then

x+
0 can be interpreted as a point in the direction of the negative subgradient of ϕ

restricted to L taken at x0.

63

Proposition 2.5.5. If 〈d, U−1g〉 6= 0 and g ∈ ∂ϕ(x0), then

x+
0 − x0 = −β h

‖h‖U
,

where h ∈ ∂Uϕ|L(x0) and

β =
s‖h‖U

(r − s)〈d, U−1g〉 . (2.43)

Proof. By (2.6) we have U−1g ∈ ∂ϕU (x0). It can be easily verified from the defi-

nition of the subgradient that to obtain h as specified it suffices to project U−1g

onto {x ∈ E : 〈d, x〉 = 0} (in the inner product defined by U). The projection

formula is also easy to derive. Since point x̂ ∈ E gets mapped to x̂|L := x̂(µ) =

x̂+ µU−1d such that 〈d, x̂(µ)〉 = 0, it follows that µ = −〈d, x̂〉/(‖d‖∗U)2 and finally

x̂|L = x̂− 〈d, x̂〉x0. Therefore,

h := U−1g − 〈d, U−1g〉 U−1d

〈d, U−1d〉

= 〈d, U−1g〉
[

U−1g

〈d, U−1g〉 −
U−1d

〈d, U−1d〉

]

∈ ∂Uϕ|L(x0).

We see by looking at (2.42) that the vectors h and h1 = x+
0 − x0 are collinear. A

straightforward calculation gives (2.43). Also note that

‖h‖2U = 〈g, U−1g〉 − 〈d, U
−1g〉2

〈d, U−1d〉 .

2.5.3 Properties of a general rounding sequence

In this subsection we investigate the rounding properties of a sequence of ellipsoids

generated by a process slightly more general than the one used in Khachiyan’s

rounding algorithm. Let us start with a formal definition of the concept:

64

Definition 2.5.6. Let Q ⊂ E∗ be an arbitrary centrally symmetric convex body.

We call (Uk, gk, λk)
K−1
0 a rounding sequence for Q with parameters R > 0 and

γ > 1 if the following properties are satisfied:

1. B(U0, 1) ⊆ Q ⊆ B(U0, R),

2. gk ∈ Q and ‖gk‖∗Uk
> γ
√
n, and

3. Uk+1 = (1− λk)Uk + λkgkg
∗
k for all k = 0, 1, . . . , K − 1.

If the update parameters λk are chosen in accordance with Step 5 of Algorithm

8, we will refer to the object as an optimal rounding sequence. If, moreover, the

vectors gk are chosen as in Step 3 of Algorithm 8, we will use the term Khachiyan’s

rounding sequence.

Notice that it follows from the proof of Theorem 2.5.3 that optimal rounding

sequences can not be too long:

K ≤ 2n lnR

γ2 − 1 + 2 ln γ
. (2.44)

Note that Theorem 2.5.3 can be reformulated to handle also non-polyhedral sets

(although performing Step 3 of Algorithm 8 becomes tricky). In the language of the

definition above, this theorem says that maximal Khachiyan’s rounding sequences

terminate with B(UK , 1) ⊆ Q ⊆ B(UK , γ
√
n). It is not clear how to extend the

argument leading to this conclusion to also guarantee certain rounding properties

of the intermediary ellipsoids generated in the process. In fact, while the method

seeks to greedily maximize the volume of the next iterate ellipsoid, the rounding

quality of the iterates will in general not be monotonically improving. Let us

illustrate this with an example.

65

Example 2.5.7. Let I be the 2× 2 identity matrix and let Q = 2B(I) – the ball

of radius 2 in R2. The matrix U := I defines a 2-rounding of Q since B(U) ⊆ Q ⊆

2B(U). Now consider updating U to U+ = U(λ) with g = (2, 0) and λ as in Step

5 of Algorithm 8:

λ =
1
2
‖g‖∗U2 − 1

‖g‖∗U2 − 1
=

1
2
4− 1

4− 1
=

1

3
.

We get U+ = (1 − λ)U + λgg∗ =
(

3λ+1 0
0 1−λ

)
=
(

2 0
0 2/3

)
. The updated ellipsoid

B(U+) is axis-aligned, with axes lengths equal to the square roots of the diagonal

elements of U+ (see Figure 2.7). Note that the new ellipsoid, although of a larger

volume, has a worse rounding capability. Indeed, we have

B(U+) ⊆ Q ⊆ 2B(U) ⊆ 2
1√

1− λ
B(U+),

and hence U+ generates a 2
√

3
2
-rounding of Q (see Lemma 2.5.8). Note also that

the equality ‖g‖∗U+
= 2√

2
=
√

2 =
√
n is not a coincidence (Lemma 2.5.14).

We will now analyze the rounding behavior of optimal rounding sequences.

We give a simple bound on the measure of deterioration of the rounding quality

of successive iterate ellipsoids, which leads to the conclusion that all ellipsoids

corresponding to such a sequence produce at worst something slightly weaker than

a m-rounding of Q. This gives us a tool for the analysis of methods which would

attempt to combine the rounding and optimization phases by choosing the vector

gk in a different manner from Step 3 of Algorithm 8: perhaps choosing gk to be

the subgradient of the support function of Q at the current point x0.

Lemma 2.5.8. For any positive definite self-adjoint operator U : E→ E∗, g ∈ E∗

and λ ∈ [0, 1) we have

B(U) ⊆ 1√
1− λ

B(U(λ)). (2.45)

This multiplicative factor is the best possible.

66

Proof. Recall that U(λ) = (1 − λ)U + λgg∗ and let U+ = U(λ). Then for any

h ∈ E∗ the Sherman-Morrison formula (2.40) implies

‖h‖∗U+
= 〈h, U−1

+ h〉1/2

=

〈

h,
1

1− λ

(

U−1 − λ

κ
U−1gg∗U−1

)

h

〉1/2

=
1√

1− λ

[

(‖h‖∗U)2 − λ

κ
〈h, U−1g〉2

]1/2

≤ 1√
1− λ

‖h‖∗U ,

where the last step holds because κ = 1 − λ + λ(‖g‖∗U)2 > 0. The inclusion is

tight since we can choose h with ‖h‖∗U = 1 and 〈h, U−1g〉 = 0 and hence ‖h‖∗U+
=

1√
1−λ
‖h‖∗U = 1√

1−λ
(see Example 2.5.7 and Figure 2.7 for illustration of this).

1
0

√
2 g−g

√
1− λ

2

B(U)

B(U(λ))

h

λ = 1
3

Figure 2.7: Illustration of Lemma 2.5.8.

Corollary 2.5.9. If ‖g‖∗U >
√
n and we choose λ = λ∗ (as in Step 5 of Algorithm

8), then

B(U) ⊆
√

n

n− 1
B(U(λ)).

Proof. Notice that 0 < λ < 1
n

and hence 1√
1−λ
≤√ n

n−1
.

This is the main result of this subsection:

67

Proposition 2.5.10. If (Uk, gk, λk), k ≥ 0, is a optimal rounding sequence with

parameters R =
√
m and γ > 1, then

B(Uk) ⊂ Q ⊂ m1/2

(
n

n− 1

)k/2

B(Uk) ⊂ mβB(Uk), k ≥ 0,

where

β :=
1

2
+

n

2(n− 1)(γ−2 − 1 + 2 ln γ)
.

Proof. First notice that B(U0) ⊆ Q ⊆ m1/2B(U0) because R =
√
m (see Lemma

2.5.1 for a possible choice of U0 satisfying this). The first inclusion follows by

induction from Lemma 2.5.2, the second by induction from Corollary 2.5.9. Finally,

inequality (2.44) implies

(
n

n− 1

)k/2

≤
(

n

n− 1

)K/2

≤
(

1 +
1

n− 1

)(n−1)
n

n−1
ln

√
m

γ−2−1+2 ln γ

≤ exp

{
n

2(n− 1)

lnm

γ−2 − 1 + 2 ln γ

}

,

establishing the last inclusion.

Remark 2.5.11. Note that if we choose γ such that γ−2−1+2 ln γ = 1 (γ ≈ 2.511)

then β ≈ 1 for large n and hence any ellipsoid generated by a rounding sequence

of this type is guaranteed to produce at worst something only slightly weaker than

an m-rounding of Q.

2.5.4 Alternating rounding and subgradient steps

The discussion in the previous subsections has brought to light certain connec-

tions between the rounding and (subgradient) optimization phases which, as we

have seen, are completely split in the approach of Section 2.2. In Subsection 2.5.2

we have shown that a single generic step of the rounding procedure with a specific

68

choice of the update vector g (g ∈ ∂ϕ(x0)) corresponds to taking a step from x0 in

the direction of the negative subgradient of ϕ at that point. This observation raises

the question of whether it is possible to alternate the rounding and optimization

steps, combining the two previously separate phases into a single convergent algo-

rithmic scheme. Another reason for trying to combine the two phases is the fact

that in certain circumstances the arithmetical complexity of the rounding algo-

rithm phase (O(n2m lnm), see [22]) may be the dominant computational burden.

Let us describe several possible approaches:

Approach 1 - Primarily rounding

In the rounding step of this approach we always take g = aj with j defined as in

(2.36) and then update U to U+ = U(λ) with λ = λ∗. This means that we perform

a rounding step exactly as in Algorithm 8.

In the optimization step we first compute x0 – our primal iterate – and decide

whether or not to take a subgradient step (or a sequence of such steps) from this

point. A reasonable criterion for this decision could be the size of the subgradient.

For example, if ĝ ∈ ∂ϕ(x0) and ‖ĝ‖∗U < γ
√
n, then the subgradient is well-rounded

(by U) and “hence” there is no need to take a rounding step. We may take

one subgradient step or a fixed number of such steps or perhaps continue until

we attain approximate optimality or encounter a point with a large subgradient.

In the latter case the procedure gets “restarted” by taking a rounding step and

starting everything again from the new x0.

This approach primarily concentrates on performing the rounding with the

hope to obtain some good primal iterates along the way by taking subgradient

steps starting from the projection points x0.

69

Approach 2

In the rounding step of this variation on the combine-the-two-phases theme we

always take g ∈ ∂ϕ(x0), motivated by Proposition 2.5.5. Matrix U then gets

updated to U+ = U(λ∗). Hence we perform a rounding step as in Algorithm 8 with

the exception that we are not following the greedy strategy of trying to maximize

the volume of the new ellipsoid. Instead, we try to combine the rounding and

optimization steps into a single step which can be interpreted as performing both

rounding and optimization work.

This approach is still slightly a rounding-oriented one because of the choice of

the “line-search” parameter λ. Although the primal steps (in E) are taken in the

direction of the negative subgradient, the steplengths are determined by the desire

to maximize the volume of the next ellipsoid, given the choice of g.

A variation on this theme would be to shift the emphasis to the optimization

routine by allowing rounding steps only if ‖g‖∗U > γ
√
n and performing a fixed

number of subgradient steps starting from the current point x0. See Algorithm 9.

Theorem 2.5.12. Algorithm 9 outputs a δ-approximate solution to (P1).

Proof. At the k-th call of the subgradient method the quantity 1
αk

represents the

rounding quality of B(Uk). Notice that the number of steps of the subgradient

subroutine is chosen precisely so that the method outputs a δ-approximate mini-

mizer of (P1), provided that it takes all the prescribed steps and is not stopped

by the condition on the size of the subgradient. However, since (Uk, gk, λk), k ≥ 0,

forms an optimal rounding sequence with parameters R =
√
m and γ, all subgra-

dients will be small enough, in the then-current norm, when the sequence reaches

maximality. This happens at most after a finite number of iterations given in

70

Algorithm 9 (SubRound) Rounding while optimizing

Input: a1, . . . , am, d, γ > 1, δ;

U0 = 1
m

∑

i aia
∗
i , α0 = 1

maxi ‖ai‖∗U0

, x0 = U0
−1d

(‖d‖∗
U0

)2
; k = 0;

OPTIMIZE:

N = ⌊ 1
α4

k
δ2 ⌋;

x = Subgrad(ϕ,L = {x : 〈d, x〉 = 1}, x0, ϕ(x0), N);

Stop the execution of the subroutine if a large subgradient is encountered

(‖g‖∗Uk
> γ
√
n), otherwise exit;

Set gk = g and proceed with the rounding phase;

ROUND:

λk = 1
n

(‖gk‖∗U)2−n

(‖gk‖∗U)2−1
, Uk+1 = (1− λk)Uk + λkgkg

∗
k;

αk+1 = 1
maxi ‖ai‖∗Uk+1

;

xk+1 =
Uk+1

−1d

(‖d‖∗
Uk+1

)2
;

k = k + 1;

proceed with the optimization phase;

Output: x

71

(2.44).

Note that Algorithm 9, as stated, has worse guaranteed performance than

a scheme which would run the subgradient subroutine a single time with the

“available-but-bad” upper bound (see Subsection 2.2.2). Several modifications

are desired to make this into a more practical algorithm. For example, one could

allow for variable step-lengths in the subgradient subroutine, introduce nonrestart-

ing behavior, etc. However, it is possible that at least for some problem instances

the subgradient subroutine will encounter a large subgradient early, avoiding the

need to take the prescribed number of steps. We do not know how to obtain a

simple modification of the algorithm which would guarantee performance compa-

rable to any of the methods discussed before. There is one approach leading to a

O(1/δ) algorithm, but it involves radical changes in the rounding sequence away

from actually trying to round Q and towards aiming to round the crucial part of

this set — its intersection with the line passing through the origin and the vector

d. Chapter 3 is devoted to the development of an algorithm of this type.

Approach 3 - Primarily optimization

Consider taking g ∈ ∂ϕ(x0) at every iteration and choosing λ greedily from the

optimization perspective. It is not obvious how one would go about defining “the

optimization viewpoint” and construct details of an algorithm of this type.

In Chapter 3 we give a O(1/δ) algorithm for (P1) that can be understood as

adhering to this approach. Let us sketch some details of how this will be done.

First notice that if we let j := arg maxi |〈ai, x0〉|, then aj ∈ ∂ϕ(x0), where ϕ is

the objective function from problem (P1). We can therefore choose g = aj. Also

observe that because x0 and U−1d are proportional, we could have equally well

72

defined j via j = arg maxi |〈ai, U
−1d〉|. The steplength λ will chosen so as to

minimize the value of ‖d‖∗U+
. It can be shown that this is equivalent to choosing

λ so that the U+-norm of x+
0 is as small as possible. We will explain the reasoning

behind this choice in Chapter 3.

2.5.5 Rounding the observed part of a set

We have seen that every ellipsoid of an optimal rounding sequence with R =

m1/2 produces a rounding of Q of quality somewhere between m1/2 and mβ ≈

m (Proposition 2.5.10). If we do not assume that the vectors gk are chosen in

accordance with some clever strategy (as, for example, in Algorithm 8), it seems

that the deteriorating nature of the rounding bounds is necessary. In the definition

of a rounding sequence we are abstracting from the process of selecting the points

gk. Perhaps there is a subroutine which is providing us with vectors gk ∈ Q of

sufficiently large norms (‖gk‖∗Uk
> γ
√
n). If such vectors do not exist, then, of

course, the rounding sequence terminates with a γ
√
n-rounding of Q. However, we

will assume here that either there is no global oracle available to tell us whether

such points exist (and hence we do not have first-hand information on the quality

of the rounding given by the current iterate of the rounding sequence), or that

the points gk are produced by some external process which may, for reasons of

its internal structure, fail to yield another point, even though globally such points

might exist. As an example of the latter situation think of running the subgradient

algorithm for (P1) and choosing gk to be the subgradients of the iterates. While

it may very well happen that this external process fails to output a large enough

subgradient, this does not mean that points of large norm do not exist in Q.

Due to the assumed local behavior of the process generating the points gk, we

73

will concentrate on a local result by asking the following question: How well does

a rounding sequence perform when it comes to rounding the portion of Q “seen so

far” by it? Let us start with a definition clarifying this concept:

Definition 2.5.13. For a rounding sequence (Uk, gk, λk), k ≥ 0, we define

Qk := conv{B(U0),±g0, . . . ,±gk−1}, k ≥ 1.

The set Qk represents the best model of Q at a particular time. In other words,

this is the portion of Q as seen by the above rounding sequence at iteration k. We

now proceed to prove that a rounding sequence does a much better job at rounding

Qk than Q. Let us start with a couple of intermediary results.

Lemma 2.5.14. If ‖g‖∗U >
√
n and λ = λ∗ (as in Corollary 2.5.9), then

‖g‖∗U+
=
√
n.

Proof. We proceed similarly as in Lemma 2.5.8:

‖g‖∗U+
=

1√
1− λ

[

‖g‖∗U2 − λ

κ
‖g‖∗U4

]1/2

=
‖g‖∗U

√

1−
1
n
‖g‖∗

U
2−1

‖g‖∗
U

2−1




1−

1
n
‖g‖∗

U
2−1

‖g‖∗
U

2−1

1
n
‖g‖∗U2 ‖g‖∗U

2






1/2

=
√
n.

Lemma 2.5.15. If (Uk, gk, λk), k ≥ 0, is a rounding sequence, then

∪k
i=0B(Ui) ⊂ Qk, k ≥ 1

and hence

Qk = conv{B(U0), . . . ,B(Uk),±g0, . . . ,±gk−1}, k ≥ 1.

74

Proof. By the definition of Qk we have B(U0) ⊂ Qk. By Lemma 2.5.2 we have

B(U1) ⊂ conv{B(U0),±g0} and hence B(U1) ⊂ Qk. The result follows by induc-

tion.

The following is a local analogue of Proposition 2.5.10:

Proposition 2.5.16. If (Uk, gk, λk), k ≥ 0, is an optimal rounding sequence, then

B(Uk) ⊂ Qk ⊂
√
n

(
n

n− 1

)(k−1)/2

B(Uk), k ≥ 1. (2.46)

Proof. The first inclusion follows from Lemma 2.5.15. For the second inclusion,

we will inductively use Corollary 2.5.9 and Lemma 2.5.14 which state that

B(Uk−1) ⊂
(

n

n− 1

)1/2

B(Uk) and {±gk−1} ⊂
√
nB(Uk).

Combining these two we get

{±gk−2} ⊂
√
nB(Uk−1) ⊂

√
n

(
n

n− 1

)1/2

B(Uk).

It is easy to see that by induction we obtain {±g0} ⊂
√
n
(

n
n−1

)(k−1)/2 B(Uk) and

in turn

{±g0, . . . ,±gk−1} ⊂
√
n

(
n

n− 1

)(k−1)/2

B(Uk). (2.47)

Also,

B(U0) ⊂
(

n

n− 1

)k/2

B(Uk) ⊂
√
n

(
n

n− 1

)(k−1)/2

B(Uk). (2.48)

Finally note by taking the convex hull of the sets appearing at the left hand sides

of the inclusions (2.47) and (2.48) we obtain Qk. The right hand side of both

inclusions is the same and coincides with the expression in (2.46).

75

Bounding the support functions

Recall that an ellipsoidal rounding of a convex set gives lower and upper bounds

on the support function of that set (see (2.7)). Let us therefore define

ϕ(x) := max
g
{〈g, x〉 : g ∈ Q}, (2.49)

and

ϕQk
(x) := max

g
{〈g, x〉 : g ∈ Qk}, (2.50)

and note that ϕQk
(x) ≤ ϕ(x) for all x since Qk ⊆ Q. Also observe that while

Proposition 2.5.10 implies

‖x‖Uk
≤ ϕ(x) ≤ √m

(
n

n− 1

)k/2

‖x‖Uk
, k ≥ 0, (2.51)

Proposition 2.5.16 gives

‖x‖Uk
≤ ϕQk

(x) ≤ √n
(

n

n− 1

)(k−1)/2

‖x‖Uk
, k ≥ 1,

which gives a better bound.

