# Federated Optimization Algorithms with Random Reshuffling and Gradient Compression

Eduard Gorbunov<sup>2</sup> Igor Sokolov<sup>1</sup> Ahmed Khaled<sup>3</sup> Grigory Malinovsky<sup>1</sup> Abdurakhmon Sadiev<sup>1</sup> Konstantin Burlachenko<sup>1</sup> Peter Richtárik<sup>1</sup>

> <sup>2</sup>Princeton University <sup>3</sup>MBZUAI <sup>1</sup>KAUST



### Notation

- Overall complexity of **DIANA-RR** improves over **DIANA**, since  $\mathcal{O}\left(\sigma_{\rm rad}/\sqrt{\varepsilon\tilde{\mu}^3}\right)$  has a better dependence on  $\varepsilon$  than  $\mathcal{O}\left(\frac{(1+\omega)\sigma_{\star}^2}{M\mu^2\varepsilon}\right)$ .

Image classification via ResNet-18.



•  $[M] := \{1, \ldots, M\}$ •  $L_{\max} := \max_{i,m} L_{i,m}$ •  $D_h(x,y) := h(x) - h(y) - \langle \nabla h(y), x - y \rangle$ •  $\sigma_{rad}^2 := \max_i \left\{ \frac{1}{\gamma^2 M} \sum_{m=1}^M \mathbb{E} D_{f_m^{\pi^i}} \left( x_\star^i, x_\star \right) \right\}$ •  $\zeta^2_{\star} := \frac{1}{M} \sum_{m=1}^{M} \|\nabla f_m(x_{\star})\|^2$ •  $\sigma_{\star}^2 := \frac{1}{Mn} \sum_{m=1}^{M} \sum_{i=1}^{n} \left\| \nabla f_m^i \left( x_{\star} \right) - \nabla f_m \left( x_{\star} \right) \right\|^2$ 

## **Compressed Learning**

Unbiased Compressor

A compression operator is a randomized mapping  $\mathcal{Q}: \mathbb{R}^d \to \mathbb{R}^d$  such that for some  $\omega > 0$  $\mathbb{E}\left[\mathcal{Q}(x)\right] = x, \qquad \mathbb{E}\left[\|\mathcal{Q}(x) - x\|^2\right] \le \omega \|x\|^2$ for all  $x \in \mathbb{R}^d$ .

• Rand-K sparsification operator is defined via

# Q-NASTYA

: **Input:**  $x_0$  – starting point,  $\gamma > 0$  – local stepsize,  $\eta > 0$  – global stepsize 2: for t = 0, 1, ..., T - 1 do for  $m = 1, \ldots, M$  in parallel **do** Receive  $x_t$  from the server  $x_{t,m}^0 = x_t$ Sample random permutation of [n]:  $\pi_m = (\pi_m^0, \dots, \pi_m^{n-1})$ for i = 0, 1, ..., n - 1 do  $x_{t,m}^{i+1} = x_{t,m}^{i} - \gamma \nabla f_m^{\pi_m^i}(x_{t,m}^{i})$  $g_{t,m} = \frac{1}{\gamma n} \left( x_t - x_{t,m}^n \right)$ 9: Send  $\mathcal{Q}_t(g_{t,m})$  to the server 10:  $g_t = \frac{1}{M} \sum_{m=1}^{M} \mathcal{Q}_t(g_{t,m})$ 11:  $x_{t+1} = x_t - \eta g_t$ 12: Send  $x_{t+1}$  to the workers 13: 14:  $x_T = x_T^n$ 15: Output:  $x_T$ Q-NASTYA [NEW]:  $\widetilde{\mathcal{O}}\left(\frac{L_{\max}}{\mu}\left(1+\frac{\omega}{M}\right)+\frac{\omega}{M}\frac{\zeta_{\star}^{2}}{\varepsilon\mu^{3}}+\sqrt{\frac{L_{\max}}{\varepsilon\mu^{3}}}\sqrt{\zeta_{\star}^{2}+\frac{\sigma_{\star}^{2}}{n}}\right)$ FedPAQ [2]:

Weaknesses:

• It can be memory expensive to maintain  $\left\{h_{t,m}^{i}\right\}_{m\in[M],i\in[n]}$  shifts.

