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Introduction

The training of high-dimensional federated learning
models [1] reduces to solving an optimization problem
of the form

x˚ “ argmin
xPRd

«

f pxq def
“

1
n

n
ÿ

i“1
fipxq

ff

, (1)

where n is the number of consumer devices (e.g., mo-
bile devices), d is the number of parameters/features
of the model, and fi : Rd

Ñ R is a loss function that
depends on the private data stored on the ith device.
The simplest benchmark method used for the solution
of problem (1) is Gradient Descent, which proceeds
in iterates of the form

xk`1 “
1
n

n
ÿ

i“1

`

xk ´ γ∇fipxkq
˘

.

More sophisticated methods used in Federated Learn-
ing take multiple local steps instead of a single step
before averaging the resultant iterates, or compress
the iterates before averaging [2], and the latter prac-
tice is the starting point of our work.

Gradient Compression

When gradients are communicated instead of iterates
(as in stochastic gradient methods for distributed op-
timization over data clusters), the cost of gradient
communication has been observed to be a signifi-
cant bottleneck. As a result, there are many algo-
rithms designed with the goal of reducing communica-
tion in stochastic gradient methods such as SignSGD,
TernGrad, QSGD, DIANA, ChocoSGD, and others.
There are also methods that apply variance reduction
to remove the variance introduced by compression by
doing more local computation, such as DIANA and
VR-DIANA.
In contrast, there is little work on methods in which
the iterates (as opposed to the gradients) are quan-
tized or compressed. To bridge this gap in the theory,
we consider the case of a single device (n “ 1) using
gradient descent to minimize a smooth and strongly
convex function while compressing its local iterates.

Compression Operators

We call a stochastic function C : Rd
Ñ Rd a compres-

sion operator if it is unbiased
E “C pxq

‰

“ x,

and if there exists ω ě 0 such that for all x P Rd we
have,

E
”

‖C pxq ´ x‖2ı
ď ω‖x‖2.

Examples of compression operators are ubiquitous in
the literature on gradient compression and include
natural compression, dithering, random sparsifica-
tion, ternary quantization, and others.
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Figure 1:An example of random sparsification where each ele-
ment is set to 0 with probability p “ 1{3 applied to a 3 ˆ 3
matrix. The division by p is to ensure the estimator is unbiased.

Gradient Descent with Compressed
Iterates (GDCI)

Algorithm 1 Gradient Descent with Compressed It-
erates
Input: Stepsize γ ą 0, initial vector x0.

1: for t “ 0, 1, . . . do
2: Compute a stochastic compression of iterate xt

as Cpxtq.
3: Take a gradient descent step from the compressed

iterate
xt`1 “ C `

xt
˘

´ γ∇f `C `

xt
˘˘

.

4: end for

Clearly, if we are to tackle iterative model compres-
sion as used in more complex distributed optimization
settings we must understand it when used on a single
node as in Algorithm 1.

Assumptions

Smoothness and Convexity: The function f is
L-smooth and µ-strongly convex. That is, there ex-
ists L ě µ ą 0 such that for all x, y P Rd we have:

f
`

y
˘

`
@∇f `

y
˘

, x ´ y
D

`
µ

2
‖x ´ y‖2

ď f pxq ,

f pxq ď f
`

y
˘

`
@∇f `

y
˘

, x ´ y
D

`
L

2
‖x ´ y‖2.

We define the condition number of f as κ def
“ L{µ.

Convergence of Gradient Descent
with Compressed Iterates (GDCI)

Theorem 1

For GDCI run with a constant stepsize γ ą 0 such
that γ ď

1
2L and a compression coefficient ω ě 0

that satisfies
4ω
µ

ď
1 ´ 2γL

2γL2
`

2
γ ` L ´ µ

.

Then,
E

”

‖xk ´ x˚‖2ı
ď
`1 ´ γµ˘k ‖x0 ´ x˚‖2

`
2ω
µ

¨

˝4γL2
`

4
γ
` L ´ µ

˛

‚‖x˚‖2.

Using a specific stepsize choice, we can gain more
insight into the convergence rate given by Theorem
1:

Corollary 1

Choose γ “
1

4L and suppose that ω ď
1

73κ, then we
have,

E
”

‖xk ´ x˚‖2ı
ď

˜

1 ´ 1
4κ

¸k

‖x0 ´ x˚‖2

` 2ω `18κ ´ 1˘ ‖x˚‖2.

This is the same rate as gradient descent, but only
to a Opκωq neighbourhood (in squared distances)
of the solution.

More on the convergence of GDCI

While the analysis shows that GDCI only converges
to a neighbourhood, in many cases when only an ap-
proximate solution is desired this is acceptable. How-
ever, if we desire to set the neighbourhood to be O `1˘,
then we should have ω “ O

´

κ´1¯. While this seems
to be a pessimistic bound on the compression level
possible, we note that in practice compression is done
only intermittently (this could be modelled by an ap-
propriate choice of C) or combined with averaging
(which naturally reduces the variance associated with
quantization).
In practical situations where averaging is not per-
formed, such as the quantization of server-to-client
communication, high compression levels do not seem
possible without serious deterioration of the accuracy
of the solution [2], and our experiments also suggest
that this is the case.

Experimental Results

We experiment with a logistic regression problem on
two different datasets. We consider the random spar-
sification operator, where each coordinate is indepen-
dently set to zero according to some given probability.
To model intermittent quantization experimentally,
we apply the quantization operator C with probabil-
ity 1{10 and keep the iterate as it is with probability
9{10.
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Figure 2:GDCI as ω varies for two different regularized logistic
regression problems. Red star indicates C was applied in that
iteration.
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