A subgradient optimal rounding sequence

Can we construct an inequality of the type

ϕ(x) ≤ βk‖x‖Uk
,

with βk better than the constant in (2.51)? This might be possible to ensure,

but it seems likely that we will have to be ready to make a sacrifice. Perhaps we

should require the inequality to hold only for certain values of x. We show in the

remainder of this subsection how this can be done.

76

Let us consider an optimal rounding sequence (Uk, gk, λk), k ≥ 0, with a very

specific choice of the vectors gk:

gk ∈ ∂ϕ(xk),

where xk, k ≥ 0, are some points in E. Define

Pk := conv{xi | i = 0, . . . , k − 1}, k ≥ 1

and

diamPk := max
0≤i,j<k

{‖xi − xj‖Uk
}. (2.52)

From now on, let us fix some arbitrary k and consider x ∈ Pk, assuming the

following representation:

x =

k−1∑

i=0

wixi,

k−1∑

i=0

wi = 1, wi ≥ 0.

Notice that in the course of proving Proposition 2.5.16, we have essentially shown

that

{±gi, . . . ,±gk−1} ⊂
√
n

(
n

n− 1

)(k−i−1)/2

B(Uk), 0 ≤ i ≤ k − 1. (2.53)

Taking the supremum of the linear functional 〈·, xi〉 over these sets, for any 0 ≤

i ≤ k − 1, we get

ϕ(xi) = |〈gi, xi〉|

≤ sup{〈g, xi〉 : g ∈ {±gi, . . . ,±gk−1}}

≤ √n
(

n

n− 1

)(k−i−1)/2

‖xi‖Uk
.

Now using convexity of ϕ, (2.53), the triangle inequality and the definition of

77

diamPk,

ϕ(x) = ϕ

(
k−1∑

i=0

wixi

)

≤
k−1∑

i=0

wiϕ(xi)

≤
k−1∑

i=0

wi

√
n

(
n

n− 1

)(k−i−1)/2

‖xi‖Uk

≤ √n
k−1∑

i=0

wi

(
n

n− 1

)(k−i−1)/2

(‖x‖Uk
+ ‖xi − x‖Uk

)

≤ √n
[

k−1∑

i=0

wi

(
n

n− 1

)(k−i−1)/2
]

(‖x‖Uk
+ diamPk)

≤ √n
(

n

n− 1

)(k−1)/2

(‖x‖Uk
+ diamPk).

Note that instead of using the more refined inequality (2.53), we could have di-

rectly used Proposition 2.5.16. However, the former could be useful when we need

to analyze a particular point x ∈ Pk for which the weights wi grow (perhaps expo-

nentially) with increasing i. The weighted average in the big square brackets could

then become considerably smaller than the above general bound representing the

maximum of the numbers [n/(n− 1)](k−i−1)/2, i = 0, 1, . . . , k − 1.

Chapter 3

Ellipsoid algorithms for computing the

intersection of a centrally symmetric

body with a line in relative scale

3.1 Introduction

The primary objects of this chapter are nonzero vectors d, a1, . . . , am ∈ E∗ and the

centrally symmetric convex set

Q := conv{±ai : i = 1, 2, . . . , m}. (3.1)

As before, E is a finite dimensional real vector space and E∗ is its dual. Our main

goal is to find the intersection point of Q and the line passing through d and the

origin.

While this problem can be treated with the methods of the previous chapter,

we propose a novel approach by constructing a sequence of ellipsoids inscribed in

Q, greedily “converging” towards the intersection points. We develop three algo-

rithms. Our first method is not practical but it serves as the motivational starting

point for the development of more efficient approaches. The more practical vari-

ants can be viewed as nontrivial modifications of Khachiyan’s ellipsoidal rounding

algorithm (Algorithm 8 from Chapter 2) to our problem. While the generic struc-

ture of an iteration is identical to that of Khachiyan, we employ a different strategy

for choosing the update vector and work with a different line search objective func-

tion. One aspect of our contribution is therefore showing that modifications of this

78

79

type can produce meaningful sequences of ellipsoids. Our algorithms can also be

interpreted as performing Frank-Wolfe steps for a specific convex function [8] on

the unit simplex in Rm.

We consider several other closely related problems and show that our methods

simultaneously approximately solve all of them — within relative error δ — in

O(1/δ) iterations of a first-order type. One of these is the problem of minimizing

the maximum of absolute values of the linear functionals 〈ai, x〉 over the hyperplane

defined by 〈d, x〉 = 1. This is an unconstrained piecewise-linear convex problem.

Another is the problem of finding the smallest ℓ1 norm solution of a full-rank

underdetermined linear system. Finally, we consider maximization of the linear

functional 〈d, ·〉 over a centrally symmetric polytope, the polar of Q:

Q◦ = {x ∈ E : |〈ai, x〉| ≤ 1, i = 1, 2, . . . , m}. (3.2)

This chapter is organized as follows. In Section 3.2 we formulate the various

interrelated problems, explore the relationships among them and establish con-

vexity and smoothness of the objective function of the main problem. We finish

the section by proving that a single optimality (approximate optimality) condition

implies optimality (approximate optimality) in all these problems. The discussion

of the algorithms and their analysis is contained in Section 3.3. Finally, in Section

3.5 we describe applications of our methods to truss topology design and optimal

design of statistical experiments.

80

3.2 Problem formulations

3.2.1 Supports, gauges and polarity

In this part we review some basic convex analysis concepts and establish several

simple results which will become useful in later subsections.

Supports. The support function of a nonempty set X ⊂ E (G ⊂ E∗) is the

function ξX : E∗ → R̄ (ξG : E→ R̄) defined by

ξX (g) := sup{〈g, x〉 : x ∈ X}

(ξG(x) := sup{〈g, x〉 : g ∈ G}).

For example, ξQ(x) = max{|〈ai, x〉| : i = 1, 2, . . . , m}.

Polars. The polar of a convex set X ⊂ E (G ⊂ E∗) is the set X ◦ ⊂ E∗

(G◦ ⊂ E) defined by

X ◦ := {g ∈ E∗ : 〈g, x〉 ≤ 1 for all x ∈ X}

(G◦ := {x ∈ E : 〈g, x〉 ≤ 1 for all g ∈ G}).

For example, see (3.2).

Gauges. A gauge is a nonnegative positively homogeneous convex function

with values in R̄ := R ∪ {+∞}, vanishing at the origin. Norms are real-valued

positive definite (vanishing only at the origin) symmetric gauges. Seminorms, as

opposed to norms, are allowed to vanish at nonzero points. Notice that gauges

need not be symmetric, are allowed to vanish at nonzero points and can take on

the value +∞. If γ : E→ R̄ is a gauge, it is easy to see that

γ(x) = γX (x) := inf{τ ≥ 0 : x ∈ τX}, (3.3)

81

where

X := {x : γ(x) ≤ 1}.

Note that 0 ∈ X and that X is necessarily convex as a sublevel set of a convex

function. If γ is a closed function (i.e. if its epigraph, which is a convex cone in

E×R+, is a closed set), as will be the case for the gauges appearing in this text,

then the set X defined above is the unique closed convex set containing the origin

for which γ(x) = γX (x). This relation is best understood intuitively as follows. If

one thinks of γ as being a norm, then X corresponds to the unit ball (X may not

be closed or bounded) and the above description of γ says that the norm of x is

equal to the smallest nonnegative number τ by which one has to scale the unit ball

in order to contain x.

Two important gauges. One of the important gauges encountered in this

chapter is a seminorm on E defined by a positive semidefinite self-adjoint linear

operator U : E→ E∗:

‖x‖U := 〈Ux, x〉1/2. (3.4)

It can easily be verified that

‖x‖U = 0 ⇔ x ∈ null(U). (3.5)

Another crucial gauge is a norm defined on range(U) ⊂ E∗ and extended to a

gauge on E∗ by allowing it to take the value +∞ on the remainder of the space:

‖g‖∗U :=







〈g, x〉1/2 if g ∈ range(U) with Ux = g,

+∞ otherwise.

(3.6)

Notice that 〈g, x′〉 = 〈g, x′′〉 whenever Ux′ = g and Ux′′ = g because U is self-

adjoint and hence 〈g, x′〉 = 〈Ux′′, x′〉 = 〈Ux′, x′′〉 = 〈g, x′′〉, all of which are non-

82

negative since U � 0 and, for example, 〈g, x′〉 = 〈Ux′, x′〉 ≥ 0. Hence (3.6) gives a

valid definition.

In view of the representation (3.3), let us establish special notation for the

sublevel sets of ‖ · ‖U and ‖ · ‖∗U :

B◦(U) := {x ∈ E : ‖x‖U ≤ 1}, and (3.7)

B(U) := {g ∈ E∗ : ‖g‖∗U ≤ 1}, (3.8)

so that

‖x‖U = γB◦(U)(x) and ‖g‖∗U = γB(U)(g). (3.9)

Note that B◦(U) is an ellipsoidal cylinder in E and B(U) is an ellipsoid in range(U).

We shall now show that the gauges defined in (3.4) and (3.6) and their level sets

are related via polarity: ‖ · ‖U is the support function of B(U), ‖ · ‖∗U is the support

function of B◦(U) and the sets B◦(U) and B(U) are mutually polar, justifying the

notation. We refer to the following fact.

Fact 3.2.1. Closed convex sets X ∈ E and G ∈ E∗ containing the origin are

mutually polar if and only if ξG = γX and ξX = γG:

Proof. Follows from Rockafellar [28], Theorems 14.5 and 15.1.

Proposition 3.2.2. We have ξB(U)(x) = ‖x‖U and ξB◦(U)(g) = ‖g‖∗U and the sets

B(U) and B◦(U) are mutual polars.

Proof. Once we have shown the first two statements, the assertion that B(U) and

B◦(U) are mutually polar sets follows from (3.9) and Fact 3.2.1. We will give a

detailed proof of the identity ξB(U)(x) = ‖x‖U ; the second one can be shown in an

83

analogous way. First, notice that

ξB(U)(x) = sup
g
{〈g, x〉 : ‖g‖∗U ≤ 1} (P ∗)

= sup
g,y
{〈g, x〉 : 〈g, y〉1/2 ≤ 1, Uy = g}

= sup
y
{〈Ux, y〉 : 〈Uy, y〉 ≤ 1}. (P ∗∗)

We will first argue that (P ∗) has a maximizer. For this we just need to note that

the objective function is continuous (linear) and that the set B(U) is compact

because it is the unit ball with respect to the norm ‖ · ‖∗U defined on range(U). If g

is the maximizer, then in particular it must be feasible whence g ∈ range(U). If we

let y be any solution of Uy = g, then y is a maximizer of (P ∗∗). Let y′ be any such

optimal point. Notice that both the objective and the constraint functions of (P ∗∗)

are differentiable. The Mangasarian-Fromovitz constraint qualification1(MFCQ)

for (P ∗∗) holds at y′ if the derivative of the constraint function at y′ is nonzero

provided that the constraint is active; i.e. MFCQ holds at y′ exactly when the

following implication holds:

〈Uy′, y′〉 = 1 ⇒ 2Uy′ 6= 0.

This is satisfied trivially, and hence the (necessary) Karush-Kuhn-Tucker1 (KKT)

conditions imply the existence of a nonnegative multiplier λ such that

Ux = λ(2Uy′) and λ(〈Uy′, y′〉 − 1) = 0. (3.10)

If λ = 0 then x ∈ null(U), in which case every feasible y is a maximizer with the

maximum equal to 0. The result clearly holds in this case since ‖x‖U = 0. If λ > 0

then the KKT conditions (3.10) imply y′ ∈ x/(2λ) + null(U) and 〈Uy′, y′〉 = 1.

1See, for example, Section 2.3 in [5].

84

Since range(U) ⊥ null(U), we obtain 2λ = ‖x‖U . The optimal objective value of

(P ∗∗) therefore is

〈Ux, y′〉 = 〈Ux, x/‖x‖U〉 = ‖x‖U ,

which finishes the proof.

Notice that if x ∈ null(U), then the set of maximizers of (P ∗∗) is B◦(U) :=

{y : 〈Uy, y〉 ≤ 1} (all points of this set have equal objective and the necessary

KKT conditions say that all optimal points must lie in this set) and hence the set

of optimal points of (P ∗) is

U [B◦(U)] = {g : g = Uy, 〈Uy, y〉 ≤ 1} = {g : ‖g‖∗U ≤ 1} = B(U),

with the optimum equal to 0. In case x /∈ null(U), the set of maximizers of

(P ∗∗) is Z := x/‖x‖U + null(U). Hence the set of optimal points of (P ∗) is

{g = Uz : z ∈ Z} = {Ux/‖x‖U} – a singleton. Let us rephrase this observation:

1. If ‖x‖U = 0 then 〈g, x〉 = ‖x‖U = 0 for all g with ‖g‖∗U ≤ 1 (in fact, for all

g ∈ range(U)).

2. If ‖x‖U 6= 0 then 〈g, x〉 ≤ ‖x‖U for all g with ‖g‖∗U ≤ 1, with equality exactly

when g = Ux/‖x‖U .

A direct consequence of this is a Cauchy-Schwarz type inequality for gauges:

Corollary 3.2.3 (Cauchy-Schwarz). For all x ∈ E and g ∈ range(U) we have

〈g, x〉 ≤ ‖g‖∗U‖x‖U , (3.11)

with equality exactly in one of the two cases

1. ‖x‖U = 0, or

85

2. ‖x‖U 6= 0 and g is a nonnegative multiple of Ux.

Corollary 3.2.3 can be viewed as a special case (with G = B(U)) of the following

general result:

Fact 3.2.4 (Cauchy-Schwarz for general gauges). If G ⊂ E∗ and X ⊂ E are

mutually polar sets (both must then be closed, convex and contain the origin), then

〈g, x〉 ≤ γG(g)γG◦(x) for all g ∈ dom γG, x ∈ dom γG◦ .

Proof. See the definition of a polar gauge and Theorem 15.1 in Rockafellar [28].

Proposition 3.2.5 (Projection). We have

min
x̄
{‖x̄‖U : 〈d, x̄〉 = 1} = 0 ⇔ d /∈ range(U), (3.12)

and the following statements are equivalent:

(i) x ∈ arg minx̄{‖x̄‖U : 〈d, x̄〉 = 1}, d ∈ range(U),

(ii) Uy = d, x = y/(‖d‖∗U)2 for some y, and

(iii) 〈d, x〉 = ‖d‖∗U‖x‖U = 1.

Proof. Although statement (3.12) can be obtained using a standard separation

result, we will use an optimization argument that will also be useful in proving the

equivalence of (i), (ii) and (iii). The KKT conditions (necessary and sufficient by

convexity of objective and linearity of constraints) for the minimization problem

above (with the objective function replaced by ‖x̄‖2U) are

2Ux = λd, 〈d, x〉 = 1, λ ∈ R, (3.13)

and we immediately get ‖x‖2U = 〈Ux, x〉 = λ
2
〈d, x〉 = λ

2
, and in particular, λ ≥ 0.

If the optimal objective value ‖x‖U is nonzero, then λ > 0 and hence d ∈ range(U)

86

by (3.13). Conversely, if d ∈ range(U) and ‖x‖U = 0, or, equivalently x ∈ null(U)

by (3.5), then 〈d, x〉 = 0, which is a contradiction. This establishes (3.12).

If we assume (i), then by (3.13) we must have λ > 0 since otherwise ‖x‖U = 0,

which by (3.12) implies d /∈ range(U). We claim that y := 2
λ
x satisfies (ii). Indeed,

Uy = d follows from (3.13) and we also get

y = 2
λ
x = 2

λ
〈d, x〉x = 〈d, y〉x = (‖d‖∗U)2x.

If x and y are as in (ii) then 〈d, x〉 = 〈d, y〉/(‖d‖∗U)2 = 1 and

‖d‖∗U‖x‖U = ‖d‖∗U
‖y‖U

(‖d‖∗U)2
=
‖y‖U
‖d‖∗U

=
〈Uy, y〉1/2

〈d, y〉1/2
= 1,

establishing (iii). For (iii) ⇒ (i) notice that for any x̄ satisfying 〈d, x̄〉 = 1, the

Cauchy-Schwarz inequality (3.11) gives ‖x‖U = ‖x‖U〈d, x̄〉 ≤ ‖x‖U‖d‖∗U‖x̄‖U =

‖x̄‖U . Also, d ∈ range(U) since otherwise ‖d‖∗U = +∞, which contradicts (iii).

3.2.2 The first five problems

For x ∈ E let

ϕ(x) := ξQ(x) = max
i
|〈ai, x〉| (3.14)

and consider the problem

ϕ∗ := min
x
{ϕ(x) : 〈d, x〉 = 1}. (P1)

The objective function is a nonnegative sublinear (convex and positively ho-

mogeneous) function with subdifferential at the origin equal to Q. Note that we

always have 0 ∈ Q. We will however further assume that

0 ∈ intQ. (3.15)

87

This implies that ϕ vanishes only at the origin, which is then the unique global

minimizer of ϕ, whence ϕ∗ > 0. Assumption (3.15) is equivalent to

range(A) = E∗, (3.16)

where A = [a1, . . . , am] : Rm → E∗ is the linear operator mapping the i-th unit

vector of Rm to ai. By A∗ we denote the adjoint of A. This is the operator

A∗ : E → (Rm)∗ defined by 〈Av, x〉 = 〈A∗x, v〉 for all x ∈ E, v ∈ Rm, so that

A∗x = [〈a1, x〉, . . . , 〈am, x〉]T and hence

ϕ(x) = ‖A∗x‖∞.

The (Lagrangian) dual of problem (P1) can be shown to be equivalent to

ϕ∗ = max
τ
{τ : τd ∈ Q} (D1)

and hence

ϕ∗d ∈ bdryQ. (3.17)

As an exercise, let us check weak duality. Assume we have x with 〈d, x〉 = 1 and τ

with τd ∈ Q. Then τd is a weighted average of points from {±ai, i = 1, 2, . . . , m}

and hence τ = 〈τd, x〉 is equal to a weighted average of inner products from

{〈±ai, x〉, i = 1, 2, . . . , m}. Therefore, the maximum inner product is at least τ .

Formulation (D1) has an evident geometric meaning: find the intersection of

Q with the half-line {τd : τ ≥ 0} by exploring the portion of the line belonging

to Q. Because τd is always required to lie in Q, this is an internal description

of the problem. The same underlying geometry can be expressed by considering

the portion of the line lying outside Q, thus arriving at the following external

description:

ϕ∗ = min
τ
{τ > 0 : τd /∈ intQ}. (D′1)

88

We mention both (D1) and (D′1) because the algorithms we design in later

sections give a lower and an upper bound on ϕ∗, thus producing feasible solutions

(with certain prescribed relative accuracy) to both problems. In fact, all the prob-

lems we consider in this chapter have optimal value either ϕ∗ or 1/ϕ∗ and hence all

can be viewed as specific formulations of the same underlying (one-dimensional)

geometric problem.

