

Optimization Problem

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{j=1}^n f_j(x) + \psi(x),$$

• $f_i : \mathbb{R}^d \to \mathbb{R}$ is M_i smooth and convex:

$$0 \preceq \nabla^2 f_j(x) \preceq M_j$$

- $\psi : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is a proper, closed and convex regularizer, admitting a cheap proximal operator
- $f \stackrel{\text{def}}{=} \frac{1}{n} \sum_{j} f_{j}$ is σ quasi strongly convex

Oracle

 $G(x) \stackrel{\text{def}}{=} [\nabla f_1(x), \nabla f_2(x), \dots, \nabla f_n(x)]$: Jacobian matrix

- Oracle can be accessed via: $\mathcal{U}G(x), \mathcal{S}G(x)$
- $\mathcal{U}: \mathbb{R}^{d \times n} \to \mathbb{R}^{d \times n}$ random linear operator, identity in expectation
- $\mathcal{S} : \mathbb{R}^{d \times n} \to \mathbb{R}^{d \times n}$ random projection operator, possibly correlated with \mathcal{U}
- \mathcal{U}, \mathcal{S} might correspond to **right matrix** multiplication (SAGA [1], JacSketch [2]), left matrix multiplication (SEGA [3]), their combination (ISAEGA) and many more
- Different choices of \mathcal{U} , \mathcal{S} yield different methods.

Variance reduction (unbiased)

Given sequence J^k which estimates $G(x^k)$ such that $\lim_{k\to\infty} J^k = G(x^*)$, unbiased variance reduced gradent is the following:

$$g^{k} = \frac{1}{n} J^{k} \mathbf{e} + \frac{1}{n} \mathcal{U} \left(G(x^{k}) - J^{k} \right) \mathbf{e}.$$
 (1)

Jacobian Sketching

Observing $\mathcal{S}G(x^k)$ every iteration, how to design Jacobian estimator sequence J^k ? Projecting:

$$J^{k+1} = \operatorname{argmin}_{J} \|J - J^{k}\| \quad \text{s. t. } \mathcal{S}J = \mathcal{S}G(x^{k})$$
$$= J^{k} - \mathcal{S}(G(x^{k}) - J^{k}) \qquad (2$$

One Method to Rule Them All: Variance Reduction for Data, Parameters and Many New Methods

Filip Hanzely¹ Peter Richtárik^{1, 2} ¹KAUST ²MIPT

Algorithm

Algorithm 1 Generalized JacSketch (GJS)

- : **Parameters:** Stepsize $\alpha > 0$, random projector \mathcal{S} and unbiased sketch \mathcal{U}
- 2: Initialization: Choose solution estimate $x^0 \in \mathbb{R}^d$ and Jacobian estimate $J^0 \in \mathbb{R}^{d \times n}$
- 3: for k = 0, 1, ... do
- Sample realizations of \mathcal{S} and \mathcal{U} , and perform sketches $\mathcal{S}G(x^k)$ and $\mathcal{U}G(x^k)$ $\mathbf{I}k = \mathbf{C}(\mathbf{I}k = \mathbf{C}(\mathbf{w}k))$ $\tau k+1$

5:
$$J^{k+1} = J^{k} - \mathcal{S}(J^{k} - G(x^{k}))$$

6: $a^{k} = \frac{1}{2}J^{k}e + \frac{1}{2}\mathcal{A}(G(x^{k}) - J^{k})e$

$$g = -\frac{1}{n}J e + \frac{1}{n}\mathcal{O}(G(x) - J)$$

- $x^{\kappa+1} = \operatorname{prox}_{\alpha\psi}(x^{\kappa} \alpha g^{\kappa})$
- 8: end for

Convergence rate

Single convergence theorem, **tightest known rate in** every special case (many new rates in special cases for known methods; many new methods as well).

