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� strong convexity

(Lipschitz continuity of gradients)

Logistic regression

Dual of SVM with squared hinge loss

Accelerated Coordinate Descent with Arbitrary Sampling 
and Best Rates for Minibatches
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n > m ) coordinate descent (CD) is the state of the art

Importance sampling can be at most O(1) times worse than uniform
Importance sampling can be O(n) times better than uniform

Recovers L smoothness for M = LI

Pij = Prob(i 2 S ^ j 2 S)

P �M � Diag(p1v1, . . . , pnvn)

Algorithm 1 ACD (Accelerated coordinate descent with arbitrary sampling)

1: Parameters: i.i.d. proper samplings Sk ⇠ D; v 2 Rn
++; � > 0; stepsize

parameters ⌘, ✓ > 0.
2: Initial iterate y0 = z0 2 Rn

3: for k = 0, 1 . . . do
4: xk+1 = (1� ✓)yk + ✓zk

5: Get Sk ⇠ D
6: yk+1 = xk+1 �
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Sampling 2 can be at most O(
p
⌧) times worse than Sampling 1

Sampling 2 can be O
�
n
⌧

�
times better than Sampling 1
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1. First ACD method with arbitrary sampling

2. Importance sampling for minibatches for CD and ACD
(can be much better than uniform)
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IMPORTANCE SAMPLING FOR MINIBATCHES

CONVERGENCE RATE (ACD)

ACCELERATED COORDINATE DESCENT (ACD)

indicator function

KNOWN CONVERGENCE RATES

smooth & strongly convex

very large

CD

ACD
Coordinate Descent

Accelerated 
Coordinate Descent

positive definite matrix

identity matrix

sampling ith standard unit basis vector 
(“coordinate vector”)

ESO parameters (defined 
by this inequality)

Lemma [3]
ESO inequality holds

“probability matrix” defined by

Hadamard product

Corollary

Theorem

ith partial derivative

Lyapunov function

identity:

minibatch size

Sampling 1 
(standard; no importance sampling)

Sampling 2
(new; importance sampling)

Theorem (ACD)

Theorem (CD)
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