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The Problem

We study the optimization problem of Federated
Learning (FL), which has the form

min
x∈Rd

f (x) := 1
M

M∑
m=1

fm(x)

 , (1)

whereM is the number of clients/devices and each
function

fm(x) := 1
n

n∑
i=1

f im(x), (2)

represents the loss on client m.

Smoothness & Strong Convexity

µ

2
‖x− y‖2 ≤ f (x)− f (y)− 〈∇f, x− y〉

µ̃

2
‖x− y‖2 ≤ f im(x)− f im(y)−

〈
∇f im, x− y

〉
‖∇f im(x)−∇f im(y)‖ ≤ Li,m‖x− y‖
for all m ∈ [M ] and i ∈ [n]

Notation

• [M ] := {1, . . . ,M}
•Lmax := maxi,mLi,m
•Dh(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉

• σ2
rad := maxi

{
1

γ2M

M∑
m=1

EDfπim

(
xi?, x?

)}

• ζ2
? := 1

M

M∑
m=1
‖∇fm (x?)‖2

• σ2
? := 1

Mn

M∑
m=1

∑n
i=1
∥∥∇f im (x?)−∇fm (x?)

∥∥2

Compressed Learning

Unbiased Compressor

A compression operator is a randomized map-
ping Q : Rd→ Rd such that for some ω > 0
E [Q(x)] = x, E

[
‖Q(x)− x‖2

]
≤ ω‖x‖2

for all x ∈ Rd.

•Rand-K sparsification operator is defined via

Q(x) := d

k

∑
i∈S

xiei,

where S ⊆ [d] is a subset of [d] of cardinality k
chosen uniformly at random. This is unbiased
compressor with ω := d

k − 1.

Main Goal

Design and analyze communication-efficient al-
gorithms for Federated Learning using compres-
sion, random reshuffling, and/or local steps and
improving upon existing algorithms both theo-
retically and practically.

Algorithms & Communication complexities

Q-RR

1: Input: x0 – starting point,γ > 0 – stepsize
2: for t = 0, 1, . . . , T − 1 do
3: Receive xt from the server
4: x0

t,m = xt
5: Sample random permutation of [n]:
πm = (π0

m, . . . , π
n−1
m )

6: for i = 0, 1, . . . , n− 1 do
7: for m = 1, . . . ,M in parallel do
8: Receive xit from the server
9: Compute and send Q

(
∇fπ

i
m

m (xit)
)

10: xi+1
t = xit − γ 1

M

∑M
m=1Q

(
∇fπ

i
m

m (xit)
)

11: Send xi+1
t to the workers

12: xt+1 = xnt
13: Output: xT

Q-RR [NEW]:

Õ
((

1 + ω

M

)
Lmax

µ̃
+ ω (ζ2

? + σ2
?)

Mµ̃2ε
+ σrad√

µ̃3ε

)
QSGD [1]:

Õ
((

1 + ω

M

)
Lmax

µ
+ (ωζ2

? + (1 + ω)σ2
?)

Mµ2ε

)
.

Strengths:
• Easy to implement;
• Memory friendly (does not require storing any
additional vectors).
Weaknesses:
• Q-RR has no theoretical advantages over QSGD
unless ω is very small.

DIANA-RR

1: Input: x0 – starting point, {hi0,m}
M,n
m,i=1,1 – initial

shift-vectors, γ > 0 – stepsize, α > 0 – stepsize for
learning the shifts

2: for t = 0, 1, . . . , T − 1 do
3: Receive xt from the server
4: x0

t,m = xt
5: Sample random permutation of [n]:
πm = (π0

m, . . . , π
n−1
m )

6: for i = 0, 1, . . . , n− 1 do
7: for m = 1, 2, . . . ,M in parallel do
8: Receive xit from the server
9: Compute and send Q

(
∇fπ

i
m

m (xit)− h
πim
t,m

)
10: ĝ

πim
t,m = h

πim
t,m +Q

(
∇fπ

i
m

m (xit,m)− hπ
i
m
t,m

)
11: h

πim
t+1,m = h

πim
t,m + αQ

(
∇fπ

i
m

m (xit,m)− hπ
i
m
t,m

)
12: xi+1

t = xit − γ 1
M

∑M
m=1 ĝ

πim
t,m

13: Send xi+1
t to the workers

14: xt+1 = xnt
15: Output: xT

DIANA-RR [NEW]:

Õ
(
n(1 + ω) +

(
1 + ω

M

)
Lmax

µ̃
+ σrad√

εµ̃3

)
DIANA [1]:

Õ
((

1 + ω

M

)
Lmax

µ
+ (1 + ω)σ2

?

Mµ2ε

)
.

Strengths:
• Unlike Q-RR, DIANA-RR does not have a Õ (1/ε)
term;
• Overall complexity of DIANA-RR improves over
DIANA, since O (σrad/

√
εµ̃3) has a better

dependence on ε than O
(

(1+ω)σ2
?/(Mµ2ε)

)
.