- Let $\mathcal{M} : \mathbb{R}^{d \times n} \to \mathbb{R}^{d \times n}$ be linear operator such that $(\mathcal{M}X)_{:j} = M_j X_{:j}$ for any $X \in \mathbb{R}^{d \times n}$.
- Let $\mathcal{B}: \mathbb{R}^{d \times n} \to \mathbb{R}^{d \times n}$ be a linear operator (to be chosen; only for theory) such that with stepsize α we have:

$$(1 - \alpha \sigma) \left\| \mathcal{B} \mathcal{M}^{\dagger^{\frac{1}{2}}} X \right\|^{2} \geq \frac{2\alpha}{n^{2}} \mathbb{E} \left[\left\| \mathcal{U} X e \right\|^{2} \right] \\ + \left\| \left(\mathcal{I} - \mathbb{E} \left[\mathcal{S} \right] \right)^{\frac{1}{2}} \mathcal{B} \mathcal{M}^{\dagger^{\frac{1}{2}}} X \right\|^{2} \\ \frac{1}{n} \left\| \mathcal{M}^{\dagger^{\frac{1}{2}}} X \right\|^{2} \geq \frac{2\alpha}{n^{2}} \mathbb{E} \left[\left\| \mathcal{U} X e \right\|^{2} \right] + \left\| \left(\mathbb{E} \left[\mathcal{S} \right] \right)^{\frac{1}{2}} \mathcal{B} \mathcal{M}^{\dagger^{\frac{1}{2}}} X \right\|^{2}$$

Theorem (simplified)

For **GJS** we have $\mathbb{E}\left[\Psi^{k}\right] \leq (1-\alpha\sigma)^{k}\Psi^{0}$ for $\Psi^{k} \stackrel{\text{def}}{=} \|x^{k} - x^{*}\|^{2} + \alpha \|\mathcal{B}\left(J^{k} - G(x^{*})\right)\|^{2}$.

- Linear convergence under minimal assumptions
- Rate depends on smoothness patterns (matrices M_i), distributions of \mathcal{S}, \mathcal{U} (controllable in practice) and quasi strong convexity σ
- Full version: exploits possible prior knowledge about $G(x^*)$, exploits structure of ψ , extends quasi strong convexity to strong growth.

update the Jacobian estimate via (2) construct the gradient estimator via (1) perform the proximal SGD step

Special cases

SAGA [1]: recovers best known results JacSketch [2] More general + better rate • LSVRG: Arbitrary sampling + prox • SEGA [3]: Better rate under arbitrary sampling • Extensions of algorithms from [4] – arbitrary sampling and conjectured ISEAGA.

• Many more:

