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The Problem

min
x∈Rd

f (x) := 1
n

n∑
i=1
fi(x) , (1)

• fi(x) := Eζ∼Di [fζ(x)], where Di is the
distribution of data stored on worker i
• f is smooth, fi’s have bounded variance σ2

i ,
E
[∥∥∥∇fζi(x) −∇fi(x)

∥∥∥2] ≤ σ2
i , σ2 = 1/n

∑
σ2
i ,

•n is number of nodes

Communication as the Bottleneck

•A key bottleneck of distributed SGD is the cost of
communication of the typically dense gradient
vectors gi(xk).
• In typical distributed computing environments,
communication takes more time than
computation.
•Two orthogonal types of remedies:
• Local iterations: give each worker “more useful work” to
do before any communication takes place
•Gradient compression: communicate compressed
gradients instead of full gradients

Main Contributions

•New Compression Operators. We construct a new
“natural” operators based on a randomized
binary rounding scheme.
•Computation-Free Simple Low-Level
Implementation. “Natural” compatibility with
binary floating point types.
•Post-compression Mechanism. Provable
theoretical and practical speedup improvements
through composition (◦) with previous methods.
•Proof-of-Concept System with In-Network
Aggregation. Our mechanisms are the first
mechanism that are provably able to operate in
the SwitchML [2] framework.
•Theory of general quantized SGD. (Algorithm 1)

Compression Operators

C : Rd → Rd is called an unbiased bounded-second
moment compression operator (not. C ∈ B(ω)) if
E [C(x)] = x, E ‖C(x)‖2 ≤ (ω + 1) ‖x‖2 , ∀x ∈ Rd.

Relative Iterations Slowdown

(ωM+1)((ωW+1)σ2/n+(1+ωW/n)ε)/(σ2/n+ε),

with respect to non-compressed SGD. (ε-precision,
worker’s CW ∈ B(ωW ), master’s CM ∈ B(ωM) com-
pression).

Natural Dithering Dp,snat

• Inexact version of natural compression.
•Fixing the number of level s, natural dithering
Dp,snat has O(2s−1/s) times smaller variance than
standard dithering Dp,ssta .

Randomized rounding for natural (left) and
standard (right) dithering (s = 3 levels).

# Relative Iteration Complexity to Achieve E [‖∇f (x)‖2] ≤ ε (ωM = 0)

Approach CWi
Relative # Iterations Bits per 1 iter. Speedup

θ(n) ∈ (0, 1], decreasing in n Wi 7→M Factor
Baseline identity 1 32d 1
New Cnat (9/8)θ 9d 3.2×–3.6×

Sparsification (q non-zeros) Sq (d/q)θ (33 + log2 d)q 0.6×–6.0×
New Cnat ◦ Sq (9d/8q)θ (10 + log2 d)q 1.0×–10.7×

Dithering Dp,2
s−1

sta (1 + min{1,
√
d21−s}d

1
min{r,2}21−s)θ 31 + d(2 + s) 1.8×–15.9×

New Dp,snat (81/64 + 9/8 min{1,
√
d21−s}d

1
min{r,2}21−s)θ 8 + d(2 + log2 s) 4.1×–16.0×

Natural Compression Cnat

•New (randomized) compression technique, which
performs an element-wise randomized binary
rounding of its input t ∈ R. Cnat ∈ B(1/8)

Cnat(t) def=


sign(t) · 2blog2 |t|c, Prob. p(t) def= 2dlog2 |t|e−|t|

2blog2 |t|c ,

sign(t) · 2dlog2 |t|e, Prob. 1− p(t),

Bi-directional Compression

Algorithm 1: General Quantized SGD

init. vector x0 ∈ Rd, step sizes {ηk}Tk=0 > 0;
for k = 0 to T do
for i = 1 to n do in parallel . Worker side
compute stoch. gradient gi(xk) ≈ fi(xk)
compress stoch. gradient ∆k

i = CWi
(gi(xk))

end
aggregate compressed gradients ∆k = ∑n

i=1 ∆k
i

compress aggregated vector gk = CM(∆k)
broadcast gk . Master side

end
for i = 1, . . . , n do in parallel . Worker side
xk+1 = xk − ηk

n g
k;

end

Numerical Results
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