

AIDE: Fast and Communication Efficient Distributed Optimization

Sashank J. Reddi*, Jakub Konečný^, Peter Richtárik^, Barnabás Póczos*, Alex Smola*

Distributed Optimization Problem

Minimize an average of functions, each of which is stored on different machine. Formally,

$$\min_{w \in \mathbb{R}} f(w) := \frac{1}{K} \sum_{k=1}^{K} F_k(w)$$

where K is the number of machines, and

$$F_k(w) = \frac{K}{N} \sum_{i \in \mathcal{P}_k} f_i(w).$$

Here, $f_i(w)$ usually represent a loss function incurred on the i-th data point. Set \mathcal{P}_k denotes indices of data points stored on computer . k

 $\hat{w}_k^t = \arg\min g_{k,\mu}^t(w),$

Baseline algorithm: DANE [3] At iteration t, with iterate w^{t-1} , each machine solves

where

 g_{k}^{ι}

$$F_{k}(w) := F_{k}(w)$$

- $\langle \nabla F_{k}(w^{t-1}) - \eta \nabla f(w^{t-1}), w \rangle$
+ $\frac{\mu}{2} ||w - w^{t-1}||^{2}.$

This is followed by aggregation to form new iterate

$$w^t = \frac{1}{K} \sum_{k=1}^K \hat{w}_k^t.$$

Properties

- Fast convergence when $F_k(w)$ are similar enough (i.i.d. data distribution)
- Not robust to arbitrary data distributions
- Exact minimum computationally infeasible in many applications

Our contributions

- Inexact version of DANE more robust
- Accelerated version, AIDE, that (nearly) matches communication complexity lower bounds
 - \succ First efficient method that can be implemented using only first-order oracle

```
*Machine Learning Department, Carnegie Mellon University
     ^School of Mathematics, University of Edinburgh
```

Two Distributed Optimization Algorithms

Inexact DANE

Core idea – solve the DANE subproblem approximately.

Algorithm 1: INEXACTDANE (f, w^0, s, γ, μ) **Input:** $f(w) = \frac{1}{K} \sum_{k=1}^{K} F_k(w)$, initial point $w^0 \in \mathbb{R}^d$, inexactness parameter $0 < \gamma < 1$ for t = 1 to s do for k = 1 to K do in parallel Find an approximate solution $w_{k}^{t} \approx \hat{w}_{k}^{t} := \arg \min_{w \in \mathbb{R}^{d}} g_{k-a}^{t}(w),$ such that $||w_{h}^{t} - \hat{w}_{h}^{t}|| \leq \gamma ||w^{t-1} - \hat{w}_{h}^{t}||$ end $1 \Sigma^K$ $\sum_{k=1}^{\kappa} w_{k}^{t}$

$$w^* = \frac{1}{K} \sum$$
end

return w^t

AIDE: Accelerated Inexact DANE Core idea – apply Universal Catalyst [1] to InexactDANE Algorithm 1: AIDE $(f, w^0, \lambda, \tau, s, \gamma, \mu, \epsilon)$

Input: $f(w) = \frac{1}{K} \sum_{k=1}^{K} F_k(w)$, Initial point $y^0 = w^0 \in \mathbb{R}^d$, INEXACTDANE iterations *s*, inexactness parameter $0 \le \gamma < 1, \tau \ge 0$. Let $q = \lambda/(\lambda + \tau)$ while $f(w^{t-1}) - f(\hat{w}) \leq \epsilon \operatorname{do}$ Define $f^t(w) := \frac{1}{K} \sum_{k=1}^{K} (F_k(w) + \frac{\tau}{2} ||w - y^{t-1}||^2)$ $w^t = \text{INEXACTDANE}(f^t, w^{t-1}, s, \gamma, \mu)$ Find $\zeta_t \in (0,1)$ such that $\zeta_t^2 = (1-\zeta_t)\zeta_{t-1}^2 + q\zeta_t$ Compute $y^{t} = w^{t} + \beta_{t}(w^{t} - w^{t-1})$ where $\beta_{t} = \frac{\zeta_{t-1}(1-\zeta_{t-1})}{\zeta^{2} + \zeta_{t}}$ end return w^t

Communication complexity guarantees

Algorithm	δ -related F_k	strongly convex F_k	convex F_k
InexactDANE	$\mathcal{O}\left(rac{\delta^2}{\lambda^2}\log\left(rac{1}{\epsilon} ight) ight)$	$\mathcal{O}\left(\frac{L}{\lambda}\log\left(\frac{1}{\epsilon}\right)\right)$	$\tilde{\mathcal{O}}\left(\frac{L}{\epsilon}\log\left(\frac{1}{\epsilon}\right)\right)$
AIDE	$\tilde{\mathcal{O}}\left(\sqrt{\frac{\delta}{\lambda}}\log\left(\frac{1}{\epsilon}\right)\right)$	$ ilde{\mathcal{O}}\left(\sqrt{rac{L}{\lambda}}\log\left(rac{1}{\epsilon} ight) ight)$	$\tilde{\mathcal{O}}\left(\sqrt{\frac{L}{\epsilon}}\log\left(\frac{1}{\epsilon}\right)\right)$

 λ - strong convexity; L - smoothness parameter; ϵ - target accuracy

•Only modest accuracy necessary for the above rates ($\gamma \approx 1$)/8 •Inexactness changes only constants and adds practical robustness

Experiments

In the following, compare three algorithms •COCOA ([2]) with SDCA locally •InexactDANE (DANE) with SVRG locally •AIDE with SVRG locally By default for a single pass through local data.

Algorithm comparison

•Rcv1 dataset, smoothed hinge loss •Regularization strength $\{-1/N, 1/10N, 1/100\}$ •Data randomly distributed across 8 nodes.

Node scaling

•Rcv1, covtype, realism, url datasets, logistic loss •Randomly distributed across 4–64 computers. •Fixed number of local steps of SVRG

Arbitrary data partitioning

•Rcv1, covtype, realsim datasets, logistic loss •Partitioned to 2 computers:

- \succ Randomly (random)
- ➢ Based on output label (output)

References

[1] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. "A universal catalyst for firstorder optimization." In Advances in Neural Information Processing Systems, 2015. [2] Chenxin Ma, Jakub Konečný, Martin Jaggi, Virginia Smith, Michael I. Jordan, Peter Richtárik, and Martin Takáč. "Distributed Optimization with Arbitrary Local Solvers." arXiv preprint arXiv:1512.04039 (2015).

[3] Ohad Shamir, Nathan Srebro, and Tong Zhang. "Communication efficient distributed optimization using an approximate newton-type method." arXiv preprint arXiv:1312.7853 (2013).