A Linearly Convergent Algorithm for Decentralized Optimization:
Sending Less Bits for Free!
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Decentralized Minimization Problem

SETUP: G = (V, &) is an undirected connected network, where

oV =1{1,...,n} is a set of computing nodes,

o £ CV xVis a set of communication links.
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Figure 1: Example of the network G with n = 8 nodes

Each node i € V owns function f;: R? — R, which is L-smooth
and p-strongly convex. Let k = % be the condition number.

GOAL: Find solution of the minimization problem
1
z* =argmin —»  fi(x). (1)
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Each node 7 € V is allowed to calculate one of the gradient ora-
cles and communicate O(1) compressed vectors of size d with each
neighbor along the links e € £.

Gradient Oracles

Option A (dual gradient): We use dual gradient oracle
V fi(z), where f7(z) is the Fenchel transform of function f(x). It
is used when V f7(z) can be computed efficiently.

Option B (primal gradient): We use primal gradient oracle
Option C (primal stochastic gradient): When each function
fi(x) is given as an expectation E¢op [fi(x;€)], we use stochastic

gradient oracle V f;(x; &), where £ is sampled from the distribution
D.

Option D (primal incremental gradient): When each func-
tion f;(x) is given as a finite sum f;(z) = %2911 fii(z), we use
incremental gradient oracle V f;;(x), where j € {1,...,m}.

Compressed Communication

Communication is a key bottleneck in distributed training. We
tackle it by forcing each node to apply compression operator Q to
the vector g € R? it wants to send to a neighbour.

Compression Operator (w-quantization)

A random operator Q: RY — R? is called w-quantization for
w > 0, if it satisfies the following properties for all g € R%:

E[Q) =9 E[[Qg)—gl’] <wllgl*

Problem Reformulation

Problem (1) has an equivalent reformulation

' F (X 2
eiin o FX), (2)

where the function F': R™? — R is defined by

F(X) = filz),

€Y

x; is the i-th row of X,

matrix W € 8 is a weighted Laplacian:

( . . .

0, 1 # 4, (6,7) €
W = —w;j, i # J,(1,7) € E,

where Ny ={j €V |j#1i,(i,7) € E}, wy; > 0forall (i,)) € &,
S't 1s a set of symmetric positive definite n x n matrices. Note that

WX=0&x=...=21,,

which implies the equivalence of the problems (1) and (2). Problem
(2) has an equivalent saddle-point reformulation:

Juin max A(X, Z) = F(X) — (X, Z), (3)

where £ = {Z ¢ R™4 | > o125 = 0,z is the i-th row of Z},
(X, Z) = trace (XZ) is a scalar product of X and Z.

Algorithm 1
1 Input: X0 e R4 Zc £, Y, ...,k € R o, ;,0 > 0.
2. for k=0,1,2,... do
3. Compute X*+1
for:=1,...,n do in parallel

> Primal Step

for j € NV, do

Aij = Q™ — hi) + hy
end for
it = hf 4+ aQ(zf Tt — hF)

k+1 _ _k k k
i = =0 ,Z wij(Aij — Ajz’)
jeN;

> Compression

> Compression
> Dual Step

10 end for
11: end for
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Algorithm Description

Primal Step. This is a minimization step over X in the Prob-
lem (3). There are 4 options:

Option A performs the exact minimization:
X = arg min A(X, Z¥) = VF*(Z")
XERnxd

Option B performs inexact minimization with a single
oradient step:

Xk—i—l _ Xk? o UVXA(Xk, Zk)
= X" — n(VF(XF) = ZM).

Option C performs inexact minimization with a stochastic
oradient step:

it = 2b — n(Vfi(zl ) — 27) for each i € V),

where £F ~ D. By o~ we denote the stochastic gradient
variance at the optimum:

1 * ES
o' =3 Een IV, €) = V)]
n eV
Option D performs inexact minimization with a variance
reduced gradient step [1]:

rt =y — U(Vfijf(ff) - sz'jf(wf) + V fi(wy) — 2),

k+1 r¥.  with probability %
Ww; — |
Z wf , with probability 1 — %
where j¥ is sampled from {1, ..., m} uniformly at random.

Compression. We use compression step with variance reduction.
It was originally used for centralized distributed training algorithms

DIANA [2] and VR-DIANA |3].

Dual Step. This is a decentralized communication step with com-
pression. It can be seen as a compressed version of a gradient ascent
step in Z under metric || - ||+ for problem (3). In particular,

Eq|Z'!| = ZF + oW VA (X!, Zh)
= ZF — gWX!

Variance Bound (Key Lemma)

Let % be the variance of Z+*!:
¥ = Eq |||IZ"! — Eo [Z"] 3]

Then the following inequality holds:

5 < 400N W)pocp ™ | [[XFH = X2+ D |1y — 27|

_ 1=1 _

where p = dualW) — ey A (W) and A (W)

min

Mo W) P20 = R (W]
denote the largest and smallest positive eigenvalues of W' re-

spectively. One can show that the factor poop™' < 1 can be as
small as © (£).

Complexity Results

Option A/B

For any given € > 0 Algorithm 1 (Option A /B) reaches
accuracy ||z — z*||* < e after the following number of iterations:

O ((w + K(p + wpso)) log %) .

Option C

For any given € > 0 Algorithm 1 (Option C) reaches ac-
curacy ||z — x*||* < € after the following number of iterations:

cv1+w . o (p+ wpoo))>
VEp € |

O <w+(p+wpoo) <m+

Option D

For any given € > 0 Algorithm 1 (Option D) reaches ac-
curacy ||z — x*||* < € after the following number of iterations:

O ((m + w + K(p + wpso)) log %) .
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Figure 2: Comparison with the baselines: QDGD [4], Primal Dual GD [5], Choco-
SGD [6]. Average consensus problem on the star and ring topologies with n = 100

nodes, d = 250, random sparsification and random dithering compression.



