

The Problem

$$\min_{x \in \mathbb{R}^d} f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) , \qquad (1)$$

• $f_i(x) := \mathbb{E}_{\zeta \sim \mathcal{D}_i}[f_{\zeta}(x)]$, where \mathcal{D}_i is the distribution of data stored on worker i• f is smooth, f_i 's have bounded variance σ_i^2 , $\mathbb{E}\left[\left\|\nabla f_{\zeta_i(x)} - \nabla f_i(x)\right\|^2\right] \le \sigma_i^2, \ \sigma^2 = 1/n \sum \sigma_i^2,$ • n is number of nodes

Communication as the Bottleneck

- A key bottleneck of distributed SGD is the cost of communication of the typically dense gradient vectors $g_i(x^k)$.
- In typical distributed computing environments, communication takes more time than computation.
- Two orthogonal types of remedies:
- Local iterations: give each worker "more useful work" to do before any communication takes place
- Gradient compression: communicate compressed gradients instead of full gradients

Main Contributions

- New Compression Operators. We construct a new "*natural*" operators based on a randomized binary rounding scheme.
- Computation-Free Simple Low-Level Implementation. "Natural" compatibility with binary floating point types.
- Post-compression Mechanism. Provable theoretical and practical speedup improvements through composition (\circ) with previous methods.
- Proof-of-Concept System with In-Network Aggregation. Our mechanisms are the first mechanism that are provably able to operate in the SwitchML [2] framework.
- Theory of general quantized SGD. (Algorithm 1)

Natural Compression for Distributed Deep Learning^[2] Samuel Horváth¹ Chen-Yu Ho¹ Ludovít Horváth² Atal Sahu¹ Marco Canini¹ Peter Richtárik^{1,3}

KAUST

² Comenius University

³ Moscow Institute of Physics and Technology

Compression Operators

 $\mathcal{C} \colon \mathbb{R}^d \to \mathbb{R}^d$ is called an unbiased bounded-second moment compression operator (not. $\mathcal{C} \in \mathbb{B}(\omega)$) if $\operatorname{E}\left[\mathcal{C}(x)\right] = x, \quad \operatorname{E}\left\|\mathcal{C}(x)\right\|^{2} \le (\omega+1)\left\|x\right\|^{2}, \quad \forall x \in \mathbb{R}^{d}.$

Relative Iterations Slowdown

 $(\omega_M+1)((\omega_W+1)\sigma^2/n+(1+\omega_W/n)\varepsilon)/(\sigma^2/n+\varepsilon),$

with respect to non-compressed SGD. (ϵ -precision, worker's $\mathcal{C}_W \in \mathbb{B}(\omega_W)$, master's $\mathcal{C}_M \in \mathbb{B}(\omega_M)$ compression).

# Relative Iteration Complexity to Achieve $E[\ \nabla f(x)\ ^2] \leq \epsilon \ (\omega_M = 0)$				
Approach	\mathcal{C}_{W_i}	Relative # Iterations	Bits per 1 iter.	Speedup
		$\theta(n) \in (0, 1]$, decreasing in n	$W_i \mapsto M$	Factor
Baseline	identity	1	32 <i>d</i>	1
New	$\mathcal{C}_{ ext{nat}}$	$(9/8)^{\theta}$	9 <i>d</i>	$3.2 \times -3.6 \times$
Sparsification $(q \text{ non-zero})$	OS) \mathcal{S}^q	$(d/q)^{\theta}$	$(33 + \log_2 d)q$	$0.6 \times -6.0 \times$
New	$\mathcal{C}_{ ext{nat}} \circ \mathcal{S}^q$	$(9d/8q)\theta$	$(10 + \log_2 d)q$	$1.0 \times -10.7 \times$
Dithering	$\mathcal{D}_{ ext{sta}}^{p,2^{s-1}}$	$(1 + \min\{1, \sqrt{d}2^{1-s}\}d^{\frac{1}{\min\{r,2\}}}2^{1-s})^{\theta}$	31 + d(2+s)	$1.8 \times -15.9 \times$
New	$\mathcal{D}_{\mathrm{nat}}^{p,s}$	$(\frac{81}{64} + \frac{9}{8}\min\{1, \sqrt{d}2^{1-s}\}d^{\frac{1}{\min\{r,2\}}}2^{1-s})^{\theta}$	$8 + d(2 + \log_2 s)$	$4.1 \times -16.0 \times$

Natural Compression C_{nat}

• New (randomized) compression technique, which performs an element-wise randomized binary rounding of its input $t \in \mathbb{R}$. $\mathcal{C}_{nat} \in \mathbb{B}(1/8)$

 $\mathcal{C}_{\mathrm{nat}}(t) \stackrel{\mathrm{def}}{=} \begin{cases} \operatorname{sign}(t) \cdot 2^{\lfloor \log_2 |t| \rfloor}, & \operatorname{Prob.} p(t) \stackrel{\mathrm{def}}{=} \frac{2^{\lceil \log_2 |t| \rceil} - |t|}{2^{\lfloor \log_2 |t| \rfloor}}, \\ \operatorname{sign}(t) \cdot 2^{\lceil \log_2 |t| \rceil}, & \operatorname{Prob.} 1 - p(t), \end{cases}$

Natural Dithering $\mathcal{D}_{nat}^{p,s}$

- Inexact version of natural compression.
- Fixing the number of level s, natural dithering $\mathcal{D}_{nat}^{p,s}$ has $\mathcal{O}(2^{s-1}/s)$ times smaller variance than standard dithering $\mathcal{D}_{\text{sta}}^{p,s}$.

Randomized rounding for natural (left) and standard (right) dithering (s = 3 levels).

Bi-directional Compression

Algorithm 1: General Quantized SGD			
init. vector $x^0 \in \mathbb{R}^d$, step sizes $\{\eta^k\}_{k=0}^T > 0$;			
for $k = 0$ to T do			
for $i = 1$ to n do in parallel \triangleright Worker side			
compute stoch. gradient $g_i(x^k) \approx f_i(x^k)$			
compress stoch. gradient $\Delta_i^k = \mathcal{C}_{W_i}(g_i(x^k))$			
end			
aggregate compressed gradients $\Delta^k = \sum_{i=1}^n \Delta_i^k$			
compress aggregated vector $g^k = \mathcal{C}_M(\Delta^k)$			
broadcast g^k \triangleright Master side			
end			
for $i = 1,, n$ do in parallel \triangleright Worker side			
$x^{k+1} = x^k - \frac{\eta^k}{n} g^k;$			

end

Numerical Results

[1] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic.

Qsgd: Communication-efficient sgd via gradient quantization and encoding.

[2] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan R. K. Ports, and Peter Richtárik.

Scaling distributed machine learning with in-network aggregation. *CoRR*, abs/1903.06701, 2019.

In Advances in Neural Information Processing Systems, pages 1709–1720, 2017.