

Dmitry Kovalev¹

Decentralized Minimization Problem

SETUP: $\mathcal{G} \coloneqq (\mathcal{V}, \mathcal{E})$ is an undirected connected network, where

- $\mathcal{V} \coloneqq \{1, \ldots, n\}$ is a set of computing nodes,
- $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$ is a set of communication links.

Figure 1: Example of the network \mathcal{G} with n = 8 nodes

Each node $i \in \mathcal{V}$ owns function $f_i \colon \mathbb{R}^d \to \mathbb{R}$, which is L-smooth and μ -strongly convex. Let $\kappa = \frac{L}{\mu}$ be the condition number.

GOAL: Find solution of the minimization problem

$$x^* = \arg\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i \in \mathcal{V}} f_i(x).$$
(1)

Each node $i \in \mathcal{V}$ is allowed to calculate one of the gradient oracles and communicate $\mathcal{O}(1)$ compressed vectors of size d with each neighbor along the links $e \in \mathcal{E}$.

Gradient Oracles

Option A (dual gradient): We use dual gradient oracle $\nabla f_i^*(z)$, where $f_i^*(z)$ is the Fenchel transform of function f(x). It is used when $\nabla f_i^*(z)$ can be computed efficiently.

Option B (primal gradient): We use primal gradient oracle $\nabla f_i(x)$.

Option C (primal stochastic gradient): When each function $f_i(x)$ is given as an expectation $\mathbb{E}_{\xi \sim \mathcal{D}}[f_i(x;\xi)]$, we use stochastic gradient oracle $\nabla f_i(x;\xi)$, where ξ is sampled from the distribution

Option D (primal incremental gradient): When each function $f_i(x)$ is given as a finite sum $f_i(x) = \frac{1}{m} \sum_{j=1}^m f_{ij}(x)$, we use incremental gradient oracle $\nabla f_{ij}(x)$, where $j \in \{1, \ldots, m\}$.

Compressed Communication

Communication is a key bottleneck in distributed training. We tackle it by forcing each node to apply compression operator \mathcal{Q} to the vector $g \in \mathbb{R}^d$ it wants to send to a neighbour.

Compression Operator (ω -quantization)

A random operator $\mathcal{Q}: \mathbb{R}^d \to \mathbb{R}^d$ is called ω -quantization for $\omega \geq 0$, if it satisfies the following properties for all $g \in \mathbb{R}^d$:

 $\mathbb{E}\left[\mathcal{Q}(g)\right] = g, \qquad \mathbb{E}\left[\|\mathcal{Q}(g) - g\|^2\right] \le \omega \|g\|^2.$

A Linearly Convergent Algorithm for Decentralized Optimization: Sending Less Bits for Free!

Anastasia Koloskova²

Martin Jaggi² Peter Richtarik¹ ²EPFL ¹KAUST

Problem ReformulationAlgorithm DescriptionProblem (1) has an equivalent reformulation
$$\mathbf{x}_{\mathbf{x}_{k}^{k+1}}(\mathbf{x}_{\mathbf{x}_{k}^{k}}\in \mathbf{f}^{k}\mathbf{X}),$$
 (2)State: $\mathbf{x}_{k}^{k+1}(\mathbf{x}_{\mathbf{x}_{k}^{k}}\in \mathbf{f}^{k}\mathbf{X}),$ (2)where the function $F: \mathbb{R}^{n\times k} \to \mathbb{R}$ is defined by $F(\mathbf{X}) \coloneqq \sum_{i \in \mathcal{V}} f_{i}(\mathbf{x}_{i}),$ x_{i} is the *i*-th row of $\mathbf{X},$ $\mathbf{x}_{k}^{k+1} = \sum_{i \in \mathcal{V}} f_{i}(\mathbf{x}_{i}),$ x_{i} is the *i*-th row of $\mathbf{X},$ $\mathbf{x}_{k}^{k+1} = \sum_{i \in \mathcal{V}} f_{i}(\mathbf{x}_{i}),$ x_{i} is the *i*-th row of $\mathbf{X},$ $\mathbf{x}_{k}^{k+1} = \sum_{i \in \mathcal{V}} f_{i}(\mathbf{x}_{i}) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = \{\mathbf{x}_{i}\},$ $(i, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = \{\mathbf{x}_{i}\},$ $(i, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = \{\mathbf{x}_{i}\},$ $(i, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = (j \in \mathcal{V} \mid j \neq i, (i, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = (j \in \mathcal{V} \mid j \neq i, (i, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = (j \in \mathcal{V} \mid j \neq i, (i, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = (j \in \mathcal{V} \mid j \neq i, (i, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = (j \in \mathcal{V} \mid j \neq i, (i, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = (j \in \mathcal{V} \mid j \neq i, (i, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = (j \in \mathcal{V} \mid j \neq i, (i, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = (j \in \mathcal{V} \mid j \neq i, (i, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = (j \in \mathcal{V} \mid j \neq i, (i, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = (j \in \mathcal{V} \mid \mathbf{V} \neq i, (k, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = (j \in \mathcal{V} \mid j \neq i, (k, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = (j \in \mathcal{V} \mid \mathbf{V} \neq i, (k, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{i} = (j \in \mathcal{V} \mid \mathbf{V} \neq i, (k, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{k} = (j \in \mathcal{V} \mid \mathbf{V} \neq i, (k, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{k} = (j \in \mathcal{V} \mid \mathbf{V} \neq i, (k, j) \in \mathcal{E},$ $\mathbf{x}_{k}_{k} = (j \in \mathcal{L} \mid \mathbf{V} \mid \mathbf{V} = (\mathbf{X}, \mathcal{L}),$