Problem (P1) can be reformulated as follows:

ϕ∗ := min
x
{max

i
|〈ai, x〉| s.t. 〈d, x〉 = 1}

= min
x,τ
{τ : max

i
|〈ai, x〉| ≤ τ, 〈d, x〉 = 1}

= min
x,τ
{τ : x ∈ τQ◦, 〈d, x〉 = 1, τ ≥ 0}

= min
z,τ
{τ : z ∈ Q◦, 〈d, z〉 = 1/τ, τ ≥ 0}

=

[

max
z,τ
{1/τ : z ∈ Q◦, 〈d, z〉 = 1/τ, τ ≥ 0}

]−1

=
[

max
z
{〈d, z〉 : z ∈ Q◦}

]−1

,

and therefore

1
ϕ∗ = max

z
{〈d, z〉 : z ∈ Q◦} = ξQ◦(d). (P2)

If x is feasible for (P1) then z := x/ϕ(x) is feasible for (P2) as maxi |〈ai, z〉| =

maxi |〈ai, x〉|/ϕ(x) = 1. On the other hand, if z is feasible for (P2) then x :=

z/〈d, z〉 is feasible for (P1) because 〈d, x〉 = 〈d, z〉/〈d, z〉 = 1. A slightly more

careful look at the above chain of equalities reveals the following:

Proposition 3.2.6. Point x = z/〈d, z〉 is a minimizer of (P1) with optimal value

ϕ∗ if and only if z = x/ϕ(x) is a maximizer of (P2) with optimal value 1/ϕ∗.

Consider now the dual of (P2). It can be written as

1
ϕ∗ = min

v
{‖v‖1 : Av = d, v ∈ Rm}. (D2)

89

This is the problem of finding the smallest ℓ1 norm solution of the underdetermined

full rank (see assumption (3.16)) linear system Av = d. Let us again check weak

duality. For any z ∈ Q◦ and v with Av = d, one has

‖v‖1 − 〈d, z〉 = ‖v‖1 − 〈Av, z〉

= ‖v‖1 − 〈v, A∗z〉

= ‖v‖1 −
m∑

i=1

vi〈ai, z〉

=

m∑

i=1

(|vi| − vi〈ai, z〉)

≥
m∑

i=1

(|vi| − |vi||〈ai, z〉|)

≥ 0.

We arrive at this straightforward observation:

Proposition 3.2.7. Point z feasible for (P2) (v feasible for (D2)) is optimal if

and only if there is v feasible for (D2) (z feasible for (P2)) such that the following

complementary slackness conditions hold:

|vi| = vi〈ai, z〉, i = 1, 2, . . . , m. (3.18)

Using the complementary slackness condition (3.18) between problem (P2)

and its dual (D2) together with the relationship between problems (P1) and (P2)

given by Proposition 3.2.6 and the discussion preceding it, we have arrived at the

following complementary slackness condition between problems (P1) and (D2):

|vi|ϕ(x) = vi〈ai, x〉, i = 1, 2, . . . , m. (3.19)

Note that (3.19) is equivalent to

vi 6= 0 ⇒ ϕ(x) = |〈ai, x〉|, and sign(〈ai, x〉) = sign(vi). (3.20)

90

We have thus shown the following.

Proposition 3.2.8. Point x feasible for (P1) (v feasible for (D2)) is optimal if

and only if there is v feasible for (D2) (x feasible for (P1)) such that the following

complementary slackness conditions hold for i = 1, 2 . . . , m:

vi > 0 ⇒ ϕ(x) = 〈ai, x〉, and

vi < 0 ⇒ ϕ(x) = 〈−ai, x〉.

Alternatively, the statement above is equivalent to saying that there is a subd-

ifferential of the objective function ϕ at x such that its negative lies in the normal

cone to the constraint set at x.

3.2.3 Convex combinations of rank-one operators

The operator U of interest in the remainder of this chapter is one arising as a

weighted average of rank-one operators coming from the points defining Q:

U(w) :=

m∑

i=1

wiaia
∗
i , w ∈ ∆m. (3.21)

For notational convenience we let B(w) := B(U(w)) and B◦(w) := B◦(U(w)). The

following simple fact about the dependence of the range of the operator U(w) on

the weights defining it will be needed at several occasions in the text.

Proposition 3.2.9. rangeU(w) = span{ai : wi 6= 0}.

Proof. Let U = U(w) and Ã be the matrix obtained from A = [a1, . . . , am] by

excluding all columns with zero weights. Let w̃ be defined in an analogous fash-

ion. Note that for any x, Ux is a linear combination of columns of Ã and thus

range(U) ⊂ range(Ã). However,

rank(U) = rank(Ã diag(w̃)Ã∗) = rank(ÃÃ∗) = rank(Ã)

91

and hence range(U) = range(Ã).

By Proposition 3.2.9, U(w) is invertible (and hence B(w) is a full-dimensional

ellipsoid) if the vectors ai with nonzero weights span E∗. Since range(A) = E∗ by

(3.16), this happens, in particular, when all weights are positive.

The starting point of our discussion is the simple observation that B(w) ⊂ Q

for all w ∈ ∆m and hence by taking polars, Q◦ ⊂ B◦(w).

Proposition 3.2.10. The following holds:

(i) For all x ∈ E and w ∈ ∆m,

‖x‖U(w) ≤ ϕ(x)

with equality if and only if the following condition holds:

wi > 0 ⇒ ϕ(x) = |〈ai, x〉|, i = 1, 2, . . . , m.

(ii) ϕ(x) = maxw{‖x‖U(w) : w ∈ ∆m}.

(iii) B(w) ⊂ Q and Q◦ ⊂ B◦(w) for all w ∈ ∆m.

Proof. Part (i) follows from

ξB(w)(x) = ‖x‖U(w) = [
∑

i

wi〈ai, x〉2]1/2 ≤ max
i
|〈ai, x〉| = ξQ(x) ≡ ϕ(x).

Condition for equality and parts (ii) and (iii) follow easily.

Example 3.2.11 (Polarity). In Figure 3.1, Q is the ℓ∞ unit ball and Q◦ is the ℓ1

unit ball. Since B(w) ⊂ Q, the polar sets will satisfy the reverse inclusion: Q◦ ⊂

B◦(w). The numbers represent the relative sizes of the respective line segments,

one unit corresponding to
√

2/4.

92

Q◦

Q
B(w)

0

B◦(w)

0
1

3
2

2
2

2
2

6

Figure 3.1: Polarity (Example 3.2.11).

3.2.4 The main problem

Observe that

ϕ∗ = min
x:〈d,x〉=1

ϕ(x)

= min
x:〈d,x〉=1

max
w∈∆m

‖x‖U(w) (part (ii) of Proposition 3.2.10)

= max
w∈∆m

min
x:〈d,x〉=1

‖x‖U(w)

= max
w∈∆m

d∈range(U(w))

min
x:〈d,x〉=1

‖x‖U(w) by (3.12)

= max
w∈∆m

d∈range(U(w))

‖xw‖U(w) (xw = minimizer from Proposition 3.2.5, U = U(w))

= max
w∈∆m

d∈range(U(w))

1/‖d‖∗U(w) (part (iii) of Proposition 3.2.5)

= max
w∈∆m

1/‖d‖∗U(w)

=

[

min
w∈∆m

‖d‖∗U(w)

]−1

.

93

The interchange of minimum and maximum in the derivation above can be justified

using Hartung’s [12] generalization of Sion’s [31] minimax theorem. If we write

ψ(w) := ‖d‖∗U(w), this observation shows that ψ∗ = 1/ϕ∗, where

ψ∗ := min
w
{‖d‖∗U(w) : w ∈ ∆m}. (P3)

There is another way of seeing that ψ∗ = 1/ϕ∗ and that the minimum is

attained. The proof will give us an important insight into the relationship between

the feasible solutions of problems (P3) and (D2), revealing an algorithmic idea for

solving both problems. We will need two intermediate results.

Lemma 3.2.12. Assume U(w)y = d for some w ∈ ∆m and y ∈ E. If we set

vi = wi〈ai, y〉 for i = 1, . . . , m, then Av = d and ‖v‖1 ≤ ‖d‖∗U(w).

Proof. By the inequality between the weighted arithmetic and quadratic means we

get

‖v‖1 =
∑

i

wi|〈ai, y〉| ≤ [
∑

i

wi〈ai, y〉2]1/2 = 〈U(w)y, y〉1/2 = 〈d, y〉1/2 = ‖d‖∗U(w).

This result says: if w is feasible for (P3) with finite objective value, then the

objective value of (D2) for some v is no bigger than that of (P3) for w.

Lemma 3.2.13. For 0 6= v ∈ Rm let c := Av and w := |v|/‖v‖1. Then

‖c‖∗U(w) ≤ ‖v‖1.

Proof. We can wlog assume that ‖v‖1 = 1 since both sides of the inequality are

positively homogeneous in v. Let U = U(|v|). By Proposition 3.2.9, there is y ∈ E

94

0

Q d

d/‖d‖∗U(w)

d/‖v‖1
d/‖d‖∗U(w+)

‖d‖∗U(w) ≥ ‖v‖1 ≥ ‖d‖∗U(w+)

B(w)

B(w+)

Figure 3.2: Geometry of Lemma 3.2.12 and Lemma 3.2.13.

for which Uy = c and

〈c, y〉 = 〈
∑

i

viai, y〉 ≤
∑

i

|vi||〈ai, y〉|

≤ [
∑

i

|vi|〈ai, y〉2]1/2 = 〈Uy, y〉1/2 = 〈c, y〉1/2.

We have again used the inequality between the weighted arithmetic and quadratic

means. It follows that ‖c‖∗U = 〈c, y〉1/2 ≤ 1.

The interpretation of the above result that we will use is the following: if

v is feasible for (D2) then the objective value of (P3) for some w is no bigger

than that of (D2) for v. Lemma 3.2.12 and Lemma 3.2.13 have a nice geometric

interpretation.

First notice that c′ = Av/‖v‖1 lies in Q and that any point of Q\{0} can be

we written in this form for some 0 6= v ∈ Rm, i.e. Q = {0} ∪ {Av/‖v‖1 : v ∈

Rm\{0}}. Also notice that 0 ∈ B(w) for any w ∈ ∆m. Lemma 3.2.13 therefore

says that any point c′ of Q can be enclosed into B(w) (i.e. ‖c′‖∗U(w) ≤ 1) for

properly chosen weights w. By part (ii) of Proposition 3.2.10, c′ ∈ B(w) ⊂ Q.

If the set {ai : wi 6= 0} spans E∗, then B(w) is a full dimensional ellipsoid

95

contained in Q and containing the point c′ = c/‖v‖1. In particular, any point c′

in the interior of Q or in the relative interior of a full dimensional face of Q can

be enclosed into a full-dimensional ellipsoid which is, in turn, contained in Q. We

have obtained the following:

Theorem 3.2.14. The optimal value of (P3) is 1/ϕ∗ and it is attained.

Proof. The first part is a direct consequence of Lemma 3.2.12, Lemma 3.2.13, and

the fact that the optimal value of (D2) is 1/ϕ∗. Attainment follows from the fact

that the minimum is attained in (D2) by some v∗, which can be used via Lemma

3.2.13 and the first part of this theorem to establish the existence of a minimizer

of (P3).

3.2.5 Common origin of the many optimization problems

The purpose of this section is to expose a unified geometric point of view explaining

the origin of the numerous problems encountered in previous subsections.

If we wish to generate a number of optimization problems from Figure 3.1,

we can consider the support functions of the sets Q, B(w), Q◦ and B◦(w) — see

Figure 3.3. The value of ξQ at a particular point x ∈ E can be computed in O(mn)

arithmetic operations. It is easy to see that the support functions of the ellipsoids

B(w) and B◦(w) are the gauges ‖ · ‖U(w) and ‖ · ‖∗U(w) (Proposition 3.2.2) and can

be both computed in O(mn2) arithmetic operations. Indeed, the formation of

U(w) takes O(mn2) work, the multiplication U(w)x takes O(n2) operations and

the computation of 〈U(w)x, x〉 takes an additional O(n) operations (let us neglect

the square root work). In the evaluation of ‖x‖∗U(w) we also need to invert U(w),

which takes O(n3) arithmetic operations. Since m ≥ n by our assumption on

96

full-dimensionality of Q, the dominant work is performed by the formation of the

matrix. Finally, evaluation of ξQ◦ at any particular point g ∈ E∗ amounts to

solving a linear program (LP).

Problem Arithmetic operations

ξQ(x) = max{|〈ai, x〉| : i = 1, 2, . . . , m} O(mn)

ξB(w)(x) = ‖x‖U(w) O(mn2)

ξQ◦(d) = max{〈d, x〉 : x ∈ Q◦} LP

ξB◦(w)(d) = ‖d‖∗U(w) O(mn2)

Figure 3.3: Support functions of Q and B(w) and their polars.

Notice that while Figure 3.1 enjoys considerable symmetry, our focus on a fixed

d ∈ E∗ disrupts this symmetry. In particular, ξQ(x) depends on x, ξB(w)(x) on

both x and w, ξQ◦(d) is constant and finally ξB◦(w)(d) depends on w. Finally, if

we now look at the optimization problems derived from the support functions of

Figure 3.3, we recognize some of the problems of this chapter — see Figure 3.4.

problem related to

minx{ξQ(x) : 〈d, x〉 = 1} see (P1)

maxw{ξB(w)(x) : w ∈ ∆m} Proposition 3.2.10

minx{ξB(w)(x) : 〈d, x〉 = 1} Proposition 3.2.5

evaluate ξQ◦(d) see (P2)

minw{ξB◦(w)(d) : w ∈ ∆m} see (P3)

Figure 3.4: Common origin of the many optimization problems.

97

3.2.6 Convexity and smoothness

In this subsection we establish the convexity of the function

ψ2(w) = ‖d‖∗U(w)
2,

and derive formulae for its first and second derivatives. This is the objective

function of our main problem squared. Let us start by showing that the domain

of ψ (or equivalently of ψ2), defined the usual way as

domψ := {w ∈ ∆m : ψ(w) < +∞} = {w ∈ ∆m : d ∈ rangeU(w)},

is convex. For this we will need the following lemma.

Lemma 3.2.15. For any w′, w′′ ∈ ∆m and w = λw′ + (1− λ)w′′ with 0 < λ < 1,

rangeU(w′) ∪ rangeU(w′′) ⊂ rangeU(w).

Proof. Notice that for any i, the weight wi is positive if and only if at least one of

the weights w′
i, w

′′
i is positive and hence

{ai : w′
i > 0 or w′′

i > 0} = {ai : wi > 0}.

By Proposition 3.2.9,

rangeU(w′) ∪ rangeU(w′′) = span{ai : w′
i > 0} ∪ span{ai : w′′

i > 0}

⊂ span{ai : w′
i > 0 or w′′

i > 0}

= span{ai : wi > 0}

= rangeU(w).

Proposition 3.2.16. The domain of ψ is a convex set.

98

Proof. Assume ψ(w′) < +∞ and ψ(w′′) < +∞ for some w′, w′′ ∈ ∆m, or equiv-

alently, d ∈ rangeU(w′) ∩ rangeU(w′′), and consider w = λw′ + (1 − λ)w′′ for

0 < λ < 1. By Lemma 3.2.15, d ∈ rangeU(w) and hence ψ(w) < +∞.

Convexity of ψ2 is related to the following well-known fact about the map

C 7→ C−1: for C1 ≻ 0, C2 ≻ 0 and 0 < λ < 1,

(λC1 + (1− λ)C2)
−1 � λC−1

1 + (1− λ)C−1
2 .

Indeed, notice that this readily implies

〈d, (λC1 + (1− λ)C2)
−1d〉 ≤ λ〈d, C−1

1 d〉+ (1− λ)〈d, C−1
2 d〉,

which can be written as

(‖d‖∗λC1+(1−λ)C2
)2 ≤ λ(‖d‖∗C1

)2 + (1− λ)(‖d‖∗C2
)2.

This argument is sufficient to establish the convexity of ψ2 on the set of weights

corresponding to invertible matrices:

{w ∈ ∆m : U(w) is invertible} = {w ∈ ∆m : rangeU(w) = E∗}.

In particular, ψ2 is convex on rint ∆m ⊂ domψ. The general argument follows:

Proposition 3.2.17 (Convexity). ψ2 is convex on its domain.

Proof. For the sake of the proof we treat E and E∗ as Rn. Let w′, w′′ ∈ domψ

and y′, y′′ ∈ E be such that U(w′)y′ = d and U(w′′)y′′ = d. Further let w =

λw′ + (1− λ)w′′ for arbitrary λ ∈ (0, 1) and y be such that U(w)y = d (we know

that w ∈ domψ). We want to show that

(‖d‖∗U(w))
2 ≤ λ(‖d‖∗U(w′))

2 + (1− λ)(‖d‖∗U(w′′))
2,

99

or equivalently,

〈d, y〉 ≤ λ〈d, y′〉+ (1− λ)〈d, y′′〉. (3.22)

For this we will use the fact that positive semidefinite matrices can be simultane-

ously diagonalized by a nonsingular matrix (see, for example, [38], Theorem 6.6).

Let P be an invertible matrix and D′ and D′′ diagonal matrices with nonnegative

entries such that

U(w′) = PD′P ∗, U(w′′) = PD′′P ∗,

and hence

U(w) = P (λD′ + (1− λ)D′′)P ∗.

Then (3.22) can be written as

〈P−1d, P ∗y〉 ≤ λ〈P−1d, P ∗y′〉+ (1− λ)〈P−1d, P ∗y′′〉,

or

(‖P−1d‖∗λD′+(1−λ)D′′)2 ≤ λ(‖P−1d‖∗D′)2 + (1− λ)(‖P−1d‖∗D′′)2.

This way we have managed to transform the statement to the case of diagonal

matrices. For simpler reference and indexing, let us write c := P−1d, x := P ∗y,

x′ := P ∗y′ and x′′ := P ∗y′′. In terms of this notation, we have reduced the

problem to the following: if D′
iix

′
i = ci, D

′′
iix

′′
i = ci and (λD′

ii + (1 − λ)D′′
ii)xi = ci

for i = 1, 2, . . . , n, then

∑

i

cixi ≤ λ
∑

i

cix
′
i + (1− λ)

∑

i

cix
′′
i . (3.23)

Notice that if either D′
ii = 0 or D′′

ii = 0 for some i, then ci = 0 and the correspond-

ing terms on both sides of (3.23) vanish. It turns out that we can establish (3.23)

term-by-term. It is therefore enough to show that

1

λD′
ii + (1− λ)D′′

ii

≤ λ
1

D′
ii

+ (1− λ)
1

D′′
ii

100

for all i such that both D′
ii and D′′

ii are nonzero. However, this follows directly

from the convexity of the univariate function τ 7→ 1/τ on R++.

Alternatively, convexity of ψ2 can be also viewed as a consequence of convexity

of the cone of positive semidefinite matrices. We claim that for τ ∈ R and w ∈ ∆m,

τ ≥ ψ2(w) ⇔






τ d∗

d U(w)




 � 0, (3.24)

with the “matrix” representing a linear map from R × E to R × E∗ defined the

obvious way.

If d /∈ rangeU(w), then ψ2(w) = +∞ and we need to show that the operator

is not positive definite for any τ . Since U(w) is singular, nullU(w) is nontrivial.

