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COCOA+ is a primal-dual framework 
for distributed optimization 
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local updates 
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✔ framework: guarantees for  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sponding primal feasible point
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1
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The duality gap function is then given by:

G(↵) := P(w(↵))�D(↵) (4)

By weak duality, every value D(↵) at a dual candidate ↵
provides a lower bound on every primal value P(w). The
duality gap is therefore a certificate on the approxima-
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In large-scale machine learning settings like those consid-
ered here, the availability of such a computable measure of
approximation quality is a significant benefit during train-
ing time. Practitioners using classical primal-only methods
such as SGD have no means by which to accurately detect
if a model has been well trained, as P (w

⇤
) is unknown.

Classes of Loss-Functions. To simplify presentation, we
assume that all loss functions `i are non-negative, and
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Definition 1 (L-Lipschitz continuous loss). A function `i :
R ! R is L-Lipschitz continuous if 8a, b 2 R, we have

|`i(a)� `i(b)|  L|a� b| (6)

Definition 2 ((1/µ)-smooth loss). A function `i : R ! R
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3. The COCOA+ Algorithm Framework
In this section we present our novel COCOA+ frame-
work. COCOA+ inherits the many benefits of CoCoA as
it remains a highly flexible and scalable, communication-
efficient framework for distributed optimization. COCOA+

differs algorithmically in that we modify the form of the lo-
cal subproblems (9) to allow for more aggressive additive
updates (as controlled by �). We will see that these changes
allow for stronger convergence guarantees as well as im-
proved empirical performance. Proofs of all statements in
this section are given in the supplementary material.
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tition of the datapoints [n] := {1, 2, . . . , n} over the K
worker machines. We denote the size of each part by
nk = |Pk|. For any k 2 [K] and ↵ 2 Rn we use the
notation ↵

[k] 2 Rn for the vector

(↵
[k])i :=

(
0, if i /2 Pk,

↵i, otherwise.

Local Subproblems in COCOA+. We can define a data-
local subproblem of the original dual optimization problem
(2), which can be solved on machine k and only requires
accessing data which is already available locally, i.e., data-
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signed the following local subproblem, depending only on
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Interpretation. The above definition of the local objec-
tive functions G�0

k are such that they closely approximate
the global dual objective D, as we vary the ‘local’ vari-
able �↵

[k], in the following precise sense:
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The role of the parameter �0 is to measure the difficulty of
the given data partition. For our purposes, we will see that
it must be chosen not smaller than
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In the following lemma, we show that this parameter can
be upper-bounded by �K, which is trivial to calculate for
all values � 2 R. We show experimentally (Section 7) that
this safe upper bound for �0 has a minimal effect on the
overall performance of the algorithm. Our main theorems
below show convergence rates dependent on � 2 [
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Corollary 9. Assume that all datapoints xi are bounded as
kxik  1 and that the data partition is balanced, i.e. that
nk = n/K for all k. We consider two different possible
choices of the aggregation parameter �:

• (COCOA Averaging, � :=

1

K ): In this case, �0
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is a valid choice which satisfies (11). Then using � 
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Hence the more machines K, the more iterations are
needed (in the worst case).

• (COCOA+ Adding, � := 1): In this case, the choice of
�0

:= K satisfies (11). Then using �  n2/K in light
of Remark 7, we have that T iterations are sufficient
for primal-dual accuracy ✏G, with
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This is significantly better than the averaging case.

In practice, we usually have � ⌧ n2/K, and hence the
actual convergence rate can be much better than the proven
worst-case bound. Table 1 shows that the actual value of
� is typically between one and two orders of magnitudes
smaller compared to our used upper-bound n2/K.

Table 1. The ratio of upper-bound n2

K divided by the true value of
the parameter �, for some real datasets.

