
Hyperparameter Transfer Learning
with Adaptive Complexity

Samuel Horváth1, Aaron Klein2, Peter Richtárik1 and Cédric Archambeau2

King Abdullah University of Science and Technology1

Amazon Web Services2

Problem setup

We consider a standard multi-task Bayesian Optimization
(BO) framework, where one aims to optimize an expensive black-
box function fT+1 : X → R with a minimal number of function
evaluations:

x?T+1 = argminx∈X fT+1(x), (1)

where X ⊂ RD denotes the configuration space.
We assume that we have already completed T related Hyperpa-
rameter Optimization (HPO) tasks {f1, . . . fT} that share
the same configuration space X and we have access to

D =
{
Dt : Dt = {(xtn, ytn)}Nt

n=1
}T
t=1,

the data collected while optimizing the set of black-box functions
{ft}Tt=1, ytn = ft(xtn).

Contributions

We resolve a deficiency of popular Adaptive Bayesian Linear Regression
(ABLR) [1] applied to multi-task BO, which is that the number
of non-linear basis functions is not adapted to the target
task, where the number of observations is typically smaller than in the
previous tasks, making it prone to overfitting. This issue is due to the
direct use of conventional multi-task models in the context of sequential
decision making problems such as BO. To solve this issue:
•We use nested dropout [2] to learn an ordered set of
features for transfer learning in the context of BO. To the best
of our knowledge, no other multi-task learning approach proposed in
the literature is able to learn features that take the adaptive
complexity of the target task into account.
•We use Automatic Relevance Determination (ARD) to
automatically determine which basis functions to activate at transfer
in a data-driven fashion. Hence, the resulting transfer learning model
is able to adapt its capacity to the amount of data available in the
target task.
•We show that we can improve the sample efficiency of multi-task BO
and avoid overfitting in low data regimes without hurting the
transfer learning performance in high data regimes.

ABLR with Adaptive Complexity (ABRAC)

Algorithm 1 ABRAC
1: Input: number of initial points n0, budget N , feature net φz(·) :
RP → Rd parametrized by z, filter F k, previous evaluations
{{(xti, yti)}Nt

i=1}Tt=1.
2: Fit φz(·) using {{(xti, yti)}Nt

i=1}Tt=1 using random truncation
(nested dropout) in the final layer.

3: Observe fT+1 at n0 randomly selected points x1, x2, . . . , xn0 ∈ X .
4: C = {(xi, yi)}n0

i=1, where yi = fT+1(xi).
5: Set n = n0.
6: while n < N do
7: Fit probabilistic model g via ARD.
8: xn = argmaxx∈X Ag(x), where A is a given acquisition function.
9: Observe yn = fT+1(xn).

10: Update C ← C ∪ {(xn, yn)}, n← n + 1
11: end while
12: Output: x̂ = argmini=1,2,...,N fT+1(xi)

Fit Visualization on Forrester Functions

Neural Architecture Search

10 20 30 40 50
iteration

10 2

10 1

av
er

ag
e 

re
gr

et

ABRAC
ABLR SGD fixed
ABLR L-BFGS fixed
ABLR
GP
Random

10 20 30 40 50
iteration

10 4

10 3

10 2

av
er

ag
e 

re
gr

et

ABRAC
ABLR SGD fixed
ABLR L-BFGS fixed
ABLR
GP
Random

Figure: Tabular benchmarks by Klein and Hutter (2019). Top:
Protein Structure, bottom: Slice Localization.

References

[1] Valerio Perrone, Rodolphe Jenatton, Matthias Seeger, and Cédric Archambeau.
Scalable hyperparameter transfer learning.
In NeurIPS, 2018.

[2] Oren Rippel, Michael Gelbart, and Ryan Adams.
Learning ordered representations with nested dropout.
In ICML, 2014.