Choice of random operators ${\cal S}$ and ${\cal U}$ defining Algorithm 1		Algorithm				
SX	UX	#	Name	Comment	Section	1
$e_j e_j^{\top}$ w.p. $p_j = \frac{1}{n}$	$\mathbf{X} n e_j e_j^{\top}$ w.p. $p_j = \frac{1}{n}$	2	SAGA	basic variant of SAGA [3]	G.1	
$\sum_{j \in R} e_j e_j \text{w.p. } p_R$	$\mathbf{X}\sum_{j\in R}rac{1}{p_j}e_je_j$ w.p. p_R	3	SAGA	SAGA with AS [26]	G.2	
$\mathbf{p}_i \mathbf{e}_i^\top \mathbf{X}$ w.p. $p_i = \frac{1}{d}$	$de_i e_i^{\top} \mathbf{X}$ w.p. $p_i = \frac{1}{d}$	4	SEGA	basic variant of SEGA [9]	H.1	
$\sum_{i \in L} e_i e_i^{\top} \mathbf{X}$ w.p. p_L	$\sum_{i \in L} \frac{1}{p_i} e_i e_i^{\top} \mathbf{X} \text{ w.p. } p_L$	5	SEGA	SEGA [9] with AS and prox	H.2	
$= \begin{cases} 0 & \text{w.p. } 1 - \rho \\ \mathbf{X} & \text{w.p. } \rho \end{cases}$	$\sum_{i \in L} \frac{1}{p_i} e_i e_i^{\top} \mathbf{X} \text{ w.p. } p_L$	6	SVRCD	NEW	Н.3	
0	$\mathbf{X} \sum_{j \in R} \frac{1}{p_j} e_j e_j^{\top}$ w.p. p_R	7	SGD-shift	NEW	Ι	
$= \begin{cases} 0 & \text{w.p. } 1 - \rho \\ \mathbf{X} & \text{w.p. } \rho \end{cases}$	$\mathbf{X} \sum_{j \in R} rac{1}{p_j} e_j e_j^{\top}$ w.p. p_R	8	LSVRG	LSVRG [14] with AS and prox	J	
$= \begin{cases} 0 & \text{w.p. } 1 - \rho \\ \mathbf{X} & \text{w.p. } \rho \end{cases}$	$= \begin{cases} 0 & \text{w.p. } 1 - \delta \\ \frac{1}{\delta} \mathbf{X} & \text{w.p. } \delta \end{cases}$	9	B2	NEW	K.1	
$\sum_{j \in R} e_j e_j^{\top}$ w.p. p_R	$= \begin{cases} 0 & \text{w.p. } 1 - \delta \\ \frac{1}{\delta} \mathbf{X} & \text{w.p. } \delta \end{cases}$	10	LSVRG-inv	NEW	K.2	
$\sum_{i \in L} e_i e_i^{\top} \mathbf{X}$ w.p. p_L	$= \begin{cases} 0 & \text{w.p. } 1 - \delta \\ \frac{1}{\delta} \mathbf{X} & \text{w.p. } \delta \end{cases}$	11	SVRCD-inv	NEW	K.3	
$\sum_{j \in R} e_j e_j^{\top} \text{ w.p. } p_R$	$\sum_{i \in L} \frac{1}{p_i} e_i e_i^{\top} \mathbf{X} \text{ w.p. } p_L$	12	RL	NEW	L.1	
$\sum_{i \in L} e_i e_i^{\top} \mathbf{X}$ w.p. p_L	$\mathbf{X} \sum_{j \in R} \frac{1}{p_j} e_j e_j^{\top}$ w.p. p_R	13	LR	NEW	L.2	
$L: \mathbf{XI}_{:R}$ w.p. $p_L p_R$	$\mathbf{I}_{L:}\left(\left(p^{-1}\left(p^{-1}\right)^{\top}\right)\circ\mathbf{X}\right)\mathbf{I}_{:R} \text{ w.p. } p_{L}p_{R}$	14	SAEGA	NEW	M.1	
$= \begin{cases} 0 & \text{w.p. } 1 - \rho \\ \mathbf{X} & \text{w.p. } \rho \end{cases}$	$\mathbf{I}_{L:}\left(\left(p^{-1}\left(p^{-1}\right)^{\top}\right)\circ\mathbf{X}\right)\mathbf{I}_{:R} \text{ w.p. } p_{L}p_{R}$	15	SVRCDG	NEW	M.2	
$\sum_{t=1}^{T} \mathbf{I}_{L_t} \cdot \mathbf{X}_{:N_t} \mathbf{I}_{:R_t}$	$\sum_{t=1}^{T} \left((\mathbf{p}^{t})^{-1} (\mathbf{p}^{t})^{-1^{\top}} \right) \circ \left(\mathbf{I}_{L_{t}:} \mathbf{X}_{:N_{t}} \mathbf{I}_{:R_{t}} \right)$	16	ISAEGA	NEW (reminiscent of [20])	M.3	
$\sum_{t=1}^{T} \mathbf{I}_{L_t} : \mathbf{X}_{:N_t}$	$\sum_{t=1}^{T} \left((\mathbf{p}^{t})^{-1} \mathbf{e}^{\top} \right) \circ \left(\mathbf{I}_{L_{t}} : \mathbf{X}_{:N_{t}} \right)$	17	ISEGA	ISEGA [20] with AS	M.3	
XR	$\mathbf{XR}\mathbb{E}\left[\mathbf{R} ight]^{-1}$	18	JS	JacSketch [8] with AS and prox	N	