Clearly there must be y ∈ nullU(w) for which 〈d, y〉 6= 0 since otherwise d would

be a member of (nullU(w))⊥ = rangeU(w). Choose y with 〈d, y〉 < 0 and consider

(

δ y∗
)






τ d∗

d U(w)











δ

y




 = τδ2 + 2〈d, y〉δ + 〈U(w)y, y〉

= τδ2 + 2〈d, y〉δ,

which is negative for all sufficiently small positive δ.

Now assume d ∈ rangeU(w) and take y such that U(w)y = d. For this part

of the argument we treat the spaces E and E∗ as Rn. We do this because we will

use a diagonalization technique. The operator from (3.24) is positive semidefinite

if and only if the following (n + 1)× (n + 1) matrix is positive semidefinite






1 −yT

0 In











τ dT

d U(w)











1 0

−y In




 =






τ − 〈d, y〉 0

0 U(w)




 .

This happens precisely when τ ≥ 〈d, y〉 = ψ2(w).

101

Consider now (w′, τ ′), (w′′, τ ′′) ∈ epiψ2 and λ ∈ (0, 1). Letting τ = λτ ′ + (1−

λ)τ ′′ and w = λw′ + (1− λ)w′′, notice that






τ d∗

d U(w)




 = λ






τ ′ d∗

d U(w′)




+ (1− λ)






τ ′′ d∗

d U(w′′)




 .

Convexity of the epigraph of ψ2 (and hence of ψ2) now follows from convexity of

the cone of positive semidefinite matrices.

Note that if τ = 0, the left-hand side statement (and hence both statements)

of the equivalence (3.24) holds if and only if d = 0. Since we assume d to be

nonzero, we can restrict our attention to positive values of τ only. In such a case,

the block matrix of (3.24) is positive semidefinite if and only if U(w)− 1
τ
dd∗, the

Schur complement of τ , is positive semidefinite (see, for example, Theorem 6.13

in [38]). Let us formulate some of these observations (in a bit more general way):

Lemma 3.2.18. If U : E → E∗ is positive semidefinite and self-adjoint, g ∈ E∗

and τ a positive real parameter, then the following statements are equivalent:

(i) τ ≥ (‖g‖∗U)2,

(ii)
(

τ g∗

g U

)
� 0,

(iii) U − 1
τ
gg∗ � 0.

If U(w) is invertible, then ψ2(w) = 〈d, U(w)−1d〉 is differentiable at w. For

an invertible linear operator C : E → E∗, let θ be defined by θ(C) = C−1. The

fact that Dθ(C)H = −C−1HC−1 together with the chain rule gives the following

formulae for the first and second (Frechét) derivatives of ψ2.

Proposition 3.2.19 (Differentiability). If U(w) is invertible, then ψ2 is differen-

tiable at w and for h ∈ Rm we have the following formulae:

102

(i) Dψ2(w)h = −〈d, U(w)−1U(h)U(w)−1d〉, and

(ii) D2ψ2(w)[h, h] = 2〈d, U(w)−1U(h)U(w)−1U(h)U(w)−1d〉.

It is apparent from the form of the Hessian of ψ2 that it is positive semidefinite.

Indeed, for any h ∈ Rm let g = U(h)U(w)−1d and note that D2ψ2(w)[h, h] =

2〈g, U(w)−1g〉 ≥ 0. This is another way to establish convexity of ψ2 (on a smaller

set than domψ though).

The following lemma states that the domain of ψ is open relative to ∆m.

Lemma 3.2.20 (Topology of the domain). Every w ∈ domψ has a neighborhood

N such that N ∩∆m ⊂ domψ.

Proof. For all sufficiently small h ∈ Rm and all i we have wi + hi > 0 whenever

wi > 0. If, in addition, w+h ∈ ∆m, then our assumption about w and Proposition

3.2.9 imply d ∈ rangeU(w) ⊂ rangeU(w + h).

Example 3.2.21. Consider an example with n = m = 2 as in Figures 3.5 and 3.6.

We have a1 = (1,−1), a2 = (1, 1) and d = (2, 0) and hence for (w1, w2) ∈ ∆2 we

get

U(w1, w2) = w1a1a
T
1 + w2a2a

T
2 =






1 w2 − w1

w2 − w1 1




 .

Assuming w1 > 0 and w2 > 0, the system U(w1, w2)y = d has the unique solution

y1 =
1

2

(
1

w1

+
1

w2

)

, y2 =
1

2

(
1

w2

− 1

w1

)

,

and therefore

ψ2(w1, w2) = 〈d, y〉 = 1

w1
+

1

w2
.

Note that ‖d‖∗U(0.5,0.5) = ψ(0.5, 0.5) = 2, which geometrically corresponds to

the ball B(0.5, 0.5) cutting vector d in half (Figure 3.5). Also observe that as

103

Q

0

a1 = (1,−1)

a2 = (1, 0)

d = (2, 0)

B(0.5, 0.5)

B(0.1, 0.9)

Figure 3.5: Example 3.2.21.

2.0

4.0

6.0

8.0

10.0

w1

ψ2(w1, w2)

0.2 0.4 0.6 0.8 1.00.0

Figure 3.6: The graph of ψ2 (Example

3.2.21).

w1 → 0, the ‖ ·‖∗U(w)-norm of d increases to infinity. This translates to the ellipsoid

B(w1, w2) getting thinner, “approaching” the lower dimensional ellipsoid B(0, 1)

— the line segment with endpoints a2 and −a2.

If wi = 0 then rangeU(w1, w2) = span{a3−i} and we conclude that in either

case d /∈ rangeU(w1, w2), implying ψ2(w1, w2) = +∞. Notice that ψ2 is a convex

function (as asserted in Proposition 3.2.17; also see Figure 3.6) with convex domain

{w ∈ ∆m : w1 > 0, w2 > 0} (Proposition 3.2.16), which is an open set relative to

∆m (Lemma 3.2.20). For any (w1, w2) ∈ domψ and h with h1 + h2 = 0 we have

Dψ2(w1, w2)h = −
(
h1

w2
1

+
h2

w2
2

)

= −〈U(h)y, y〉,

which agrees with the formula from Proposition 3.2.19.

3.2.7 Optimality conditions

In Subsection 3.2.2 we have discussed the basic relationship among the problems

(P1), (D1), (D′1), (P2) and (D2). Here we first investigate the necessary and

sufficient optimality conditions for problem (P3) and then show that these imply

104

optimality in (P1), (P2), their duals (D1), (D2), and in (D′1). Finally, we give a

single condition implying approximate optimality in all the problems above.

Lemma 3.2.22. Let U : E→ E∗ be self-adjoint and positive semidefinite. Further

let 0 6= c ∈ rangeU and assume that y ∈ E defines a supporting hyperplane to

B(U) at c′ := c/‖c‖∗U in the following sense:

〈g, y〉 < 〈c′, y〉 ∀ c′ 6= g ∈ B(U). (3.25)

Then c = λUy for some λ > 0.

Proof. First notice that because 0 6= c ∈ rangeU , we have 0 < ‖c‖∗U < ∞. Now

observe that c′ lies in the relative boundary of B(U), which implies that a vector

y as above exists. By Proposition 3.2.2 and (3.25) we have

‖y‖U = ξB(U)(y) = max{〈g, y〉 : g ∈ B(U)} = 〈c′, y〉,

and hence

‖y‖U‖c‖∗U = 〈c, y〉.

The condition for equality in the Cauchy-Schwarz inequality (Proposition 3.2.3)

now implies that either ‖y‖U = 0, or otherwise ‖y‖U 6= 0 and c is a nonnegative

multiple of Uy. We claim that the first case can be excluded. Indeed, if ‖y‖U = 0

then by (3.5) we get Uy = 0, which would in turn imply that 〈g, y〉 = 0 for all

g ∈ rangeU ⊃ B(U), violating (3.25). The statement of the lemma then follows

from the second case discussed above by noting that the assumption c 6= 0 implies

that the nonnegative multiplier must be in fact positive.

The above lemma will be used to prove the necessity part of the following

optimality condition.

105

Proposition 3.2.23. Point w ∈ ∆m is optimal for (P3) if and only if there exists

y ∈ E such that

(i) U(w)y = d, and

(ii) ϕ(y) = ψ(w).

Condition (ii) can be replaced by

(ii’) wi > 0 ⇒ ϕ(y) = |〈ai, y〉|, i = 1, 2, . . . , m.

Proof. If (i) holds then x = y/ψ2(w) is feasible for (P1) and hence ϕ(y/ψ2(w)) =

ϕ(x) ≥ ϕ∗ = 1/ψ∗. By homogeneity of ϕ we obtain

ϕ(y) ≥ ψ2(w)

ψ∗ ≥ ψ(w). (3.26)

If we additionally assume (ii) then (3.26) must hold will equality and thus ψ(w) =

ψ∗. As a side product, this also shows that x is optimal for (P1). Conversely,

assume w ∈ ∆m is a minimizer of (P3). Then ‖d‖∗U(w) = ψ∗ = 1/ϕ∗ and ϕ∗d ∈

bdryQ by (3.17). Let y ∈ E define a supporting hyperplane to Q at c′ := ϕ∗d

(and hence to B(U(w)) at the same point) so that 〈·, y〉 is maximized over Q at

c′ (and hence uniquely over B(U(w)) at the same point). Applying Lemma 3.2.22

with U := U(w) and c := d we conclude that d = λU(w)y for some positive λ. Let

us scale y so that d = U(w)y, establishing (i). Part (ii) follows from

ϕ(y) = ξQ(y) = max{〈g, y〉 : g ∈ Q} = 〈c′, y〉 = 〈ϕ∗d, y〉 = ϕ∗ψ2(w) = ψ(w).

The first equality is the definition of ϕ, the third is a consequence of the choice of

y and the last one follows from ψ(w) = ψ∗ = 1/ϕ∗. Finally, the equivalence of (ii)

and (ii′), assuming (i), is apparent if we note that ϕ(y) = maxi{|〈ai, y〉| : i =

1, 2, . . . , m} and ψ(w) = ‖d‖∗U(w) = ‖y‖U(w) = (
∑

i wi〈ai, y〉2)1/2
(see also part (i)

of Proposition 3.2.10).

106

The optimality conditions of the previous result have a clear geometric meaning

(see Figure 3.7). A point w ∈ ∆m is optimal for (P3) precisely when there exists a

hyperplane Hy passing through d/‖d‖∗U(w) which also happens to be a supporting

hyperplane of Q. The set Fy := Hy ∩ Q is therefore a face of Q exposed by the

direction y. Optimality condition (ii′) then requires one of the points ai or −ai to

lie in Fy if the corresponding weight wi is positive. In other words, if both ai and

−ai lie outside this face, then they must have zero weights, at optimality.

Note also that for optimal w, the point v ∈ Rm defined by vi = wi〈ai, y〉 is

optimal for (D2), which is a consequence of Lemma 3.2.12 and the fact that the

optimal values of problems (P3) and (D2) are equal. The intersection point ϕ∗d

of {τd : τ ≥ 0} and Q can be written as

ϕ∗d = ϕ∗U(w)y = ϕ∗
m∑

i=1

wi〈ai, y〉ai =
m∑

i=1

ϕ∗viai

with ‖ϕ∗v‖1 = ϕ∗‖v‖1 = ϕ∗ψ∗ = 1. Hence the point ϕ∗d can be written as a

convex combination of points ±ai lying in Fy, implying that it also lies on the

face.

Our next result says that once we are in the possession of an optimal point of

(P3), it is easy to construct optimal solutions to the problems (P1), (D1), (D′1),

(P2) and (D2). This is another reason why the former problem deserves special

attention. Given the detailed discussion of the various connections between the

problems, there is a number of ways to proving the result. For example, we have

seen in the proof of Proposition 3.2.23 that if w satisfies the optimality conditions

(i) and (ii), then x = y/ψ2(w) is optimal for (P1). Alternatively, this can be

proved by constructing a feasible point for (D2), as we will do in the proof below,

such that the complementary slackness condition formulated in Proposition 3.2.8

holds. In doing so, we automatically obtain an optimal point for (D2). It is not

107

a1

−a1

a2

−a3

−a2

a3 0

−a4

a4

Q

d

B(U(w))

a5

−a5

y

U(w)y = d
w2 > 0, w3 > 0
wi = 0 otherwise

Hy

ϕ∗d

Figure 3.7: Geometry at optimality.

the intention of the author to give an exhaustive list of the many possible proofs.

In fact, we will do quite the opposite: cut through the argument as fast as possible

using the help of the results we have proved in previous sections.

Theorem 3.2.24 (Universal optimality condition). Assuming that the optimality

conditions (i) and (ii) from Proposition 3.2.23 hold for some w ∈ ∆m and y ∈ E,

then

(i) x = y/ψ2(w) is a minimizer of (P1),

(ii) τ = 1/ψ(w) is the maximizer of (D1),

(ii’) τ ′ = ϕ(y)/ψ2(w) = ϕ(x) is the minimizer of (D′1),

(iii) z = y/ϕ(y) is a maximizer of (P2),

(iv) v ∈ Rm given by vi = wi〈ai, y〉 is a minimizer of (D2), and

(v) w is a minimizer of (P3).

108

Proof. Parts (i) and (iv) follow from Proposition 3.2.8, (iii) from optimality of x

and Proposition 3.2.6. Statement (v) is implied by Proposition 3.2.23 and (ii) is

then implied by optimality of w and (ii′) by optimality of x.

Observe that whenever ϕ(y) = ψ(w), the values of τ and τ ′ are equal. The

reason for defining the former as 1/ψ(w) and the latter as ϕ(x) is because for any

w feasible for (P3) the value 1/ψ(w) gives a lower bound on ϕ∗, thus producing

a feasible point for (D1), while for any x feasible for (P1) the value ϕ(x) always

yields an upper bound on ϕ∗, giving a feasible point for (D′1). This distinction

will be needed in the formulation of Theorem 3.2.25.

We can hardly expect from an algorithmic scheme for solving (P3) to yield an

exact minimizer. In this sense, Theorem 3.2.24 is not practical. Also, it would be

good to be able to say something about the quality of the current solution because

this could suggest what work needs to be done to obtain the next iterate. At the

same time, we would like to be able to say something about the quality of the

derived points x, τ, z and v in their respective problems even if the current point

w is not optimal, but perhaps nearly optimal. Theorem 3.2.25 below states that a

relaxed version of the optimality conditions, in view of inequality (3.26), gives the

right answer.

Theorem 3.2.25 (Approximate universal optimality condition). Let U(w)y = d

for some w ∈ ∆m and y ∈ E and assume the following δ-approximate optimality

condition holds:

ϕ(y) ≤ (1 + δ)ψ(w). (3.27)

Then the points x, τ, τ ′, z, v and w considered in Theorem 3.2.24 are feasible and

satisfy the following δ-optimality conditions in their respective problems:

109

(i) ϕ(x) ≤ (1 + δ)ϕ∗,

(ii) τ ≥ (1 + δ)−1ϕ∗ ≥ (1− δ)ϕ∗,

(ii’) τ ′ ≤ (1 + δ)ϕ∗,

(iii) 〈d, z〉 ≥ (1 + δ)−1ψ∗ ≥ (1− δ)ψ∗,

(iv) ‖v‖1 ≤ (1 + δ)ψ∗, and

(v) ψ(w) ≤ (1 + δ)ψ∗.

Moreover, ‖v‖1 ≤ ψ(w) ≤ (1 + δ)〈d, z〉 and ϕ(x)〈d, z〉 = 1.

Proof. Feasibility in each case follows from the definition of the corresponding

point: note that the proof of the previous theorem did not use the optimality

condition to establish feasibility. Since x = y/ψ2(w) and ψ(w) ≥ ψ∗ = 1/ϕ∗,

condition (3.27) yields

ϕ(x) ≤ (1 + δ)
1

ψ(w)
≤ (1 + δ)ϕ∗,

establishing (i). Part (ii)′ then follows from (i) as τ ′ = ϕ(x). Reversing the

first of the displayed inequalities above gives (v) since ϕ(x) ≥ ϕ∗. By definition,

τ = 1/ψ(w) and hence (ii) can be obtained from (v) by taking the reciprocals and

substituting ψ∗ = 1/ϕ∗. Part (iii) follows from (i) by noting that z = y/ϕ(y),

x = y/ψ2(w) and 〈d, x〉 = 1 implies

〈d, z〉 =
〈d, y〉
ϕ(y)

=
〈d, x〉ψ2(w)

ϕ(x)ψ2(w)
=

1

ϕ(x)
.

Inequality (iv) follows from (v) and Lemma 3.2.12. The final statement can be

easily extracted from the proof.

110

3.3 Algorithms

In this section we will put to work the theory developed in the preceding text

to design and analyze algorithms for finding a δ-approximate solution to problem

(P3). In view of Theorem 3.2.25, we are simultaneously solving several other

problems. The development in this section can be viewed as the continuation of

the effort for combining the rounding and optimization steps for solving problem

(P1) initiated in Section 2.5 of Chapter 2.

3.3.1 A multiplicative weight update algorithm

The inequalities formulated as Lemma 3.2.12 and Lemma 3.2.13 reveal a close

relationship between the feasible solutions of problems (D2) and (P3). As we

have seen in the previous section, these two lemmas can be used to argue that

the two problems have equal optima (see Theorem 3.2.14). However, they are

more interesting to us because of their geometry (see Figure 3.2.4) and algorithmic

implications.

Assuming we start with a feasible solution to problem (P3), Lemma 3.2.12

provides us with a feasible solution to problem (D2) with a better objective value.

Now in turn, starting from this feasible solution, Lemma 3.2.13 gets us back to a

feasible solution to problem (P3), again with a better objective value. Using this

observation we have arrived at our first algorithm of this chapter (Algorithm 10),

updating the weights in a multiplicative fashion at every iteration.

Due to their simplicity, multiplicative weight update algorithms have been pro-

posed in the literature for many computer science problems. For a recent unifying

review of such approaches we refer the reader to [2].

111

Algorithm 10 (MultWeight) Multiplicative weight updates

1: Input: a1, . . . , am ∈ E∗, d ∈ E∗, δ > 0;

2: Initialize: k = 0, w0 = e/m;

3: Iterate:

4: Uk =
∑

iw
(i)
k aia

∗
i , yk = U−1

k d;

5: αk = 〈d, yk〉, j = arg maxi |〈ai, yk〉|, βk = 〈aj , yk〉;

6: δk = |βk|√
αk
− 1;

7: if δk ≤ δ

8: terminate;

9: else

10: vi = w
(i)
k 〈ai, yk〉, i = 1, 2, . . . , m;

11: wk+1 = |v|/‖v‖1;

12: k ← k + 1;

13: end if

14: Output: wk satisfying ‖d‖∗U(wk) =
√
αk ≤ (1 + δ)ψ∗;

112

Notice that the stopping criterion of Algorithm 10 is equivalent to the condition

(3.27) of Theorem 3.2.25 and hence the point wk output by the algorithm, if

it terminates, is a δ-approximate minimizer of problem (P3). The algorithm,

however, suffers from at least two shortcomings.

First, it can fail to terminate (see Figure 3.8). In short, this is because once a

weight is set to zero, it can never be increased to a nonzero value, even if the cor-

responding point ai is required to have a positive weight in the optimum. Imagine

we run the algorithm starting with positive weights only for i ∈ I with I being

a proper subset of the index set {1, 2, . . . , m}. It is clear that the algorithm will

never be able to work with points ai with i /∈ I and hence we are actually at

best trying to find the intersection of the half-line emanating from the origin in

the direction d and the convex hull of {±ai, i ∈ I}, which is a proper subset

of Q. If the algorithm happens to drop weights to zero along the way, it will

never be able to recover them back to a nonzero value. Because Ik+1 ⊆ Ik holds

for all k, the “scope” of the method will be the gradually diminishing convex set

QIk
= conv{±ai : i ∈ Ik}.