K 16 32 64 128 256 512

news 15.483 14.933 14.278 13.390 12.074 10.252
real-sim 42.127 36.898 30.780 23.814 16.965 11.835

rcv1 40.138 23.827 28.204 21.792 16.339 11.099

K 256 512 1024 2048 4096 8192

covtype 17.277 17.260 17.239 16.948 17.238 12.729

4.2. Primal-Dual Convergence for Smooth Losses

The following theorem shows the convergence for smooth
losses, in terms of the objective as well as primal-dual gap.
Theorem 10. Assume the loss functions functions `i are
(1/µ)-smooth 8i 2 [n]. We define �
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= maxk2[K]

�k.
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The following corollary is analogous to Corollary 9, but
for the case of smooth loses. It again shows that while the
COCOA variant degrades with the increase of the number
of machines K, the COCOA+ rate is independent of K.
Corollary 11. Assume that all datapoints xi are bounded
as kxik  1 and that the data partition is balanced, i.e.,
that nk = n/K for all k. We again consider the same two
different possible choices of the aggregation parameter �:

• (COCOA Averaging, � :=

1

K ): In this case, �0
:=

1 is a valid choice which satisfies (11). Then using
�
max

 nk = n/K in light of Remark 7, we have that
T iterations are sufficient for suboptimality ✏, with
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�µ log
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✏

Hence the more machines K, the more iterations are
needed (in the worst case).

• (COCOA+ Adding, � := 1): In this case, the choice
of �0

:= K satisfies (11). Then using �
max

 nk =

n/K in light of Remark 7, we have that T iterations
are sufficient for suboptimality ✏, with

T � 1
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�µ log
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This is significantly better than the averaging case.
Both rates hold analogously for the duality gap.

4.3. Comparison with Original COCOA

Remark 12. If we choose averaging (� :=

1

K ) for aggre-
gating the updates, together with �0

:= 1, then the resulting
Algorithm 1 is identical to COCOA analyzed in (?). How-
ever, they only provide convergence for smooth loss func-
tions `i and have guarantees for dual sub-optimality and
not the duality gap. Formally, when �0

= 1, the subprob-
lems (9) will differ from the original dual D(.) only by an
additive constant, which does not affect the local optimiza-
tion algorithms used within COCOA.
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✏

This is significantly better than the averaging case.
Both rates hold analogously for the duality gap.

4.3. Comparison with Original COCOA

Remark 12. If we choose averaging (� :=

1

K ) for aggre-
gating the updates, together with �0

:= 1, then the resulting
Algorithm 1 is identical to COCOA analyzed in (?). How-
ever, they only provide convergence for smooth loss func-
tions `i and have guarantees for dual sub-optimality and
not the duality gap. Formally, when �0

= 1, the subprob-
lems (9) will differ from the original dual D(.) only by an
additive constant, which does not affect the local optimiza-
tion algorithms used within COCOA.
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Corollary 9. Assume that all datapoints xi are bounded as
kxik  1 and that the data partition is balanced, i.e. that
nk = n/K for all k. We consider two different possible
choices of the aggregation parameter �:
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This is significantly better than the averaging case.

In practice, we usually have � ⌧ n2/K, and hence the
actual convergence rate can be much better than the proven
worst-case bound. Table 1 shows that the actual value of
� is typically between one and two orders of magnitudes
smaller compared to our used upper-bound n2/K.

Table 1. The ratio of upper-bound n2

K divided by the true value of
the parameter �, for some real datasets.

K 16 32 64 128 256 512

news 15.483 14.933 14.278 13.390 12.074 10.252
real-sim 42.127 36.898 30.780 23.814 16.965 11.835

rcv1 40.138 23.827 28.204 21.792 16.339 11.099

K 256 512 1024 2048 4096 8192

covtype 17.277 17.260 17.239 16.948 17.238 12.729

4.2. Primal-Dual Convergence for Smooth Losses

The following theorem shows the convergence for smooth
losses, in terms of the objective as well as primal-dual gap.
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• (COCOA+ Adding, � := 1): In this case, the choice
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This is significantly better than the averaging case.
Both rates hold analogously for the duality gap.

4.3. Comparison with Original COCOA

Remark 12. If we choose averaging (� :=

1

K ) for aggre-
gating the updates, together with �0

:= 1, then the resulting
Algorithm 1 is identical to COCOA analyzed in (?). How-
ever, they only provide convergence for smooth loss func-
tions `i and have guarantees for dual sub-optimality and
not the duality gap. Formally, when �0

= 1, the subprob-
lems (9) will differ from the original dual D(.) only by an
additive constant, which does not affect the local optimiza-
tion algorithms used within COCOA.
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H = number of local updates per round
code at: github.com/gingsmith/cocoa

scaling

Dataset n d sparsity K

Rcv1 677'399 47'236 0.16% 8

Epsilon 400'000 2'000 100% 12

Webspam 350'000 16'609'143 0.02% 16

*Experiments with SDCA as a local solver -> reduces to DisDCA-p [1]

(example: hinge-loss SVM)
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