Weaknesses:
• It can be memory expensive to maintain{
hit,m

}
m∈[M ],i∈[n]

shifts.

Q-NASTYA

1: Input: x0 – starting point, γ > 0 – local stepsize,
η > 0 – global stepsize

2: for t = 0, 1, . . . , T − 1 do
3: for m = 1, . . . ,M in parallel do
4: Receive xt from the server
5: x0

t,m = xt
6: Sample random permutation of [n]:
πm = (π0

m, . . . , π
n−1
m )

7: for i = 0, 1, . . . , n− 1 do
8: xi+1

t,m = xit,m − γ∇f
πim
m (xit,m)

9: gt,m = 1
γn

(
xt − xnt,m

)
10: Send Qt(gt,m) to the server
11: gt = 1

M

∑M
m=1Qt(gt,m)

12: xt+1 = xt − ηgt
13: Send xt+1 to the workers
14: xT = xnT
15: Output: xT

Q-NASTYA [NEW]:
Õ
(
Lmax
µ

(
1 + ω

M

)
+ ω

M
ζ2
?

εµ3 +
√

Lmax
εµ3

√
ζ2
? + σ2

?

n

)
FedPAQ [2]:

Õ
(
Lmax

µ

(
1 + ω

M

)
+ ω

M

σ2

µ2ε
+ σ2

Mµ2ε

)
.

Strengths:
• Unlike FedCOM [4], Q-NASTYA provably works
in a fully heterogeneous regime;
• Unlike FedPAQ, analysis of Q-NASTYA does not
rely on the bounded variance assumption;
• Unlike FedCRR [3], Q-NASTYA converges for
any ω ≥ 0;
• If ω is small, complexity of Q-NASTYA is
superior to FedPAQ.
Weaknesses:
• In the big ω regime, Q-NASTYA has the same
Õ (1/ε) dependence as FedPAQ.

DIANA-NASTYA

1: Input: x0 – starting point, {h0,m}Mm=1 – initial
shift-vectors, γ > 0 – local stepsize, η > 0 – global
stepsize, α > 0 – stepsize for learning the shifts

2: for t = 0, 1, . . . , T − 1 do
3: for m = 1, . . . ,M in parallel do
4: Receive xt from the server
5: x0

t,m = xt
6: Sample random permutation of [n]:
πm = (π0

m, . . . , π
n−1
m )

7: for i = 0, 1, . . . , n− 1 do
8: xi+1

t,m = xit,m − γ∇f
πim
m (xit,m)

9: gt,m = 1
γn

(
xt − xnt,m

)
10: Send Qt (gt,m − ht,m) to the server
11: ht+1,m = ht,m + αQt (gt,m − ht,m)
12: ĝt,m = ht,m +Qt (gt,m − ht,m)
13: ht+1 = ht + α

M

∑M
m=1Qt (gt,m − ht,m)

14: ĝt = ht + 1
M

∑M
m=1Qt (gt,m − ht,m)

15: xt+1 = xt − ηĝt
16: Output: xT

DIANA-NASTYA [NEW]:

Õ

ω + Lmax

µ

(
1 + ω

M

)
+
√
Lmax

εµ3

√
ζ2
? + σ2

?

n


FedCRR-VR [3]:

Õ

(ω + 1)
(
1− 1

κ

)n
(
1−

(
1− 1

κ

)n)2 +
√
κ (ζ? + σ?)
µ
√
ε



Strengths:
• The complexity of DIANA-NASTYA is superior
to both FedPAQ and Q-NASTYA;
• If κ := Lmax

µ � 1, complexity of
DIANA-NASTYA is better than for FedCRR-VR.
Weaknesses:
• Each worker i has to maintain an additional
vector state ht,m, which causes an additional
memory cost.

does not suffer from the Õ (1/ε) term in the complexity bound

Experiments

Binary classification via Logistic regres-
sion.
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Figure 1:The comparison of Q-NASTYA, DIANA-
NASTYA, Q-RR, DIANA-RR and existing baselines
(FedCOM, FedPAQ) on binary classification problem with
withM = 10 workers. Stepsizes were tuned and workers used
Rand-k compressor with k/d = 0.02 (k = 6, d = 300).
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Image classification via ResNet-18.

0 200 400 600 800 1000
Data passes

10

20

30

40

50

To
p1

 a
cc

 (v
al

id
at

io
n)

QSGD
Q-RR

0 500 1000 1500
Data passes

20

40

60

80

To
p1

 a
cc

 (v
al

id
at

io
n)

DIANA
DIANA-RR

Figure 2:The comparison of Q-RR, QSGD, DIANA,
and DIANA-RR on the task of training ResNet-18 on
CIFAR-10 with M = 10 workers. Stepsizes were tuned and
workers used Rand-k compressor with k/d = 0.05.
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