Another obvious disadvantage of the algorithm is its high computational cost

per iteration due to the need to update U in a full-rank fashion. The inverse (or

a factorization) of U will therefore have to be fully recomputed at every iteration

at the cost of at least O(n3) arithmetic operations.

3.3.2 Ingredients of a rank-one update algorithm

As we have already mentioned above, the multiplicative weight update algorithm

has the obvious disadvantage of altering weights in a rather nonuniform way, re-

sulting in the need to fully resolve a system of the form U(w)y = d at every

113

a1

−a1

a2

−a3

−a2

a3 0

−a4

a4

Q

d

B(U(w))

a5

−a5 y

U(w)y = d
w1 > 0, w3 > 0
wi = 0 otherwise

Hy

Figure 3.8: Algorithm 10 can fail to converge to the optimum.

iteration. The idea we are going to exploit now is updating U(w) only slightly at

every iteration, in a rank-one fashion. This corresponds to changing the weight of

a specific term aja
∗
j and then adjusting all other weights uniformly by a certain

factor, so as to keep the resulting vector of weights feasible.

In what follows we will focus on a single iteration with current weight w. As-

sume throughout that ψ(w) <∞, or equivalently,

d ∈ rangeU(w), (Assumption 1)

and that we are in possession of vector y such that U(w)y = d. Suppose we update

this weight to

w(κ) :=
w + κej

1 + κ
, (3.28)

where κ is a real parameter, j ∈ {1, 2, . . . , m} is to be determined later and ej is

the j-th unit vector of Rm. The smallest possible κ for which w(κ) is feasible is

κmin := −wj . For w(κ) to be meaningfully defined, we will further suppose that

wj 6= 1. (Assumption 2)

114

This ensures both that w(κ) varies as κ varies and that w(−wj) is well-defined.

We allow κ to take on the value∞ and naturally define w(∞) := ej . Note that the

set of weights described this way forms a chord of ∆m joining vertex ej with w (see

Figure 3.3.2). We chose this particular parametrization of the chord over the more

natural w(λ) := (1 − λ)w + λej , 0 ≤ λ ≤ 1, because it turns out to yield a more

compact exact line-search formula, developed in the next subsection. By linearity

of U(·) as a function of w, this translates into updating U(w) (for simplicity we

will write just U) as follows:

U(κ) := U(w(κ)) =
U + κaja

∗
j

1 + κ
. (3.29)

ej = w(∞)

∆m

w = w(0)

w(−wj)

Figure 3.9: The weights w(κ) for κ ∈ [−wj ,∞].

After we update w to w(κ), the value ψ2(w) = 〈d, y〉 changes to

ψ2(κ) := ψ2(w(κ)) =







〈d, y(κ)〉 if y(κ) solves U(κ)y(κ) = d,

∞ if d /∈ rangeU(κ).

Of course, we consider only updates decreasing the objective value at every itera-

tion and hence the second case does not apply for κ we actually end up using.

Since U changes in a simple and highly structured way (rank-one update and

scaling), it can be expected that y(κ) should be obtainable from y with less effort

115

than resolving from scratch. This is indeed the case. If both U and U(κ) are

nonsingular, one can use the Sherman-Morrison formula (see, for example, Section

2.1.3 of [10]) to this purpose. Loosely speaking, the formula says that the inverse of

a rank-one perturbation of a nonsingular matrix results in a rank-one perturbation

of the inverse:

Fact 3.3.1 (Sherman-Morrison). If U : E → E∗ is an invertible linear operator,

g ∈ E∗ and κ ∈ R such that 1 + κ〈g, U−1g〉 6= 0, then U + κgg∗ is invertible and

(U + κgg∗)−1 = U−1 − κU−1gg∗U−1

1 + κ〈g, U−1g〉 .

In the definition of U(κ) we are dealing with a rank-one update followed by

scaling. In particular, if U = U(w) is invertible and 1 + κ〈aj , U
−1aj〉 6= 0 with κ

being a real number, the Sherman-Morrison formula implies

y(κ) := U(κ)−1d = (1 + κ)

(

y − κU−1aj〈aj, y〉
1 + κ〈aj , U−1aj〉

)

,

and hence

ψ2(κ) = 〈d, y(κ)〉 = (1 + κ)

(

〈d, y〉 − κ〈aj , y〉2
1 + κ〈aj, U−1aj〉

)

. (3.30)

In the remainder of this subsection we compute a general formula for ψ2(κ),

one that is free of the full-rank assumption on U and includes the case κ = ∞

and the situation when the expression in the denominator of (3.30) vanishes. We

proceed through several auxiliary results — the first step is the following simple

generalization of the Sherman-Morrison inversion identity:

Lemma 3.3.2. Let U : E → E∗ be a (not necessarily invertible) linear operator

and assume Uy = d for some y ∈ E and d ∈ E∗. If for g ∈ E∗ and κ ∈ R we let

ỹ(κ) :=







y if 〈g, y〉 = 0,

y − κ〈g,y〉x
1+κ〈g,x〉 if Ux = g and 1 + κ〈g, x〉 6= 0 for some x ∈ E,

116

then (U + κgg∗)ỹ(κ) = d.

Proof. The first case is trivial; the statement in the second case follows from:

(U + κgg∗)ỹ(κ) = Uy + κ〈g, y〉g − κ〈g, y〉Ux
1 + κ〈g, x〉 −

κ2〈g, x〉〈g, y〉g
1 + κ〈g, x〉

= d+ κ〈g, y〉g
(

1− 1 + κ〈g, x〉
1 + κ〈g, x〉

)

= d.

Remark 3.3.3. Note that if U is self-adjoint, the value 〈g, x〉 in the above lemma

does not depend on the particular choice of the solution of the system Ux = g.

Indeed, if x′ and x′′ are two such solutions, then 〈g, x′〉 = 〈Ux′′, x′〉 = 〈Ux′, x′′〉 =

〈g, x′′〉. This is precisely one of the two arguments we used to show that (3.6) gives

a valid definition of ‖g‖∗U . If we also have U � 0, then 〈g, x〉 = (‖g‖∗U)2, which is

positive unless g = 0.

The next result characterizes the family of rank-one self-adjoint perturbations

of a positive semidefinite self-adjoint operator preserving positive-semidefiniteness.

Lemma 3.3.4. Let U : E→ E∗ be a positive semidefinite self-adjoint operator and

consider g ∈ E∗ and a real parameter κ.

(i) If g ∈ rangeU , then

U + κgg∗ � 0 ⇔ 1 + κ(‖g‖∗U)2 ≥ 0.

(ii) If g /∈ rangeU , then

U + κgg∗ � 0 ⇔ κ ≥ 0.

117

Proof. We offer two proofs. First proof. The statements trivially hold if κ ≥ 0.

If we notice that ‖g‖∗U = ∞ precisely when g /∈ rangeU , the case with κ < 0 is

essentially a restatement of the equivalence between (i) and (iii) of Lemma 3.2.18

with τ := −1/κ > 0.

Second proof. To establish (i), let x be any vector satisfying Ux = g. Observe

that if U + κgg∗ � 0, we have

0 ≤ 〈(U + κgg∗)x, x〉 = 〈Ux, x〉+ κ〈g, x〉2 = 〈g, x〉(1 + κ〈g, x〉).

This proves the direct implication if we further notice that 〈g, x〉 = (‖g‖∗U)2 > 0

unless g = 0. If g = 0, the reverse implication is trivial. Assume therefore that

(‖g‖∗U)2 > 0 and consider any z ∈ E. The gauge Cauchy-Schwarz inequality

(Corollary 3.2.3) gives

〈g, z〉2
(‖g‖∗U)2

≤ (‖g‖∗U)2‖z‖2U
(‖g‖∗U)2

= 〈Uz, z〉

and hence

〈(U + κgg∗)z, z〉 = 〈Uz, z〉 + κ〈g, z〉2 ≥ 0,

whenever κ ≥ −1/(‖g‖∗U)2.

For the direct implication in (ii) note that rangeU consists precisely of those

functionals that vanish on nullU and hence there must exist z ∈ nullU such that

〈g, z〉 > 0. Therefore,

0 ≤ 〈(U + κgg∗)z, z〉 = κ〈g, z〉2,

which gives κ ≥ 0. The reverse implication is straightforward.

Corollary 3.3.5. If w(κ) is feasible, then κ ≥ −1/(‖aj‖∗U)2 and in particular

−wj ≥ −1/(‖aj‖∗U)2. If wj > 0, then (‖aj‖∗U)2 ≤ 1/wj.

118

Proof. Observe that w(κ) being feasible implies 1 + κ ≥ 1−wj > 0 and U(κ) � 0

and hence U + κaja
∗
j = (1 + κ)U(κ) � 0. Now use Lemma 3.3.4 with g = aj.

Remark 3.3.6. Note that if we subscribe to the convention that

κ×∞ =







−∞ if κ < 0,

0 if κ = 0, and

+∞ if κ > 0,

the second case of Lemma 3.3.4 gets subsumed by the first.

Proposition 3.3.7. Let U : E→ E∗ be a positive semidefinite self-adjoint operator

and assume Uy = d for some y ∈ E and 0 6= d ∈ E∗.

(i) If 0 6= g ∈ rangeU then for κ ≥ −1/(‖g‖∗U)2 the operator U+κgg∗ is positive

semidefinite and

‖d‖∗U+κgg∗ =







√

(‖d‖∗U)2 − κ〈g,y〉2
1+κ(‖g‖∗

U
)2

if κ > − 1
(‖g‖∗

U
)2
,

‖d‖∗U if κ = − 1
(‖g‖∗

U
)2
, 〈g, y〉 = 0,

∞ if κ = − 1
(‖g‖∗

U
)2
, 〈g, y〉 6= 0.

(3.31)

Moreover,

‖d‖∗U+κgg∗ →







√
(‖d‖∗

U
)2(‖g‖∗

U
)2−〈g,y〉2

‖g‖∗
U

as κ→∞,

∞ as κ ↓ − 1
(‖g‖∗

U
)2

if 〈g, y〉 6= 0.

(ii) If g /∈ rangeU , then for κ ≥ 0 the operator U + κgg∗ is positive semidefinite

and

‖d‖∗U+κgg∗ = ‖d‖∗U for all κ ≥ 0. (3.32)

119

Proof. Consider statement (i) and note that g 6= 0 implies ‖g‖∗U > 0. Positive

semidefiniteness of U + κgg∗ follows from part (i) of Lemma 3.3.4. If ỹ(κ) and

x are as in Lemma 3.3.2, then (‖d‖∗G+κgg∗)
2 = 〈d, ỹ(κ)〉 and (‖g‖∗U)2 = 〈g, x〉,

and hence the first two cases of (3.31) follow. Assume now that κ = −1/(‖g‖∗U)2

and 〈g, y〉 6= 0. We will show that this implies d /∈ range(U + κgg∗), and hence

‖d‖∗U+κgg∗ = ∞, by demonstrating that x′ := x/〈g, y〉 satisfies 〈d, x′〉 = 1 and

〈(U + κgg∗)x′, x′〉 = 0 and then appealing to Proposition 3.2.5. Indeed,

〈d, x′〉 =
〈d, x〉
〈g, y〉 =

〈Uy, x〉
〈g, y〉 =

〈Ux, y〉
〈g, y〉 = 1

and

〈(U + κgg∗)x′, x′〉 = 1
〈g,y〉2 〈(U + κgg∗)x, x〉

= 1
〈g,y〉2 (〈g, x〉+ κ〈g, x〉2)

=
(‖g‖∗

U
)2

〈g,y〉2 (1 + κ(‖g‖∗U)2)

= 0.

The proof of the limit statements is straightforward. To establish (ii), fix arbitrary

nonnegative κ and note that whenever some ỹ(κ) satisfies (U + κgg∗)ỹ(κ) = d, we

have κ〈g, ỹ(κ)〉g = d−Uỹ(κ) ∈ rangeU . This is possible if and only if κ〈g, ỹ(κ)〉 =

0 and Uỹ(κ) = d. It therefore follows that ‖d‖∗U+κgg∗ = 〈d, ỹ(κ)〉1/2 = ‖d‖∗U .

The main result of this subsection gives a complete characterization of ψ2(κ),

generalizing (3.30).

Theorem 3.3.8. Assume y ∈ E is such that Uy = d (U = U(w)) and let us

120

establish the following simplified notation2:

α := 〈d, y〉 = (‖d‖∗U)2 = ψ2(w), β := 〈aj, y〉, γ := (‖aj‖∗U)2.

(i) If aj ∈ rangeU and −1 < −wj ≤ κ ≤ ∞, then the operator U(κ) = (U +

κaja
∗
j)/(1+κ) is positive semidefinite and self-adjoint and ψ2(κ) = (‖d‖∗U(κ))

2

can be written explicitly in terms of α, β, γ and κ as follows:

ψ2(κ) =







(1 + κ)
(

α− κβ2

1+κγ

)

if ∞ > κ > −1/γ,

(1 + κ)α if κ = −1/γ = −wj , β = 0,

∞ if κ = −1/γ = −wj , β 6= 0,

∞ if κ =∞, αγ > β2,

α
γ

if κ =∞, αγ = β2.

(3.33)

Moreover, ψ2 enjoys the following continuity/barrier properties:

ψ2(κ)→







∞ as κ ↓ −wj if β 6= 0, −wj = − 1
γ
,

∞ as κ→∞ if αγ > β2,

α
γ

as κ→∞ if αγ = β2.

(3.34)

(ii) If aj /∈ rangeU , and 0 ≤ κ ≤ ∞, then the operator U(κ) is positive semidef-

inite and self-adjoint and ψ2(κ) can be written as follows:

ψ2(κ) =







(1 + κ)α if ∞ > κ ≥ 0,

∞ if κ =∞.
(3.35)

Moreover, ψ2(κ)→∞ as κ→∞.

2The symbols α, β and γ are not meant to concur with the notation used in
Chapter 2. For example, α is not related to quality of any ellipsoidal rounding and
γ does not refer to a Lipschitz constant.

121

Proof. Let us start with part (i) and observe that −1/γ ≤ −wj (Corollary 3.3.5).

The first three cases of (3.33) follow from Proposition 3.3.7 used with g = aj since

ψ2(κ) = (‖d‖∗U(κ))
2 = (1 + κ)(‖d‖∗U+κaja∗

j
)2.

The first limit case of (3.34) corresponds to a case from Proposition 3.3.7 while

the other two can be easily derived by taking the limit in the first expression of

(3.33).

It remains to analyze the κ = ∞ cases. First observe that U(∞) = aja
∗
j and

that αγ ≥ β2 by the gauge Cauchy-Schwarz inequality (Corollary 3.2.3)

β2 = 〈aj , y〉2 ≤ (‖aj‖∗U)2‖y‖2U = γα, (3.36)

with equality if and only if either aj or −aj is a nonnegative multiple of Uy = d

(i.e. aj and d are collinear). Consider the equality case and assume d = τaj . Since

the ellipsoid B(aja
∗
j) corresponds to the line segment [−aj , aj], it must be the case

that ‖d‖∗aja∗
j

= |τ |. This can be also seen without referring to the geometrical

picture as follows: If y′ is such that (aja
∗
j)y

′ = d, then τ = 〈aj, y
′〉 and

(‖d‖∗aja∗
j
)2 = 〈d, y′〉 = 〈τaj , y

′〉 = τ 2.

If 〈aj, y〉2 = β2 = αγ > 0, we can write

‖d‖∗U(∞) = τ =

∣
∣
∣
∣

τ〈aj , y〉
〈aj, y〉

∣
∣
∣
∣
=
〈d, y〉
|〈aj, y〉|

=
α

|β| ,

and hence

ψ2(∞) = (‖d‖∗U(∞))
2 =

α2

β2
=
α2

αγ
=
α

γ
.

In the remaining case aj and d are not collinear and thus d /∈ range(U(∞)),

implying ψ2(∞) =∞.

122

The first statement of part (ii) is a consequence of part (ii) of Proposition

3.3.7. The second statement can be proved in complete analogy to the fourth case

of (3.33). This is because d ∈ rangeU and aj /∈ rangeU and hence d and aj can

not be collinear, implying αγ > β2.

d
0 a1−a1

a2

−a2

B(U)

B(U(∞))

B(U(1))

B(U(−wj))

Figure 3.10: Geometry of line-search (Example 3.3.9).

Example 3.3.9. Consider the following simple example with E = R2 (hence

n = 2) and m = 2 (see Figure 3.10). Let a1 = (
√

2, 0)T , a2 = (0,
√

2)T and

d = (2, 0), with the current weights being w1 = w2 = 1
2
. This means that U :=

U(w) = w1a1a
T
1 + w2a2a

T
2 = I and hence B(U) is the unit ball in R2. Consider

updating the weight of aj = a1 and note that in this case

α = 〈d, y〉 = 〈d, U−1d〉 = 〈d, d〉 = 4,

β = 〈aj, y〉 = 〈aj, U
−1d〉 = 2

√
2,

and

γ = (‖aj‖∗U)2 = 2.

Let us analyze the following choices for the update parameter κ:

123

1. κ := −wj = −1
2
. Note that U(κ) = (U + κaja

T
j)/(1 + κ) = a2a

T
2 = (0 0

0 2)

and hence B(U(κ)) is the one dimensional ellipsoid corresponding to the line

segment joining −a2 and a2. Also note that −wj = − 1
γ

and hence by (3.33)

we have

(‖d‖∗U(κ))
2 = ψ2(κ) =∞.

It is geometrically clear that this should be case since the vector d “sticks

out” of the span of B(U(κ)).

2. − 1
γ
< κ < ∞. In this case B(U(κ)) remains being a full-dimensional el-

lipsoid. If the weight on aj is increased (corresponding to κ > 0), then

B(U(κ)) prolongs in the x-axis direction and shrinks in the y-axis direction

(see B(U(1)) in Figure 3.10), meaning that the norm of d as measured by

U(κ) decreases. Indeed, by (3.33) we get

(‖d‖∗U(κ))
2 = ψ2(κ) = (1 + κ)

(

α− κβ2

1 + κγ

)

= 2 +
2

1 + κ
,

for κ ≥ 0. On the other hand, if the weight on aj is decreased (corresponding

to κ < 0), then B(U(κ)) shrinks in the x-axis direction and expands in the

y-axis direction, meaning that the norm of d as measured by U(κ) increases.

3. κ = ∞. This choice leads to B(U(κ)) corresponding to the line segment

joining −a1 and a1. Geometrically, the norm of d should therefore drop to

2/
√

2 =
√

2. Let us verify this by computation. Since αγ = 8 = β2, formula

(3.33) tells us that

(‖d‖∗U(κ))
2 = ψ2(κ) =

α

γ
=

4

2
= 2.

This corresponds to the optimal choice of κ minimizing the value of ψ2(κ) =

(‖d‖∗U(κ))
2.

124

The choice of j. We need to address two questions. First, how do we pick the

index j? Once this is chosen, we want to find the steplength κ minimizing ψ2(κ).