### **DIANA-NASTYA**

: **Input:**  $x_0$  – starting point,  $\{h_{0,m}\}_{m=1}^M$  – initial shift-vectors,  $\gamma > 0$  – local stepsize,  $\eta > 0$  – global stepsize,  $\alpha > 0$  – stepsize for learning the shifts 2: for  $t = 0, 1, \dots, T - 1$  do for  $m = 1, \ldots, M$  in parallel **do** Receive  $x_t$  from the server  $x_{t,m}^0 = x_t$ Sample random permutation of [n]:  $\pi_m = (\pi_m^0, \dots, \pi_m^{n-1})$ for i = 0, 1, ..., n - 1 do  $x_{t,m}^{i+1} = x_{t,m}^{i} - \gamma \nabla f_m^{\pi_m^i}(x_{t,m}^{i})$  $g_{t,m} = \frac{1}{\gamma n} \left( x_t - x_{t,m}^n \right)$ Send  $\mathcal{Q}_t(g_{t,m} - h_{t,m})$  to the server  $h_{t+1,m} = h_{t,m} + \alpha \mathcal{Q}_t \left( g_{t,m} - h_{t,m} \right)$  $\hat{g}_{t,m} = h_{t,m} + \mathcal{Q}_t \left( g_{t,m} - h_{t,m} \right)$  $h_{t+1} = h_t + \frac{\alpha}{M} \sum_{m=1}^{M} \mathcal{Q}_t \left( g_{t,m} - h_{t,m} \right)$  $\hat{g}_t = h_t + \frac{1}{M} \sum_{m=1}^{M} \mathcal{Q}_t \left( g_{t,m} - h_{t,m} \right)$  $x_{t+1} = x_t - \eta \hat{g}_t$ 16: Output:  $x_T$ 

DIANA-NASTYA [NEW]:

Figure 2: The comparison of Q-RR, QSGD, DIANA, and DIANA-RR on the task of training ResNet-18 on CIFAR-10 with M = 10 workers. Stepsizes were tuned and workers used Rand-k compressor with k/d = 0.05.



where  $S \subseteq [d]$  is a subset of [d] of cardinality k chosen uniformly at random. This is unbiased compressor with  $\omega := \frac{d}{k} - 1$ .

# Main Goal

Design and analyze communication-efficient algorithms for Federated Learning using compression, random reshuffling, and/or local steps and improving upon existing algorithms both theoretically and practically.





# **Strengths:**

- Unlike FedCOM [4], Q-NASTYA provably works in a fully heterogeneous regime;
- Unlike FedPAQ, analysis of Q-NASTYA does not rely on the bounded variance assumption;
- Unlike FedCRR [3], Q-NASTYA converges for any  $\omega \ge 0$ ;
- If  $\omega$  is small, complexity of Q-NASTYA is superior to FedPAQ.

### Weaknesses:

• In the big  $\omega$  regime, Q-NASTYA has the same  $\mathcal{O}(1/\varepsilon)$  dependence as FedPAQ.





### **Strengths:**

- The complexity of **DIANA-NASTYA** is superior to both **FedPAQ** and **Q-NASTYA**; • If  $\kappa := \frac{L_{\text{max}}}{\mu} \gg 1$ , complexity of **DIANA-NASTYA** is better than for **FedCRR-VR**. Weaknesses:
- Each worker *i* has to maintain an additional vector state  $h_{t,m}$ , which causes an additional memory cost.



### References

[1] Gorbunov, et al. "A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent." AISTATS, 2020.

[2] Reisizadeh, et al. "Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization." AISTATS, 2020.

[3] Malinovsky, et al. "Federated random reshuffling with compression and variance reduction." arXiv, 2022.

[4] Haddadpour, et al. "Federated learning with compression: Unified analysis and sharp guarantees." AISTATS, 2021.