Dual Step. This is a decentralized communication step with compression. It can be seen as a compressed version of a gradient ascent step in **Z** under metric $\|\cdot\|_{\mathbf{W}^{\dagger}}^2$ for problem (3). In particular,

Then the following inequality holds:

 $\Sigma^k \leq$

where $\rho = \frac{\lambda_{\max}(\mathbf{W})}{\lambda_{\min}^+(\mathbf{W})}$, $\rho_{\infty} = \frac{\max_{(i,j)\in\mathcal{E}} w_{ij}}{\lambda_{\min}^+(\mathbf{W})}$, $\lambda_{\max}(\mathbf{W})$ and $\lambda_{\min}^+(\mathbf{W})$ denote the largest and smallest positive eigenvalues of \mathbf{W} respectively. One can show that the factor $\rho_{\infty}\rho^{-1} \leq 1$ can be as small as $\Theta\left(\frac{1}{n}\right)$.

tor $i = 1, \ldots, n$ do in parallel for $j \in \mathcal{N}_i$ do $\Delta_{ij} = \mathcal{Q}(x_i^{k+1} - h_i^k) + h_i^k$ ▷ Compression end for $h_i^{k+1} = h_i^k + \alpha \mathcal{Q}(x_i^{k+1} - h_i^k)$ ▷ Compression $z_i^{k+1} = z_i^k - \theta \sum_{i=1}^{k} w_{ij} (\Delta_{ij}^k - \Delta_{ji}^k)$ ▷ Dual Step end for 10: 11: end for

References:

- [1] Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don't jump through hoops and remove those loops: Svrg and katyusha are better without the outer loop. In Algorithmic Learning Theory, pages 451–467. PMLR. 2020.
- [2] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.
- [3] Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik. Stochastic distributed learning with gradient quantization and variance reduction. arXiv preprint arXiv:1904.05115, 2019.
- Hassani, and Ramtin Pedarsani. An exact quantized decentralized gradient descent algorithm IEEE Transactions on Signal Processing, 67(19):4934-4947, 2019.

[4] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed

- [5] Sulaiman A Alghunaim and Ali H Sayed. Linear convergence of primal-dual gradient methods and their performance in distributed optimization. Automatica, 117:109003, 2020.
- [6] Anastasia Koloskova, Sebastian Stich, and Martin Decentralized stochastic optimization and gossip algorithms with compressed communication. In International Conference on Machine Learning, pages 3478–3487. PMLR, 2019.

Sebastian U. Stich²

rob-

$$\mathbf{X}^{k+1} = \arg\min_{\mathbf{X}\in\mathbb{R}^{n\times d}} \Lambda(\mathbf{X}, \mathbf{Z}^k) = \nabla F^*(\mathbf{Z}^k)$$

$$\begin{aligned} \mathbf{X}^{k+1} &= \mathbf{X}^k - \eta \nabla_{\mathbf{X}} \Lambda(\mathbf{X}^k, \mathbf{Z}^k) \\ &= \mathbf{X}^k - \eta (\nabla F(\mathbf{X}^k) - \mathbf{Z}^k). \end{aligned}$$

ion. nms

$$\mathbb{E}_{\mathcal{Q}}\left[\mathbf{Z}^{k+1}\right] = \mathbf{Z}^{k} + \theta \mathbf{W} \nabla_{\mathbf{Z}} \Lambda(\mathbf{X}^{k+1}, \mathbf{Z}^{k})$$
$$= \mathbf{Z}^{k} - \theta \mathbf{W} \mathbf{X}^{k+1}.$$

Variance Bound (Key Lemma)

Let Σ^k be the variance of \mathbf{Z}^{k+1} :

$$\Sigma^{k} \coloneqq \mathbb{E}_{\mathcal{Q}} \left[\| \mathbf{Z}^{k+1} - \mathbb{E}_{\mathcal{Q}} \left[\mathbf{Z}^{k+1} \right] \|_{\mathbf{W}^{\dagger}}^{2} \right].$$

$$\leq 4\theta^2 \omega \lambda_{\max}(\mathbf{W}) \rho_{\infty} \rho^{-1} \left[\|\mathbf{X}^{k+1} - \mathbf{X}^*\|^2 + \sum_{i=1}^n \|h_i^k - x^*\|^2 \right],$$

Figure 2: Comparison with the baselines: QDGD [4], Primal Dual GD [5], Choco-SGD [6]. Average consensus problem on the star and ring topologies with n = 100nodes, d = 250, random sparsification and random dithering compression.

Complexity Results

Option A/B

Option C

Option D

Experiments