Our initial motivation for the choice of j can be drawn from the multiplicative

weight-update rule. At every iteration of Algorithm 10, the weights wi are multi-

plied by the factor |〈ai, y〉| and then re-normalized. If this value is relatively large

(or small) for particular i, the corresponding weight is being updated by a rela-

tively large (or small) factor and is likely to have a substantial effect. It therefore

makes sense to consider

j+ := arg max
i
|〈ai, y〉| and j− := arg min

wi>0
|〈ai, y〉|. (3.37)

Notice that ϕ(y) = |〈aj+, y〉| and that either aj ∈ ∂ϕ(y) or−aj ∈ ∂ϕ(y), depending

on whether ϕ(y) = 〈aj, y〉 or ϕ(y) = 〈−aj , y〉.

3.3.3 Line search

In this subsection we consider the following line-search problem:

κ∗ := arg min{ψ2(κ) : κmin = −wj ≤ κ ≤ ∞}. (3.38)

Note that if aj /∈ rangeU then wj = 0 by Proposition 3.2.9. In this case, however,

the line-search problem is trivial with the optimal step size being κ∗ = 0 (see

Theorem 3.3.8). We will therefore henceforth assume that aj ∈ rangeU .

General line-search formula

Our main result in this subsection is Theorem 3.3.10, in which we give a closed-

form formula for the solution of (3.38). We then specialize this formula for j = j+

and j = j−, as defined in (3.37).

125

We will assume, as in Theorem 3.3.8, that wj 6= 1 and d ∈ rangeU . The first

assumption is in place to ensure that w(κ) does not degenerate into describing a

single point for all values of κ while the second ensures that ψ2(0) = α <∞. Note

that we also have α > 0 (because d 6= 0). Recall that we assume throughout the

chapter that the vectors a1, . . . , am are all nonzero, and in particular, aj 6= 0. Since

also aj ∈ rangeU , we have γ > 0. Also recall that αγ ≥ β2 (3.36), with equality if

and only if aj and d are collinear.

Theorem 3.3.10. If aj ∈ rangeU , wj 6= 1 and α, β and γ are as in Theorem

3.3.8, the solution of the line-search problem (3.38) is

κ∗ =







κmin if β = 0 or γ ≤ 1,

max{κmin, κ1} if γ > 1 and αγ > β2,

∞ if γ > 1 and αγ = β2,

(3.39)

where

κ1 := −1

γ
+
|β|√γ − 1

γ
√

αγ − β2
. (3.40)

Moreover, if −1/γ = −wj then γ > 1 and max{κmin, κ1} = κ1.

Proof. First note that since aj ∈ rangeU , the function ψ2 is given by (3.33). Let

us start by analyzing the (simpler) case when −1/γ < −wj , eliminating two of the

subcases in (3.33). In view of the behavior of ψ2(κ) as κ approaches infinity, we

may assume that

ψ2(κ) = (1 + κ)

(

α− β2κ

1 + γκ

)

=
1 + κ

1 + γκ
[(αγ − β2)κ + α], (3.41)

and work with κ ∈ [−wj ,∞). If we discover that the infimum is attained “at” ∞,

we will set κ∗ =∞. In order not to get lost in the many subcases to follow, let us

do some branching of the argument:

126

1. If β = 0 then ψ2(κ) = (1 + κ)α, which is nondecreasing, and we can set

κ∗ = κmin.

2. Assume that β 6= 0 and notice that

(ψ2)′(κ) = α− β2γκ
2 + 2κ+ 1

(1 + γκ)2
=
γ(αγ − β2)κ2 + 2(αγ − β2)κ+ α− β2

(1 + γκ)2
.

(3.42)

(a) Let us first consider the degenerate case when the numerator in the

expression above fails to be a quadratic. If αγ = β2, looking at (3.41)

we see that ψ2 is increasing if γ < 1 and hence we can choose κ∗ = κmin.

If γ = 1 then ψ2 is constant on [−wj ,∞] and any choice of κ∗ is optimal.

Finally, if γ > 1 then κ∗ =∞.

(b) Assume that αγ > β2. The discriminant of the (convex) quadratic in

the numerator of (3.42) isD = 4(αγ−β2)β2(γ−1). This is nonpositive if

γ ≤ 1, in which case the derivative of ψ2 is nonnegative on (−1/γ,∞) ⊃

[−wj ,∞). We can therefore choose κ∗ = κmin. Henceforth suppose

γ > 1 and let us write down the roots of the quadratic:

κ1,2 =
−(αγ − β2)± |β|

√

(γ − 1)(αγ − β2)

γ(αγ − β2)
.

Notice that

κ2 = −1

γ
− |β|

√
γ − 1

γ
√

αγ − β2
< −1

γ
< −1

γ
+
|β|√γ − 1

γ
√

αγ − β2
= κ1.

This implies that ψ2 is decreasing on (−1/γ, κ1) and then increasing

on (κ1,∞). Since we consider only κ ≥ −wj, it is clear that κ∗ =

max{κmin, κ1}.

127

It remains to analyze the situation with −1/γ = −wj . In this case we proceed

as above, except we have to take into account also the second and third expression

in (3.33) defining ψ2. If β = 0 then ψ2(κ) = (1 + κ)α on [−wj ,∞) and hence

we conclude, as above, that κ∗ = κmin. Assume henceforth that β 6= 0. Now

because ψ2(κ) → ∞ = ψ2(−wj) as κ ↓ −wj, we may proceed exactly as in the

detailed analysis above, keeping in mind that γ > 1, which is a consequence of the

assumption −1 < −wj = −1/γ. In case 2a this leads to κ∗ =∞, while in case 2b

we now know that −wj = −1/γ < κ1 and hence κ∗ = κ1.

Line search with j+ and j−

If we assume that j is chosen to be either j+ or j−, as defined in (3.37), we can

get a refined version of the optimal line-search formula. Let us first observe that

〈aj−, y〉2 ≤ α ≤ 〈aj+, y〉2 = ϕ2(y), which is a simple consequence of the definitions

of j+ and j− and the frequently used identity
∑
wi〈ai, y〉2 = 〈U(w)y, y〉 = 〈d, y〉 =

ψ2(w) = α. Indeed, the above inequalities say that the weighted average of the

numbers 〈ai, y〉2 with positive weights wi cannot be smaller than their minimum

or bigger than their maximum. If there is equality in any of the two inequalities,

then 〈ai, y〉2 = α = ϕ2(y) for all i for which wi > 0, which is equivalent to the

optimality condition (ii′) of Proposition 3.2.23. So unless the current vector of

weights w is optimal, we have

〈aj−, y〉2 < α < 〈aj+, y〉2 = ϕ2(y). (3.43)

Consider now the following cases:

1. Assume j = j+. First notice that α ≤ β2, with equality if and only if w is

optimal. The Cauchy-Schwarz inequality αγ ≥ β2 then implies γ ≥ 1 and

128

hence γ = 1 implies optimality. Assume therefore that γ > 1, which excludes

the first case in (3.39), and consider two subcases:

(a) Case αγ > β2. By (3.39) we have κ∗ = max{κmin, κ1}. However, we

can say a bit more. Noting that α ≤ β2 is equivalent to κ1 ≥ 0, we

obtain κ∗ = κ1.

(b) Case αγ = β2. Formula (3.39) implies κ∗ = ∞. We claim that the

next iterate (after taking the “infinite” step) will be optimal. Indeed,

U+ := U(κ∗) = aja
∗
j and if we let y+ satisfy U+y+ = d, then

√
α+ := ‖d‖∗U+ = 〈d, y+〉1/2 = 〈aja

∗
jy

+, y+〉1/2 = |〈aj, y
+〉| = 1

ϕ∗ .

The last equality follows from bdryQ ∋ ϕ∗d = ϕ∗〈aj, y
+〉aj because

{aj ,−aj} ⊂ bdryQ and hence it must be the case that |ϕ∗〈aj , y
+〉| = 1.

2. Assume j = j−. First note that β2 = 〈aj−, y〉2 ≤ α with equality if and only

if w is optimal.

If γ ≤ 1 then (3.39) implies κ∗ = κmin. If γ > 1, we get β2 ≤ α < αγ and

consequently κ∗ = max{κmin, κ1}. Moreover, it is easy to show that β2 ≤ α

is equivalent to κ1 ≤ 0, which leads to the observation that κ∗ ≤ 0. If the

current iterate is not optimal, then β2 < α and thus κ∗ < 0.

We have arrived at the following conclusion:

Corollary 3.3.11. Under the assumptions of Theorem 3.3.10 the following hold.

1. If j = j+ then

κ∗ =







κ1 ≥ 0 if γ > 1 and αγ > β2,

∞ if γ > 1 and αγ = β2.

(3.44)

129

Moreover, it is always the case that α ≤ β2, with equality if and only if w

is optimal. This happens, in particular, if γ = 1. The new iterate after the

κ∗ =∞ step is taken is optimal.

2. If j = j− then

κ∗ =







κmin if γ ≤ 1,

max{κmin, κ1} ≤ 0 if γ > 1.

(3.45)

Moreover, it is always the case that β2 ≤ α, with equality if and only if w is

optimal.

3.3.4 An algorithm with “increase” steps only

In this subsection we design and analyze an algorithm which at every iteration uses

the choice j = j+ = arg maxi |〈ai, y〉|, where y is some vector satisfying Uy = d,

and updates U to U(κ) = (U + κaja
∗
j)/(1 + κ), using the optimal step size κ∗

described by Corollary 3.3.11. Since this particular choice of j always leads to

nonnegative value of the optimal step size parameter, strictly positive if w is not

optimal, we see from the definition of w(κ) (3.28) that the weight wj will increase

while all other weights decrease uniformly to account for this. This explains the

choice of the terminology “increase” step.

Since the initial iterate w0 used in Algorithm 11 has all components positive (all

are equal to 1
m

), all weights stay positive throughout the algorithm. In other words,

the method proceeds through the interior of the feasible region. One important

consequence of this is that the iterate matrices U never lose rank and hence stay

positive definite throughout the algorithm. This implies that a system of the form

Uy = d will always have a unique solution, which is the first step towards an

130

implementable code. Of course, numerical instabilities might occur in situations

when certain weights get close to zero and, as a result, U becomes nearly rank-

deficient (see (3.2.9)). In this work we do not present any strategies for dealing with

this linear algebra issue and instead focus on the optimization-theoretic results. Let

us remark that it is unlikely that there will be problems with solving Uy = d for

a general position of the vector d.

The analysis of Algorithm 11 is based on a result which says that a certain

approximation of the optimal step size gives a sufficient decrease in the value of ψ2

(see Lemma 3.3.12 below). Let us first describe a motivational heuristic, leading

us to the discovery of a suitable approximately optimal step size.

A step-size heuristic

Let

δ̂ :=
|β|√
α
− 1, (3.46)

which can be also written as β2 = α(1 + δ̂)2, and assume δ̂ > 0. By Theorem

3.2.25, the current iterate w is δ̂-optimal for (P3). To see this, we just need to

translate our simplified notation (using α, β and γ) to the symbols used in that

theorem: ϕ(y) = |β| and ψ(w) =
√
α. We now see that the definition of δ̂ implies

ϕ(y) = (1 + δ̂)ψ(w), which is precisely the universal δ̂-approximate optimality

condition (3.27), implying ψ(w) ≤ (1 + δ̂)ψ∗.

Assume, just for the sake of the motivational heuristic to follow, that αγ > β2.

This excludes the “next-iterate is optimal” case from the description of the optimal

step size of Corollary 3.3.11 and implies κ∗ = κ1. We claim that in the situation

when γ is large, κ∗ is reasonably well approximated by δ̂/γ. Indeed, the ratio

131

κ1/(δ̂/γ) converges to 1 (from above) as γ approaches infinity:

κ1

δ̂
γ

=
− 1

γ
+ |β|√γ−1

γ
√

αγ−β2

|β|√
α
−1

γ

=
|β|
√

γ−1
αγ−β2 − 1

|β|
√

1
α
− 1

↓ 1 as γ →∞.

Note that the convergence is “from above” because (γ−1)/(αγ−β2) > 1/α, which

follows from β2 > α.

Sufficient decrease

Being motivated by the optimal step-size approximation discussed above, we now

show that if the condition for δ-approximate optimality of Theorem 3.2.25 is not

met, then by taking the step δ/γ, we can reduce the (square of the) objective value

by at least αδ2/γ. This will play a central role in the analysis of our algorithm.

Note that by taking a finite step (κ 6=∞), the function ψ2 decreases by

ε(κ) := ψ2(0)− ψ2(κ) =
β2κ(1 + κ)

1 + γκ
− ακ. (3.47)

If κ =∞ is used, this formula should be understood in the limit sense – see (3.34).

Lemma 3.3.12 (Sufficient decrease). If |β| ≥ (1 + δ)
√
α for some δ ≥ 0 and we

let κ := δ
γ
, then

ε(κ∗) ≥ ε(κ) ≥ α
δ2

γ
.

Proof.

ε(κ∗) ≥ ε(κ) =
β2κ(1 + κ)

1 + γκ
− ακ ≥

(1 + δ)2α δ
γ
(1 + δ

γ
)− (1 + δ)α δ

γ

1 + δ

=
αδ

γ
[(1 + δ)(1 + δ

γ
)− 1]

≥ αδ2

γ
.

The last inequality follows from the estimate 1 + δ
γ
≥ 1.

132

Remark 3.3.13. Observe that the condition of the above lemma is satisfied with

equality for δ = δ̂ defined in (3.46).

Even better decrease

It turns out that if we take into account also some other choices of j, we can

possibly achieve an even bigger decrease in ψ2 than that guaranteed by the above

lemma. Let βi := 〈ai, y〉 and γi := 〈ai, U
−1ai〉 (for all i), so that βj = β and

γj = γ. Also let δi := (|βi|/√α)− 1 and I be the set of those indices i for which

δi ≥ 0. Note that j = j+ ∈ I. Observe that the argument of the above lemma can

be repeated to show that

ε(κ∗) ≥ ε(δi/γi) ≥ α
(δi)2

γi
=

(|βi| − √α)2

γi
, ∀ i ∈ I. (3.48)

Note that this is the lower bound on the change in ψ2 when using ai instead of aj

and the corresponding approximately optimal step size. While the specific choice

i = j guarantees sufficient decrease, we might be able to do better by optimizing

over the set I rather than by picking the feasible solution i = j ∈ I. This leads

us to defining

i∗ := arg max
i∈I

(|βi| − √α)2

γi
.

Certainly, the decrease guaranteed by i∗ is at least as good as the decrease guar-

anteed by j. This does not mean, however, that the actual decrease, by taking the

optimal step, will be bigger. This has to be taken into account when implementing

this strategy in an algorithm. If we decide to use this improvement, we have to

deal with the issue of the actual computation of the values γi, which are needed

to find i∗. By doing the computation from scratch at every iteration, we will need

O(mn2) arithmetic operations: O(n2) for solving each of the at most m equations

133

Ux = ai (i ∈ I), assuming we maintain the Cholesky factorization of U from iter-

ation to iteration. Alternatively, we can solve for U−1
0 ai for all i at the beginning

of the algorithm, which takes O(mn2) operations if we assume the availability of

the Cholesky factors of U0, and subsequently update the solutions as we modify

the (Cholesky factorization of the) matrix. The work per iteration will drop to

O(mn), which is of the same order as the work needed to calculate j.

Algorithm 11 (Inc) Solving (P3) using increase steps only.

1: Input: a1, . . . , am ∈ E∗, d ∈ E∗, δ > 0;

2: Initialize: k = 0, w0 = (1/m)em, U0 = 1
m

∑

i aia
∗
i , y0 = U−1

0 d;

3: Iterate:

4: αk = 〈d, yk〉, j = arg maxi |〈ai, yk〉|, gk = aj ;

5: βk = 〈gk, yk〉, γk = 〈gk, U
−1
k gk〉;

6: δk = |βk|√
αk
− 1;

7: if δk ≤ δ

8: terminate;

9: else

10: if αkγk = β2
k

11: κ∗ =∞, Uk+1 = gjg
∗
j , wk+1 =

wk+κ∗ej

1+κ∗ = (0, . . . , 0
︸ ︷︷ ︸

1...j−1

, 1
︸︷︷︸

j

, 0, . . . , 0
︸ ︷︷ ︸

j+1...m

);

12: k ← k + 1, terminate; (wk is optimal)

13: else

14: κ∗ = − 1
γk

+ |βk|
√

γk−1

γk

√
αkγk−β2

k

, Uk+1 =
Uk+κ∗gkg∗

k

1+κ∗ , wk+1 =
wk+κ∗ej

1+κ∗ ;

15: yk+1 = (1 + κ∗)
(

yk − βkκ∗U−1
k

gk

1+γkκ∗

)

;

16: k ← k + 1;

17: end if

18: Output: wk satisfying ‖d‖∗Uk
=
√
αk ≤ (1 + δ)ψ∗ and Uk = U(wk)

134

A crucial assumption

Assumption 3.3.14. The values γk generated by Algorithm 11 are bounded above

by some constant Γ.

As we shall see, the parameter Γ appears in the complexity bounds. It would

therefore be good to be able to estimate its size. We will deal with this issue in

Subsection 3.3.6.

Quick and dirty analysis

Let us first offer a rough analysis of Algorithm 11, leading to a performance guar-

antee of O(Γδ−2 lnm) iterations of a first-order method, followed by a more refined

analysis with the guarantee O(Γ(lnΓ+ln lnm+δ−1)). For the quick result observe

that because

ϕ∗d ∈ Q ⊆ √mB(U0), (3.49)

we have
√
α0 = ‖d‖∗U0

≤ √m/ϕ∗. Now assume that Algorithm 11 produces K + 1

iterates with K+1 ≥ ⌈Γδ−2 lnm⌉. The termination criterion of line 7 then implies

that δk > δ for k = 0, 1, . . . , K. Since |βk| = (1 + δk)
√
αk for all k ≤ K, Lemma

3.3.12 and Assumption 3.3.14 imply

αk − αk+1 ≥ αk
δ2
k

γk
> αk

δ2

Γ
.

Repeated use of this inequality gives αK+1 < α0(1− δ2/Γ)K+1 and hence

ψ2(wK+1) = αK+1 < α0(1− δ2/Γ)K+1

≤ α0e
−(K+1)δ2/Γ ≤ α0e

− ln m ≤ m
(ϕ∗)2

1
m

= (ψ∗)2,

which contradicts the fact that ψ∗ is the optimal value of problem (P3).

135

Refined analysis

The following is the central result of this chapter:

Theorem 3.3.15. Under Assumption 3.3.14, Algorithm 11 produces

a δ-approximate solution of (P3) (and hence by Theorem 3.2.25 of (P1), (D1),

(P2) and (D2)) in at most

2Γ

(

ln Γ + ln lnm+
8

δ

)

iterations.

Proof. Let Lk := ln
√
αk and L∗ = lnψ∗ and notice that

√
αk ≤ (1 + δk)ψ

∗. By

taking logarithms,

ε′k := Lk − L∗ ≤ ln(1 + δk). (3.50)

Also, β2
0 = maxi〈ai, y0〉2 ≤

∑

i〈ai, y0〉2 = m〈U0y0, y0〉 = mα0 = m
β2
0

(1+δ0)2
, whence

δ0 ≤
√
m− 1 and ε′0 ≤ ln(1 + δ0) ≤ 1

2
lnm. (3.51)

By Lemma 3.3.12, ε(κ∗) = αk − αk+1 ≥ αkδ
2
k/γk ≥ αkδ

2
k/Γ and therefore

αk+1 ≤ αk(1− δ2
k/Γ). (3.52)

By taking logarithms in (3.52) and using (3.50),

Lk − Lk+1 ≥ −1
2
ln(1− δ2

k/Γ) ≥ 1
2
δ2
k/Γ ≥ 1

2Γ
ln(1 + δ2

k) ≥ 1
2Γ

ln(1 + δk), (3.53)

with the last inequality true whenever δk ≥ 1. Combining (3.50) and (3.53) yields

ε′k+1 ≤ ε′k(1− 1
2Γ

),

for all k with δk ≥ 1. We will now bound the number of iterations for which δk ≥ 1.

