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Decentralized Minimization Problem

SETUP: G := (V , E) is an undirected connected network, where
• V := {1, . . . , n} is a set of computing nodes,
• E ⊂ V × V is a set of communication links.
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Figure 1: Example of the network G with n = 8 nodes

Each node i ∈ V owns function fi : Rd → R, which is L-smooth
and µ-strongly convex. Let κ = L

µ be the condition number.
GOAL: Find solution of the minimization problem

x∗ = arg min
x∈Rd

1
n

∑
i∈V

fi(x). (1)

Each node i ∈ V is allowed to calculate one of the gradient ora-
cles and communicate O(1) compressed vectors of size d with each
neighbor along the links e ∈ E .

Gradient Oracles

Option A (dual gradient): We use dual gradient oracle
∇f ∗i (z), where f ∗i (z) is the Fenchel transform of function f (x). It
is used when ∇f ∗i (z) can be computed efficiently.
Option B (primal gradient): We use primal gradient oracle
∇fi(x).
Option C (primal stochastic gradient): When each function
fi(x) is given as an expectation Eξ∼D [fi(x; ξ)], we use stochastic
gradient oracle ∇fi(x; ξ), where ξ is sampled from the distribution
D.
Option D (primal incremental gradient): When each func-
tion fi(x) is given as a finite sum fi(x) = 1

m

∑m
j=1 fij(x), we use

incremental gradient oracle ∇fij(x), where j ∈ {1, . . . ,m}.

Compressed Communication

Communication is a key bottleneck in distributed training. We
tackle it by forcing each node to apply compression operator Q to
the vector g ∈ Rd it wants to send to a neighbour.

Compression Operator (ω-quantization)

A random operator Q : Rd → Rd is called ω-quantization for
ω ≥ 0, if it satisfies the following properties for all g ∈ Rd:

E [Q(g)] = g, E
[
‖Q(g)− g‖2

]
≤ ω‖g‖2.

Problem Reformulation

Problem (1) has an equivalent reformulation

min
X∈Rn×d,WX=0

F (X), (2)

where the function F : Rn×d→ R is defined by

F (X) :=
∑
i∈V

fi(xi), xi is the i-th row of X,

matrix W ∈ Sn+ is a weighted Laplacian:

Wij =


0, i 6= j, (i, j) /∈ E
−wij, i 6= j, (i, j) ∈ E∑

l∈Ni
wil, i = j

,

where Ni := {j ∈ V | j 6= i, (i, j) ∈ E}, wij > 0 for all (i, j) ∈ E ,
Sn+ is a set of symmetric positive definite n×n matrices. Note that

WX = 0⇔ x1 = . . . = xn,

which implies the equivalence of the problems (1) and (2). Problem
(2) has an equivalent saddle-point reformulation:

min
X∈Rn×d

max
Z∈L

Λ(X,Z) := F (X)− 〈X,Z〉, (3)

where L = {Z ∈ Rn×d |
∑n

j=1 zj = 0, zi is the i-th row of Z},
〈X,Z〉 := trace (XZ) is a scalar product of X and Z.

Main Algorithm

Algorithm 1
1: Input: X0 ∈ Rn×d,Z0 ∈ L, h0

1, . . . , h
0
n ∈ Rd α, η, θ > 0.

2: for k = 0, 1, 2, . . . do
3: Compute Xk+1 . Primal Step
4: for i = 1, . . . , n do in parallel
5: for j ∈ Ni do
6: ∆ij = Q(xk+1

i − hki ) + hki . Compression
7: end for
8: hk+1

i = hki + αQ(xk+1
i − hki ) . Compression

9: zk+1
i = zki − θ

∑
j∈Ni

wij(∆k
ij −∆k

ji) . Dual Step

10: end for
11: end for
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Algorithm Description

Primal Step. This is a minimization step over X in the Prob-
lem (3). There are 4 options:

Option A performs the exact minimization:

Xk+1 = arg min
X∈Rn×d

Λ(X,Zk) = ∇F ∗(Zk)

Option B performs inexact minimization with a single
gradient step:

Xk+1 = Xk − η∇XΛ(Xk,Zk)
= Xk − η(∇F (Xk)− Zk).

Option C performs inexact minimization with a stochastic
gradient step:

xk+1
i = xki − η(∇fi(xki ; ξki )− zki ) for each i ∈ V ,

where ξki ∼ D. By σ2 we denote the stochastic gradient
variance at the optimum:

σ2 = 1
n

∑
i∈V

Eξ∼D
[
‖∇fi(x∗, ξ)−∇fi(x∗)‖2

]
.

Option D performs inexact minimization with a variance
reduced gradient step [1]:

xk+1
i = xki − η(∇fijki (x

k
i )−∇fijki (w

k
i ) +∇fi(wk

i )− zki ),

wk+1
i =

xki , with probability 1
m

wk
i , with probability 1− 1

m

,

where jki is sampled from {1, . . . ,m} uniformly at random.

Compression. We use compression step with variance reduction.
It was originally used for centralized distributed training algorithms
DIANA [2] and VR-DIANA [3].
Dual Step. This is a decentralized communication step with com-
pression. It can be seen as a compressed version of a gradient ascent
step in Z under metric ‖ · ‖2

W† for problem (3). In particular,

EQ
[
Zk+1

]
= Zk + θW∇ZΛ(Xk+1,Zk)
= Zk − θWXk+1.

Variance Bound (Key Lemma)

Let Σk be the variance of Zk+1:

Σk := EQ
[
‖Zk+1 − EQ

[
Zk+1

]
‖2

W†

]
.

Then the following inequality holds:

Σk ≤ 4θ2ωλmax(W)ρ∞ρ−1
[
‖Xk+1 −X∗‖2 +

n∑
i=1
‖hki − x∗‖2

]
,

where ρ = λmax(W)
λ+

min(W) , ρ∞ = max(i,j)∈E wij
λ+

min(W) , λmax(W) and λ+
min(W)

denote the largest and smallest positive eigenvalues of W re-
spectively. One can show that the factor ρ∞ρ−1 ≤ 1 can be as
small as Θ

(1
n

)
.

Complexity Results

Option A/B

For any given ε > 0 Algorithm 1 (Option A/B) reaches
accuracy ‖x−x∗‖2 ≤ ε after the following number of iterations:

O
(

(ω + κ(ρ + ωρ∞)) log 1
ε

)
.

Option C

For any given ε > 0 Algorithm 1 (Option C) reaches ac-
curacy ‖x− x∗‖2 ≤ ε after the following number of iterations:

Õ
(
ω + (ρ + ωρ∞)

(
κ + σ

√
1 + ω√
εµ

+ σ2(ρ + ωρ∞)
εµ2

))
.

Option D

For any given ε > 0 Algorithm 1 (Option D) reaches ac-
curacy ‖x− x∗‖2 ≤ ε after the following number of iterations:

O
(

(m + ω + κ(ρ + ωρ∞)) log 1
ε

)
.

Experiments
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Figure 2: Comparison with the baselines: QDGD [4], Primal Dual GD [5], Choco-
SGD [6]. Average consensus problem on the star and ring topologies with n = 100
nodes, d = 250, random sparsification and random dithering compression.


