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Time-Varying Decentralized Minimization

SETUP: Gk := (V , Ek) – undirected connected networks, where
• V := {1, . . . , n} is a set of computing nodes,
• Ek ⊂ V × V is a sequence of communication links.

⇒ ⇒

Figure 1: A sample time-varying network with n = 20 nodes.

Each node i ∈ V owns function fi : Rd → R, which is L-smooth
and µ-strongly convex.
GOAL: Find solution of the minimization problem

min
x∈Rd

∑
i∈V

fi(x). (1)

Each node i ∈ V is allowed to calculate ∇fi(x) and communicate
O(1) vectors of size d with neighbors along the links e ∈ Ek.

Problem Reformulation

Consider function F : (Rd)V → R defined by

F (x) :=
∑
i∈V

fi(xi), where x = (x1, . . . , xn) ∈ (Rd)V.

Consider also a sequence of nd× nd matrices

W(k) := Ŵ(k)⊗ I,

where I is d × d identity matrix and Ŵ(k) is an n × n matrix
which satisfies the following properties:
1) Ŵ(k) is symmetric positive semi-definite,
2) Ŵij(k) 6= 0 if and only if i = j or (i, j) ∈ Ek,
3) ker Ŵ(k) = span({(1, . . . , 1) ∈ Rn}).
We are going to call W(k) a gossip matrix. Note that de-
centralized communication at time step k can be represented as
multiplication of W(k) by vector x = (x1, . . . , xn) ∈ (Rd)V :

y = (y1, . . . , yn) = W(k)x ⇒ yi ∈ span({xj : j is neighbor of i}).

Problem (1) can be reformulated as a lifted problem with
consensus constraints:

min
x∈L

F (x), (1a)

where L := {(x1, . . . , xn) ∈ (Rd)V : x1 = · · · = xn}.
By x∗ := (x̂, . . . , x̂) ∈ (Rd)V we denote the solution to Problem
(1a), where x̂ ∈ Rd is the solution to Problem (1).

Dual Problem

Problem (1a) has an equivalent dual formulation of the form

min
z∈L⊥

F ∗(z), (2)

where F ∗ is the Fenchel transform of F and L⊥ ⊂ (Rd)V is the
orthogonal complement to the space L, given as follows:

L⊥ =
{

(z1, . . . , zn) ∈ (Rd)V :
n∑
i=1

zi = 0
}
.

Function F ∗(z) is 1
µ-smooth and 1

L-strongly convex. Hence, prob-
lem (2) also has a unique solution, which we denote as z∗ ∈ L⊥.

Communication as a Compression Operator

Let Q be a linear space. A mapping C : Q → Q is called a
compression operator if there exists δ ∈ (0, 1] such that

‖C(z)− z‖2 ≤ (1− δ)‖z‖2 for all z ∈ Q.

The following lemma shows that matrix-vector multiplication by
gossip matrix W(k) is a contractive compression operator acting
on the subspace L⊥.

Lemma (Main Idea)

Let σ ∈ (0, 1/λmax), k ∈ {0, 1, 2 . . .}. Then the following
inequality holds for all z ∈ L⊥:

‖σW(k)z − z‖2 ≤ (1− σλ+
min)‖z‖2.
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Accelerated Algorithm with Guarantees

Our algorithm uses the dual oracle, and is based on a careful gen-
eralization of the Projected Nesterov Gradient Descent.
Algorithm 1 ADOM
1: input: z0 ∈ L⊥,m0 ∈ (Rd)V, α, η, θ, σ>0, τ ∈ (0, 1)
2: set z0

f = z0

3: for k = 0, 1, 2, . . . do
4: zkg = τzk + (1− τ )zkf
5: ∆k = σW(k)(mk − η∇F ∗(zkg ))
6: mk+1 = mk − η∇F ∗(zkg )−∆k

7: zk+1 = zk + ηα(zkg − zk) + ∆k

8: zk+1
f = zkg − θW(k)∇F ∗(zkg )

9: end for
Method combines ideas of biased compression with error-feedback
mechanism and acceleration.

Convergence of ADOM

Set parameters α, η, θ, σ, τ of Algorithm 1 to α = 1
2L, η =

2λ+
min
√
µL

7λmax
, θ = µ

λmax
, σ = 1

λmax
, and τ = λ+

min
7λmax

√
µ
L. Then there

exists C > 0, such that

‖∇F ∗(zkg )− x∗‖2 ≤ C

(
1− λ+

min
7λmax

√
µ

L

)k
,

where λ+
min and λmax refer to bounds for the largest and to the

smallest positive eigenvalue respectively

λ+
min ≤ λ+

min(Ŵ(k)) ≤ λmax(Ŵ(k)) ≤ λmax

Comparison with Previous Methods

Table 1: A review of decentralized optimization algorithms capable of working
in the time-varying network regime, with guarantees. Complexity terms high-
lighted in red represent the best known dependencies. Our method is the only al-
gorithm with best known dependencies in all terms (κ := L/µ, χ := λmax/λ

+
min).

Algorithm Communication complexity
DIGing [1] O

(
n1/2χ2κ3/2log 1

ε

)
PANDA [2] O

(
χ2κ3/2log 1

ε

)
Acc-DNGD [3] O

(
χ3/2κ5/7log 1

ε

)
APM [4] O

(
χκ1/2 log2 1

ε

)
Mudag [5] O

(
χκ1/2 log(κ)log 1

ε

)
ADOM

(Algorithm 1) O
(
χκ1/2 log 1

ε

)

ADOM achieves the new state-of-the-art rate for de-
centralized optimization over time-varying networks.

Numerical Experiments

We compare with the best previous methods on the logistic regres-
sion problem with `2 regularization:

fi(x) = 1
m

m∑
j=1

log(1 + exp(−bija>ijx)) + r

2
‖x‖2.

To simulate a time-varying network, we use geometric random
graphs and choose matrix W(k) as the Laplacian. ADOM needs
dual gradients∇F ∗(zkg ), which are calculated inexactly using T (≤
3 sufficient in our case) iterations of gradient method for problem:

∇F ∗(zkg ) = arg min
x∈(Rd)V

F (x)− 〈x, zkg〉.
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Comparison ofADOM, Mudag, Acc-DNGD and APM on w6a (n = 17188, d =
300) LIBSVM dataset. First row: κ ∈ {10, 104} and networks with χ ≈ 30.
Second row: κ = 100 and networks with χ ∈ {9, 521}.

ADOM converges linearly and outperforms all known
algorithms for every set of parameters.

Next we compare against the Distributed Nesterov Method
(DNM) [6], which has an

√
κ dependence. We use synthetic data

and switch between two geometric graphs (χ ≈ 400) every t iter-
ations.
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Comparison of ADOM and DNM [6] on a problem with κ = 30 and number
of features d = 40.

ADOM always converges, unlike DNM.

More experimental results (including real networks) in the paper [7].