The last inequality together with (3.51) gives

ε′k ≤ ε′0(1− 1
2Γ

)k ≤ 1
2
lnm exp(− k

2Γ
). (3.54)

136

Due to (3.54) and ε′k ≥ ε′k − ε′k+1 = Lk − Lk+1 ≥ 1
2
δ2
k/Γ ≥ 1

2
Γ−1, the largest k for

which δk ≥ 1 must satisfy Γ−1 ≤ lnm exp(− k
2Γ

), leading to the bound

k ≤ 2Γ(ln Γ + ln lnm). (3.55)

So one can obtain a solution within the factor of 2 of the optimum in O(Γ(lnΓ +

ln lnm)) iterations of Algorithm 11.

Following the “halving” argument of Khachiyan [15], we can bound the num-

ber of additional iterations needed to obtain the desired δ-approximate solution.

Suppose δk ≤ 1, and let h(δk) be the smallest integer h such that δk+h ≤ δk/2.

Whenever δk+h ≥ δk/2, we also have

ε′k+h − ε′k+h+1 ≥ 1
2
δ2
k+h/Γ ≥ 1

8
δ2
k/Γ,

which says that the gap in (3.50) must at every such iteration decrease by at least

1
8
δ2
k/Γ. However, the original gap is of size at most ε′k ≤ ln(1+ δk) ≤ δk, and hence

the number of iterations needed for halving δk is bounded above by

h(δk) ≤
δk

1
8
δ2
k/Γ

=
8Γ

δk
.

In order to get below δ, we need to “halve” l-times where l is obtained from

δk/2
l ≤ δ, that is l = ⌈log2 δk/δ⌉, where k is the first iteration for which δk ≤ 1. The

total number of additional iterations required to achieve the desired δ-approximate

solution is at most

l−1∑

i=0

h(δk/2
i) ≤ 8Γ

l−1∑

i=0

1

δk/2i
=

8Γ

δk
2⌈log2 δk/δ⌉ ≤ 16Γ

δ
.

137

3.3.5 An algorithm with both “increase” and “decrease”

steps

In the previous subsection we have analyzed an algorithm which at every iteration

works with j = j+ (an “increase” step). A consequence of this choice is that

the optimal step-size parameter κ∗ is always nonnegative, implying that wj is

being increased while all other weights are decreased uniformly (and hence at a

slower rate than the rate of increase of wj) in due compensation. Starting from

w0 = (1
m
, . . . , 1

m
), Algorithm 11 keeps all weights positive until termination. In an

optimal solution w, however, the weights can be positive only for points ai lying

on a face (say F) of Q containing the point ϕ∗d — the intersection of Q and the

half-line emanating from the origin in the direction d (see Figure 3.7). Note that

in the case when m≫ n, it is to be expected that many more points will have zero

weights rather than positive weights, at optimality. It therefore seems intuitive

that if the incorporation of “decrease” and/or “drop” steps could speed up the

algorithm considerably.

In this subsection we propose and analyze an algorithm in which we allow also

for “decrease” and “drop” iterations — steps which decrease wj, respectively drop

it to zero (κ = −wj). The idea is as follows. At every iteration we consider both

j = j+ and j = j−. We make the latter choice if the predicted decrease is better

(this corresponds to δ− ≥ δ+ in Algorithm 12), except when this leads to a drop

step reducing the rank of U (this happens when − 1
γ

= −wj = κ). Otherwise we

choose j = j+.

There are several reasonable alternative rules for deciding among j+ and j−.

For example, we could base our decision on comparing the actual decrease as

opposed to the decrease predicted by δ+ and δ−. We could also forbid taking drop

138

steps altogether, allowing only for decrease steps, etc.

Let us start with a twin result to Lemma 3.3.12 which essentially says that if

we choose j = j− and it happens that κ∗ is not a drop step, then by taking this

step we are guaranteed sufficient decrease in the (square of the) objective function:

Lemma 3.3.16. Assume j = j−.

(i) If |β| ≤ (1− δ)√α for some 0 ≤ δ < 1 and κ := − δ
γ
≥ −wj, then

ε(κ∗) ≥ ε(κ) ≥ α
δ2

γ
.

(ii) If κ∗ = κ1 and δ := 1− |β|√
α
, then κ := − δ

γ
≥ −wj.

Proof. For part (i) notice that the assumption κ ≥ −wj = κmin ensures feasibility

of the line-search parameter κ. Also observe that 1− δ
γ
≥ 1−wj > 0 by Assumption

2 in Subsection 3.3.2. We now proceed as in Lemma 3.3.12:

ε(κ∗) ≥ ε(κ) =
β2κ(1 + κ)

1 + γκ
− ακ

≥
−(1− δ)2α δ

γ
(1− δ

γ
) + (1− δ)α δ

γ

1− δ
=
αδ

γ
[1− (1− δ)(1− δ

γ
)]

≥ αδ2

γ
.

The last inequality follows from the estimate 0 < 1− δ
γ
≤ 1. Let us now prove (ii).

Because κ∗ = κ1 is feasible for the line-search problem, we must have κ1 ≥ −wj .

However, using the inequality β2 ≤ α it can be argued by simple algebra that

− δ
γ
≥ κ1 (see (3.40) for the definition of κ1).

Theorem 3.3.17. Under Assumption 3.3.14, Algorithm 12 produces

a δ-approximate solution of (P3) (and hence by Theorem 3.2.25 of (P1), (D1),

139

Algorithm 12 (IncDec) Solving (P3) using both increase and decrease steps.

1: Input: a1, . . . , am ∈ E∗, d ∈ E∗, δ > 0;

2: Initialize: k = 0, w0 = (1/m)em, U0 = 1
m

∑

i aia
∗
i , y0 = U−1

0 d;

3: Iterate:

4: αk = 〈d, yk〉;

5: j− = arg mini{|〈ai, yk〉| : w
(i)
k > 0}, β− = 〈aj−, yk〉, δ− = 1− |β−|√

αk
;

6: j+ = arg maxi |〈ai, yk〉|, β+ = 〈aj+, yk〉, δ+ = |β+|√
αk
− 1;

7: if δ+ ≤ δ then terminate; end if

8: if δ+ < δ−

9: j = j−, gk = aj , βk = β−, γk = 〈gk, U
−1
k gk〉, δk = δ−;

10: if γk > 1 then κ = max

{

− 1
γk

+ |βk|
√

γk−1

γk

√
αkγk−β2

k

,−w(j)
k

}

;

11: else κ = −w(j)
k ; end if

12: if κ = −w(j)
k = − 1

γk
then jump to 14, end if

13: else

14: j = j+, gk = aj, βk = β+, γk = 〈gk, U
−1
k gk〉, δk = δ+;

15: if αkγk > β2
k then κ = − 1

γk
+ |βk|

√
γk−1

γk

√
αkγk−β2

k

;

16: else κ =∞; (the next iterate is optimal) end if

17: end if

18: wk+1 =
wk+κej

1+κ
, Uk+1 =

Uk+κgkg∗
k

1+κ
, yk+1 = (1 + κ)

(

yk − βkκU−1
k

gk

1+γkκ

)

;

19: k ← k + 1;

20: Output: wk satisfying ‖d‖∗Uk
=
√
αk ≤ (1 + δ)ψ∗ and Uk = U(wk)

140

(P2) and (D2)) in at most

m+ 4Γ

(

ln Γ + ln lnm+
8

δ

)

iterations.

Proof. Due to Lemma 3.3.16, the argument is identical to the proof of Theorem

3.3.15. The difference is that we need to bound the number of drop iterations

because these do not guarantee any positive decrease (but do not increase the

objective either). Note that either the current point aj is dropped for the first

time (there are a maximum of m such occurrences), or it has been dropped before,

in which case we can pair it up with the previous iteration that increased the

weight wj from zero to a positive value. This algorithm therefore needs at most m

plus twice the number of iterations guaranteed by Theorem 3.3.15.

Remark 3.3.18. The ln lnm factor in the complexity estimates of Algorithms

11 and 12 can be replaced by ln lnn if we pre-compute a rounding of Q with 1
α

=

O(
√
n) and use the corresponding matrix as U0. This can be done in O(n2m logm)

arithmetic operations (see [22]).

3.3.6 Bounding the unknown constant

The performance guarantees of Algorithms 11 and 12 depend on the assumption

that the squared norms of the points aj encountered throughout the iterations are

bounded from above by some constant Γ. It is therefore highly desirable to invest

some time into exploring our options of theoretical and/or practical justification

of this assumption.

How large can Γ be? Notice that we know from Corollary 3.3.5 that for any j

141

with positive weight wj, the value

γj := (‖aj‖∗U(w))
2

can be bounded from above by a function of wj:

γj ≤ 1
wj
. (3.56)

If wj = 0, as is the case when we perform an “add” step in Algorithm 12, we do not

have an upper bound on γj. If we maintain all weights positive, as in Algorithm

11, then Γ can certainly be bounded by the reciprocal of the smallest weight wj

encountered throughout the algorithm. This leads to the idea of modifying our

methods so as to keep all weights above a certain positive constant.

Bounding the weights away from zero: theoretical implications

Motivated by the above discussion, let us explicitly require that all weights be

bounded away from zero by ε
m

, with ε ∈ [0, 1] being a small constant independent

of the dimensions of the problem. Note that setting ε = 1 implies that all weights

are equal to 1
m

.

It seems to be intuitively sound to expect that if we restrict the set of feasible

points of problem (P3) by requiring wi ≥ ε
m

for all i, the optimal value of the

modified problem, which we will call (P3ε), should be close to the optimal value

of (P3). Also, as ε gets smaller, the optimal value of (P3ε) should approach that

of (P3). We will formalize these ideas in the remainder of this subsection. Let

∆ε
m := {w ∈ ∆m : wi ≥ ε

m
, i = 1, 2, . . . , m}

and consider the following problem

(P3ε) ψ∗
ε := min

w
{ψ(w) : w ∈ ∆ε

m}.

142

We claim that the value ψ∗
ε is close to ψ∗ for small ε:

Theorem 3.3.19. For the optimal values ψ∗ and ψ∗
ε of (P3) and (P3ε), respec-

tively, we have

ψ∗
ε ≤

1

(1− m−1
m
ε)1/2

ψ∗. (3.57)

To prove this we will need an auxiliary result.

Lemma 3.3.20. For any x ∈ E,

max
w∈∆ε

m

‖x‖U(w) ≥ (1− m−1
m
ε)1/2ϕ(x).

Proof. Assume ϕ(x) = |〈aj, x〉| and let w′ be a vector of weights with w′
j = 1−m−1

m
ε

and w′
i = 1

m
ε for all other i. Then

max
w∈∆ε

m

‖x‖U(w) ≥ ‖x‖U(w′) =
(∑

w′
i〈ai, x〉2

)1/2

≥ (w′
j)

1/2|〈aj, x〉|.

Proof. (theorem)

1

ψ∗
ε

=

[

min
w∈∆ε

m

‖d‖∗U(w)

]−1

= max
w∈∆ε

m

1/‖d‖∗U(w)

= max
w∈∆ε

m

min
〈d,x〉=1

‖x‖U(w)

= min
〈d,x〉=1

max
w∈∆ε

m

‖x‖U(w)

≥ min
〈d,x〉=1

(1− m−1
m
ε)1/2ϕ(x)

= (1− m−1
m
ε)1/2ϕ∗ = (1− m−1

m
ε)1/2 1

ψ∗ .

The exchange of the maximum and minimum can be justified by using Hartung’s

minimax theorem [12].

143

Remark 3.3.21. For ε = 1, inequality (3.57) states that ψ(w0) ≤
√
mψ∗, where

w0 is the vector of all weights equal to 1
m

. This we have already seen before as a

consequence of the rounding property (3.49) of U0 = U(w0).

Corollary 3.3.22. If ε ≤ 1
2τ

(
√

τ(τ + 4) + τ − 2) for some positive parameter τ

(necessarily, τ ≥ 1
2
), then ψ∗

ε ≤ (1 + τε)ψ∗. In particular, if ε ≤ 1
2
(
√

5− 1), then

ψ∗
ε ≤ (1 + ε)ψ∗.

Proof. The condition on ε is equivalent to the last inequality in (1− m−1
m
ε)−1/2 ≤

(1− ε)−1/2 ≤ (1 + τε).

Bounding the weights away from zero: algorithmic implications

It is not trivial to see how one would go about modifying our algorithms to effi-

ciently solve (P3ε). The requirement of keeping the weights above some positive

threshold value ε
m

does not seem to be cheap to maintain. Let us briefly explain

why.

One possible approach to solving (P3ε) using our methodology would involve

dividing the operator U into two parts, keeping one fixed, ensuring that the weights

are kept above ε
m

. The other is a variable part, consisting of the remaining portion

of the total weight. That is, we write

U =

m∑

i=1

ε
m
aia

∗
i +

m∑

i=1

w′
iaia

∗
i = Uε + U(w′),

where
∑

i w
′
i = 1 − ε, w′

i ≥ 0; that is, w′ ∈ (1 − ε)∆m. One would now update

only the variable part, similarly as in the previous analysis:

U(κ) = Uε +
U(w′) + κaja

∗
j

1− ε+ κ
. (3.58)

Notice that we no longer have 1 + κ in the denominator, and this would need to

be accounted for by reworking the relevant analysis. The main problem with this

144

approach, however, is that (3.58) no longer constitutes a simple enough update of

the operator U . It is certainly not a rank-one-and-scaling update as before. This

means that it could be hard to be able to use the information from the previous

iteration (for example, the Cholesky factor of U and the solution y of Uy = d)

to solve the new system U(κ)y = d. If we need to solve this from scratch, it

requires O(n3) arithmetic operations (assuming U(κ) is assembled from Uε and

U(w′) via (3.58), which takes only O(n2) arithmetic operations), which is worse

than the previous O(n2) work. However, the per-iteration arithmetical complexity

of Algorithms 11 and 12 is O(mn), which will dominate the work above in the case

when m ≥ n2. The critical saving would then come from the fact that we do not

have to form the new matrix from scratch, which would otherwise require O(mn2)

arithmetic operations.

While in this thesis we do not show any details of a direct algorithm of this

type for solving (P3ε), we believe that the ideas we have just described could be

turned into a provably working algorithm, albeit one with a considerably higher

computational effort per iteration.

The average of the gammas

As a possible alternative to the conservative strategy of keeping all weights above

a certain positive threshold value throughout the algorithm, let us briefly discuss

if it is possible to instead select a particular j so that γj is of a reasonable size.

Let us start with the following simple observation:

Lemma 3.3.23.
∑

wi>0

wiγi = rankU(w).

145

Proof. Assume first U := U(w) is invertible. Then

∑

wi>0

wiγi =
∑

i

wi〈ai, U(w)−1ai〉 =
∑

i

wi trace[〈ai, U(w)−1ai〉]

=
∑

i

wi trace[aia
∗
iU(w)−1]

= trace

[(
∑

i

wiaia
∗
i

)

U(w)−1

]

= trace I = dimE∗ = n,

where I : E∗ → E∗ is the identity operator. The general case is handled by trans-

forming it to the nonsingular case above. Indeed, let X be a subspace of E for

which U(w), viewed as a map from X onto rangeU(w), is invertible and notice

that dim rangeU(w) = rankU(w).

Let us illustrate the lemma with an example:

Example 3.3.24. Assume U := U(w) is of rank 1 and let w1 = 1; all other

weights being zero. Since U = a1a
∗
1, the solution set of the system Ux = a1

consists precisely of the vectors x satisfying 〈a1, x〉 = 1. However,
∑

wi>0wiγi =

γ1 = 〈a1, x〉 = 1 = rankU(w).

The above lemma implies that there is always some index i such that γi = O(n).

However, we already have a procedure for picking j, and it does not take γj into

consideration. It would be interesting to see if it is possible to devise a procedure

that would guarantee both a sufficient decrease in the objective function and a

reasonable bound on γj. Let us remark that the “even better decrease” strategy

for choosing j given in (3.48) is biased towards choosing one with small γj.

Note that, as a corollary of the above lemma, we get the following, albeit

146

somewhat weaker, bound on γj:

γj ≤
rankU(w)

wj
. (3.59)

An alternative proof of the bound on γj

Consider the concave quadratic x 7→ 2〈aj, x〉 − 〈U(w)x, x〉 and observe that its

maximizers are precisely the points x for which U(w)x = aj . If xj is any such

point then

γj = 〈aj , xj〉 = max
x
{2〈aj , x〉 − 〈U(w)x, x〉}

= max
x

{

2〈aj, x〉 −
m∑

i=1

wi〈ai, x〉2
}

≤ max
x

{
2〈aj , x〉 − wj〈aj, x〉2

}

= max
τ

{
2τ − wjτ

2
}

= 1
wj
,

yielding another proof of (3.56). The author wishes to thank Yurii Nesterov for

this elegant proof.

3.4 Interpretation

We have seen in Theorem 3.2.24 (resp. Theorem 3.2.25) that by solving (resp. ap-

proximately solving) problem (P3), we have simultaneously solved (resp. approx-

imately solved) also problems (P1), (D1), (D′1), (P2) and (D2). Moreover, the

former theorem mentions how to explicitly construct feasible points for the above

problems given a feasible point of (P3). We can therefore in principle rewrite our

algorithms, which were motivated by problem (P3), in terms of iterates feasible

for each of the above problems.

147

For example, if {wk} is a sequence of iterates produced by Algorithm 11 and

yk ∈ E satisfy U(wk)yk = d, then {vk} defined by v
(i)
k := w

(i)
k 〈ai, yk〉, i =

1, 2, . . . , m, is a sequence of points feasible for (D2). Is there a natural way to

interpret these iterates in the context of problem (D2)?

3.4.1 (P3): The Frank-Wolfe algorithm on the unit simplex

We will start with an alternative interpretation of our last two algorithms as applied

to the main problem of this chapter:

ψ∗ := min
w
{‖d‖∗U(w) : w ∈ ∆m}. (P3)

The Frank-Wolfe algorithm [8] is a method for solving smooth convex minimiza-

tion problems over a polytope given as a convex hull of points. At each iteration

the objective function is replaced by its linear approximation at the current point.

After this, one finds a vertex of the feasible region minimizing the linear approxi-

mation — this is a simple enumeration problem. The next iterate is then obtained

by performing a line search on the line segment joining the current point and the

vertex obtained using the enumeration procedure described above. The line search

can be modified by allowing for Wolfe’s “away steps” [35] — steps in the direction

opposite to that towards the vertex maximizing the linear approximation.

It is straightforward to show, using the formula for the derivative of ψ2 estab-

lished in Proposition 3.2.19, that Algorithm 11 can be interpreted as a Frank-Wolfe

method using the former version of line search (the decrease and drop steps of Al-

gorithm 12 correspond to Wolfe’s away steps). Indeed, the linear approximation

148

of ψ2 at point w for which U(w) is invertible is

ψ2(w) +Dψ2(w)(w′ − w) = ψ2(w)− 〈U(w′ − w)y, y〉

= ψ2(w) + 〈U(w)y, y〉 − 〈U(w′)y, y〉,

where y = U(w)−1d. The linearized subproblem can therefore be written as

min
w′∈∆m

−〈U(w′)y, y〉 = max
w′∈{e1,...,em}

∑

i

w′
i〈ai, y〉2.