Arbitrary sampling

• Tight rate under any distribution of \mathcal{S}, \mathcal{U} • Allows to exploit data structure from smoothness (matrices M_i) and design importance samplings • New for many well established algorithms, bridged by our analysis

Algorithm 2 SEGA with arbitrary sampling

end for

 $J^0 = 0$

for

end

[1] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In Advances in Neural Information Processing Systems, pages 1646–1654,

2014. [2] Robert M Gower, Peter Richtárik, and Francis Bach. Stochastic quasi-gradient methods: Variance reduction via Jacobian sketching. arXiv preprint arXiv:1805.02632, 2018.

[3] Filip Hanzely, Konstantin Mishchenko, and Peter Richtárik. SEGA: Variance reduction via gradient sketching. In Advances in Neural Information Processing Systems, pages 2082–2093, 2018.

[4] Konstantin Mishchenko, Filip Hanzely, and Peter Richtárik. 99% of distributed optimization is a waste of time: The issue and how to fix it. arXiv preprint arXiv:1901.09437, 2019.

Specific algorithms

Require: Stepsize $\alpha > 0$, starting point $x^0 \in \mathbb{R}^d$, random sampling $L \subseteq \{1, 2, \ldots, d\}$ Set $h^0 = 0$ for k = 0, 1, 2, ... do Sample random $L^k \subseteq \{1, 2, \ldots, d\}$ Set $h^{k+1} = h^k + \sum_{i \in L^k} (\nabla_i f(x^k) - h_i^k) e_i$ $g^k = h^k + \sum_{i \in L^k} \frac{1}{p_i} (\nabla_i f(x^k) - h_i^k) e_i$ $x^{k+1} = \operatorname{prox}_{\alpha\psi}(x^k - \alpha g^k)$

Algorithm 3 ISAEGA [NEW METHOD]

Input: $x^0 \in \mathbb{R}^d$, # parallel units T, each owning set of indices N_t (for $1 \leq t \leq T$), distributions \mathcal{D}_t over subsets of N_t , distributions \mathcal{D}_t over subsets coordinates [d], stepsize α

$$\begin{aligned} \mathbf{k} &= 0, 1, \dots, \mathbf{do} \\ \text{for } t &= 1, \dots, T \text{ in parallel } \mathbf{do} \\ \text{Sample } R_t &\sim \mathcal{D}_t; \ R_t \subseteq N_t, \ L_t \sim \mathcal{D}_t; \ L_t \subseteq [d] \\ \text{Observe } \nabla_{L_t} f_j(x^k) \text{ for } j \in R_t \\ \text{Set } J_{i,j}^{k+1} &= \begin{cases} \nabla_i f_j(x^k) & \text{if } j \in R_t, i \in L_t \\ J_{i,j}^k & \text{otherwise} \end{cases} \\ \text{Send } J_{:N_t}^{k+1} - J_{:N_t}^k \text{ to master} & \triangleright \text{ Sparse} \end{cases} \\ \text{send for} \\ \mathbf{e}^k &= \left(J^k + \sum_{t=1}^T \left(p^{t-1}p^{t-1^{\mathsf{T}}}\right) \circ \left((\sum_{i \in L_t} e_i e_i^{\mathsf{T}}) (J^{k+1} - J^k)_{:N_t} \left(\sum_{j \in R_t} e_j e_j^{\mathsf{T}}\right)\right)\right) e_t \\ \mathbf{e}^{k+1} &= \operatorname{prox}_{\alpha \psi}(x^k - \alpha g^k) \\ \text{for} \end{aligned}$$

References