Notice that w = ej where j = arg maxi |〈ai, y〉| solves the above problem. The

Frank-Wolfe line search now corresponds to the problem of minimizing ψ2(w(κ))

for κ ∈ [0,∞] since w(k) = (w + κej)/(1 + κ) parameterizes the line segment

joining w and ej . Notice that although in our line search we allow −wj ≤ κ < 0,

the optimal steplength κ∗ is always nonnegative (Corollary 3.3.11).

For problems where the feasible region is a unit simplex and where the objective

function enjoys certain regularity properties such as strong convexity (our function

does not satisfy them), it is known that the Frank-Wolfe algorithm with away steps

converges linearly [35], [11].

Methods analogous to Algorithm 11 (also interpretable as performing Frank-

Wolfe iterations), for computing the minimum volume enclosing ellipsoid of a cen-

trally symmetric body, were proposed by Khachiyan [15], Todd and Yildirim [33].

The method of Todd and Yildirim is a modification of Khachiyan’s algorithm using

away steps and has been later analyzed by Ahipaşaoğlu, Todd and Sun [1] who

established its linear convergence. These algorithms, although perhaps without

modern convergence analysis, were much earlier independently developed in the

statistical community in the context of optimal design by Fedorov [7], Wynn [36],

Atwood [3], Silvey [30], and others.

149

3.4.2 (P2): An ellipsoid method for LP

Here we will consider problem (P2):

1
ϕ∗ = max

z
{〈d, z〉 : z ∈ Q◦}. (P2)

Recall that for all w ∈ ∆m the polar of the ellipsoid B(U(w)) contains the polar

of Q, that is, B0(U(w)) ⊃ Q0 (Proposition 3.2.10). We also know that

max{〈d, y〉 : y ∈ B0(U(w))} = ‖d‖∗U(w) ≥ ψ∗ = 1
ϕ∗ .

Let us fix some w ∈ ∆m and let U := U(w). Also let y be such that U(w)y = d.

In one iteration of Algorithm 11 (or Algorithm 12) we update U in a rank-one-

and-scaling fashion to U(κ) so as to minimize the value of ψ(κ) = ‖d‖∗U(κ). The

geometry of this update is rather revealing (see Figure 3.11). Loosely speaking,

we choose the step-size parameter κ so as to “push” the polar ellipsoid B0(U(κ))

by the supporting hyperplane Hd(κ) := {z : 〈d, z〉 = ‖d‖∗U(κ)} as far as possible

towards z∗, the optimal point of (P2). This is reminiscent of the correspondence

established by Todd and Yildirim [33] between Khachiyan’s ellipsoidal rounding

algorithm [15] and the deepest cut ellipsoid method using two-sided symmetric

cuts.

Note that y/‖d‖∗U lies in the intersection of B(U) and Hd := Hd(0) and that

z := y/ϕ(y) is on the boundary of Q0 and hence is feasible for (P2). This is the

current iterate from the perspective of problem (P2). We see our method produces

a sequence of points on the boundary of Q0.

150

d

B0(U)

Hd = {z : 〈d, z〉 = ‖d‖∗U}

Q0

z∗

0

B0(U(κ))

Hd(κ) = {z : 〈d, z〉 = ‖d‖∗U(κ)}

y
‖d‖∗

U

z = y
ϕ(y)

Figure 3.11: The polar algorithm.

3.4.3 (D2): An Iteratively Reweighted Least Squares Al-

gorithm

Recall problem (D2):

min
v
{‖v‖1 : Av = d, v ∈ Rm}. (D2)

By Lemma 3.2.12, if w is feasible for (P3) and if y ∈ E is such that U(w)y = d,

then v ∈ Rm defined by vi := wi〈ai, y〉, i = 1, 2, . . . , m, is feasible for (D2) and,

moreover,

‖v‖1 ≤ ‖d‖∗U(w). (3.60)

If we let W := Diag(w) (i.e. W is the diagonal matrix with the entries of vector w

on its diagonal), then, assuming U(w) is invertible, the above definition of v = v(w)

can be written as

v(w) = WA∗y = WA∗(U(w))−1d = WA∗(AWA∗)−1d. (3.61)

151

We claim that if wi > 0 for all i, which is the case in Algorithm 11, then the

point v above can be obtained as the (unique) minimizer of a certain ℓ2 projection

problem. For w ∈ rint ∆m and W = Diag(w) consider

min
v
{‖W−1/2v‖2 : Av = d, v ∈ Rm}. (D′2)

This problem arises from (D2) if we replace the ℓ1-norm by the ℓ2-norm precondi-

tioned by the inverse of a positive definite diagonal matrix with unit trace. Since

the set of minimizers does not change if we further replace the objective function

by the quadratic 1
2
‖W−1/2v‖22, the (necessary and sufficient) KKT conditions for

(D′2) are

W−1v ∈ rangeA∗, Av = d,

from which we readily see that the (unique) minimizer of (D′2) coincides with v(w)

as defined in (3.61):

v∗(w) = WA∗(AWA∗)−1d = v(w).

Algorithm 11, as applied to (D2), can therefore be interpreted as follows. At

every iteration we maintain a vector of positive weights w which defines a Euclidean

norm on Rm by v → ‖W−1/2v‖2. We then “find” the smallest feasible vector in

this norm, update the weights and repeat. The weight w is updated to w(κ) as in

(3.28). As we have discussed before, the arithmetic complexity of every iteration

is only O(mn), which is the work needed to compute A∗x for a given vector x.

Two remarks

Let us make two additional observations. First, if we wish to define

j := arg max
i
|〈ai, y〉|

152

in terms of v∗(w), then it is the index for which

|[W−1v∗(w)]j| = ‖W−1v∗(w)‖∞.

Second, notice that

‖W−1/2v∗(w)‖2 = 〈W−1/2WA∗(AWA∗)−1d,W−1/2WA∗(AWA∗)−1d〉1/2

= 〈d, (AWA∗)−1AW 1/2W 1/2A∗(AWA∗)−1d〉1/2

= 〈d, (AWA∗)−1d〉1/2

= ‖d‖∗U(w),

and hence inequality (3.60) can be written as

‖v∗(w)‖1 ≤ ‖W−1/2v∗(w)‖2.

The first iterate

Let w0 = (1
m
, . . . , 1

m
) denote, as usual, the first iterate of Algorithm 11 (resp.

Algorithm 12). Then if W0 := Diag(w0) = 1
m
Im, we get

v0 := v(w0) = W0A
∗(AW0A

∗)−1d = A∗(AA∗)−1d.

It is easy to see that this is the shortest feasible vector in the ℓ2 norm. Since

‖v‖1 ≥ ‖v‖2 ≥ 1√
m
‖v‖1 for all v ∈ Rm, then if v∗ is any minimizer of (D2), we

have

‖v0‖1 ≤
√
m‖v0‖2 ≤

√
m‖v∗‖2 ≤

√
m‖v∗‖1.

This shows that the initial iterate v0 is (
√
m− 1)-approximate minimizer of (D2).

3.5 Applications

In this section we apply the methods of this chapter to two problems both of which

can be expressed in the form (P3). The first one is the truss topology design — a

153

civil engineering application. The second is statistical in nature — the computation

of a c-optimal design.

3.5.1 Truss topology design

A truss is a construction composed of a network of bars linked to one another

such as a crane, scaffolding, bridge, wire-model, etc. One can think of a truss as a

graph in two or three dimensions. The graph-theoretic terminology then translates

as follows: arcs are called bars, vertices are called nodes.

The nodes of a truss are of two categories: free nodes and rigid nodes. The rigid

nodes are attached to some force-absorbing object such as a wall or the ground.

Free nodes are subjected to an external force — a load. As a result of the load,

the free nodes get displaced and bars joining them stretched or squeezed until

the structure assumes an equilibrium position in which the internal tensions in

the bars compensate for the external forces. A loaded truss therefore stores a

certain amount of potential energy called compliance. The more there is of this

stored energy, the more sensitive the truss becomes to additional loads and/or load

variations. It is therefore desirable to design trusses with as small a compliance

as possible, given a collection of loads. In this example we will only describe

the situation with a fixed vector of loads acting at the free nodes. It is certainly

interesting to also consider the case of load scenarios, or perhaps of a dynamic

load. These problems are much harder and are out of the scope of this thesis.

The problem

The problem we will consider is the following: Given a set of free and rigid nodes,

a set of possible bar locations, a total weight limit on the truss and a vector of

154

external forces acting on the free nodes, design a truss, i.e. give the locations

of the bars and their weights, which is capable of holding the given load and has

minimum compliance.

Correspondence with the setting of problem (P3)

The actual derivation of the model can be found, for example, in [4]. Let us

describe the parameters of the model in terms of the notation of (P3).

The matrix U(w) =
∑m

i=1wiaia
T
i is the bar-stiffness matrix. The vector w

corresponds to the weights of the individual tentative bars, normalized so that the

total weight of the bars is 1. Let p be the number of the free nodes. Then we have

ai ∈ Rn where either n = 2p or n = 3p, depending on whether we have a 2d or a

3d truss. The system

U(w)y = d

corresponds to the equilibrium equation between the vector of forces d acting at

the free nodes and the vector of displacements y of the free nodes. The compliance

is one half of the objective function of problem (P3) squared:

Compliance = 1
2
(‖d‖∗U(w))

2.

We see that problem (P3) corresponds exactly to the truss topology design prob-

lem.

Three examples

Example 3.5.1. A unit vertical download force is applied to the right-bottom

node of each of the following three 2d trusses:

(a) A 3 × 3 truss with 3 fixed nodes attached to a wall (the nodes on the left)

and 6 free nodes. Hence n = 2× 6 = 12. We allow for tentative bars to be

155

placed among any pair of nodes, with the exception of pairs where there is

“overlap” with a chain of other smaller bars. For example, we do not allow

placing a bar on the diagonal since this consists of 2 smaller tentative bars

already. The number of such potential bars is m = 28.

(b) A 5× 5 truss with 5 fixed nodes. We have n = 2× 5× 4 = 40 — the number

of free nodes times 2. The number of tentative bars is m = 400.

(c) A 9× 9 truss with 9 fixed nodes. In this case n = 144 and m = 2040.

(a) (b) (c)

Figure 3.12: Three optimal trusses.

Figure 3.12 displays the (approximately) optimal trusses computed with Algo-

rithm IncDec. Bars of small weight were removed from the figure. The author

wishes to thank Michal Kočvara for sharing his MATLAB code for producing the

pictures of the trusses.

Figure 3.13 lists the performance of our IncDec method applied to the three

problems of Example 3.5.1, with two different accuracy requirements. All com-

putations were done in MATLAB. Let us note that the small 3 × 3 problem was

solved by the implementation of the simplex method in MATLAB in 0.5 seconds,

156

ǫ = 10−1 ǫ = 10−4

Truss n m Time Iteration # Time Iteration #

3× 3 12 28 0.07 413 0.07 435

5× 5 40 200 0.15 676 1.39 7850

9× 9 144 2040 10.77 4450 367 158601

Figure 3.13: Performance of Algorithm 12 on three TTD problems.

the medium 5 × 5 problem in 0.78 seconds, while the large 9 × 9 problem could

not be solved by the simplex method within 30 minutes. An interior-point algo-

rithm, however, solved the problem to high accuracy in 0.96 seconds and only 14

iterations.

3.5.2 Optimal design of statistical experiments

The presentation of this subsection is largely based on that in Pukelsheim [26].

See also Fedorov [7] and Silvey [30].

Consider the following situation. An experimenter observes a certain scalar

quantity y which is assumed to depend linearly on a vector x ∈ Rn of conditions

under his control (a regression vector) and a vector of parameters θ ∈ Rn of interest

to him. The observation and/or the model is subject to an additive error e:

y = xT θ + e. (3.62)

We will assume that the regression vector x can be chosen from among a finite

collection of vectors a1, . . . , am, which correspond to the vectors defining Q — the

central object of this chapter. We therefore identify E and E∗ with Rn.

The statistician wants to estimate a certain function of the parameter θ and,

157

in order to do so, decides to observe the outcome under conditions x1, . . . , xl.

This is called an experimental design of sample size l. The goal is to construct a

design leading to an unbiased linear estimator, optimal in a certain sense. Since

we restrict the choice of the regression vectors to the finite set {a1, . . . , am}, any

design can be described by assigning frequencies to the vectors ai. Due to the

constraint on the number of observations and the resulting combinatorial structure

of feasible frequencies, this approach is usually hard to tackle theoretically. One

can instead assign a weight wi to each vector ai, representing the portion of the

entire experiment to be spent under the conditions corresponding to this regression

vector.

Let us assume that the errors ej are independent random variables with mean

zero and (unknown) constant variance σ2 (a nuisance parameter). The Fisher

information matrix of a design assigning weight wi to point ai is given by U(w) =

∑

i wiaia
T
i . Now consider the following cases:

• If we wish to minimize the sum of variances of estimators of the individ-

ual parameters θi, this amounts to the problem of minimizing the trace of

U(w)−1. This criterion is referred to as A-optimality.

• If the goal is to minimize the variance of the (best unbiased linear estimator)

of a linear function of the parameter, say c′θ, it turns out that we need to

find w ∈ ∆m minimizing cTU(w)−1c = (‖c‖∗U(w))
2. If we let d := c, this is

equivalent to our main problem (P3) and is referred to as the c-optimality

criterion in the statistical literature.

• If we wish to minimize the volume of the confidence ellipsoid for θ, this

corresponds to the problem of maximizing the determinant of U(w). This is

158

called the D-optimality criterion.

The main problem of this chapter is therefore equivalent to finding the mini-

mum variance unbiased linear estimator of a linear function of the parameter in a

statistical linear model with moment assumptions and independent errors.

BIBLIOGRAPHY

[1] D. Ahipaşaoğlu, P. Sun, and M. J. Todd. Linear convergence of a modified
Frank-Wolfe algorithm for computing minimum-volume enclosing ellipsoids.
Technical Report TR1452, Cornell University, School of Operations Research
and Information Engineering, 2006.

[2] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method:
a meta-algorithm and applications. Technical report, Princeton University,
2005.

[3] C. L. Atwood. Optimal and efficient design of experiments. The Annals of
Mathematical Statistics, 40:1570–1602, 1969.

[4] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization:
Analysis, Algorithms, and Engineering Applications. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2001.

[5] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization.
Advanced Books in Mathematics. Canadian Mathematical Society, 2000.

[6] F. A. Chudak and V. Eleutério. Improved approximation schemes for lin-
ear programming relaxations of combinatorial optimization problems. In
IPCO’05, Berlin, 2005.

[7] V. V. Fedorov. Theory of Optimal Experiments. Academic Press, New York,
1972.

[8] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3:95–110, 1956.

[9] J.-L. Goffin. On convergence rates of subgradient optimization methods.
Mathematical Programming, 13:329–347, 1977.

[10] G. H. Golub and Ch. F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, 1996.

[11] J. Guélat and P. Marcotte. Some comments on Wolfe’s ‘away step’. Mathe-
matical Programming, 35:110–119, 1986.

[12] J. Hartung. An extension of Sion’s minimax theorem with an application to a
method for constrained games. Pacific Journal of Mathematics, 103:401–408,
1982.

[13] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization
Algorithms. Springer-Verlag, Berlin, 1993.

159

160

[14] F. John. Extremum problems with inequalities as subsidiary conditions. In
Studies and Essays, Presented to R. Courant on his 60th Birthday January 8,
1948, pages 187–204, New York, 1948. Wiley Interscience.

[15] L. G. Khachiyan. Rounding of polytopes in the real number model of compu-
tation. Mathematics of Operations Research, 21:307–320, 1996.

[16] P. Kumar and E. A. Yıldırım. Minimum volume enclosing ellipsoids and core
sets. Journal of Optimization Theory and Applications, 126(1):1–21, 2005.

[17] A. Nemirovski and D. Yudin. Informational Complexity and Efficient Methods
for Solution of Convex Extremal Problems. J. Wiley and Sons, New York,
1983.

[18] Yu. Nesterov. A method for unconstrained convex minimization problem with
the rate of convergence O(1

k2). Doklady AN SSSR (translated as Soviet. Math.
Docl.), 269(3):543–547, 1983.

[19] Yu. Nesterov. Introductory Lectures on Convex Optimization. A Basic Course,
volume 87 of Applied Optimization. Kluwer Academic Publishers, Boston,
2004.

[20] Yu. Nesterov. Excessive gap technique in nonsmooth convex minimization.
SIAM Journal on Optimization, 16(1):235–249, 2005.

[21] Yu. Nesterov. Smooth minimization of non-smooth functions. Mathematical
Programming, 103(1):127–152, 2005.

[22] Yu. Nesterov. Rounding of convex sets and efficient gradient methods for
linear programming problems. CORE Discussion Paper #2004/04, January
2004.

[23] Yu. Nesterov. Unconstrained convex minimization in relative scale. CORE
Discussion Paper #2003/96, November 2003.

[24] Yu. Nesterov. Smoothing technique and its applications in semidefinite opti-
mization. CORE Discussion Paper #2004/73, October 2004.

[25] Yu. Nesterov and A. Nemirovski. Interior-Point Polynomial Algorithms in
Convex Programming, volume 13 of SIAM Studies in Applied Mathematics.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1994.

[26] F. Pukelsheim. Optimal Design of Experiments (Classics in Applied Mathe-
matics). Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2006.

[27] J. Renegar. A Mathematical View of Interior-Point Methods in Convex Opti-
mization. Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2001.

161

[28] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton,
NJ, USA, 1997. Reprint of the 1970 original, Princeton Paperbacks.

[29] N. Z. Shor. Minimization Methods for Nondifferentiable Functions. Springer-
Verlag, Berlin, 1985.

[30] S. D. Silvey. Optimal Design: An Introduction to the Theory for Parameter
Estimation. Chapman and Hall, New York, 1980.

[31] M. Sion. On general minimax theorems. Pacific Journal of Mathematics,
8:171–176, 1958.

[32] P. Sun and R. M. Freund. Computation of minimum-volume covering ellip-
soids. Oper. Res., 52(5):690–706, 2004.

[33] M. J. Todd and E. A. Yıldırım. On Khachiyan’s algorithm for the computation
of minimum volume enclosing ellipsoids. Technical Report TR1435, Cornell
University, School of Operations Research and Information Engineering, 2005.

[34] J. von Neumann and O. Morgenstern. The Theory of Games and Economic
Behavior. Princeton University Press, Princeton, NJ, USA, 1948.

[35] P. Wolfe. Convergence theory in nonlinear programming. In J. Abadie, editor,
Integer and Nonlinear Programming, pages 1–36, North-Holland, Amsterdam,
1970.

[36] H. P. Wynn. The sequential generation of D-optimum experimental design.
The Annals of Mathematical Statistics, 41:1655–1664, 1970.

[37] E. A. Yıldırım. On the minimum volume covering ellipsoid of ellipsoids. SIAM
Journal on Optimization, 17(3):621–641, 2006.

[38] F. Zhang. Matrix Theory: Basic Results and Techniques. Springer, New York,
1999.

