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Optimization Problem

min
x∈Rd

1
n

n∑
j=1

fj(x) + ψ(x),

• fj : Rd→ R is Mj smooth and convex:

0 � ∇2fj(x) �Mj

•ψ : Rd→ R ∪ {+∞} is a proper, closed and convex
regularizer, admitting a cheap proximal operator

• f def= 1
n

∑
j fj is σ quasi strongly convex

Oracle

G(x) def= [∇f1(x),∇f2(x), . . . ,∇fn(x)]: Jacobian matrix

•Oracle can be accessed via: UG(x), SG(x)
•U : Rd×n→ Rd×n - random linear operator, identity in
expectation

•S : Rd×n→ Rd×n - random projection operator,
possibly correlated with U

•U , S might correspond to right matrix
multiplication (SAGA [1], JacSketch [2] ), left
matrix multiplication (SEGA [3]), their
combination (ISAEGA) and many more

•Different choices of U , S yield different methods.

Variance reduction (unbiased)

Given sequence Jk which estimates G(xk) such that
limk→∞ J

k = G(x∗), unbiased variance reduced gradent
is the following:

gk = 1
n
Jke + 1

n
U
(
G(xk)− Jk

)
e. (1)

Jacobian Sketching

Observing SG(xk) every iteration, how to design Jaco-
bian estimator sequence Jk? Projecting:

Jk+1 = argminJ‖J − Jk‖ s. t. SJ = SG(xk)
= Jk − S(G(xk)− Jk) (2)

Algorithm

Algorithm 1 Generalized JacSketch (GJS)
1: Parameters: Stepsize α > 0, random projector S and unbiased sketch U
2: Initialization: Choose solution estimate x0 ∈ Rd and Jacobian estimate J0 ∈ Rd×n

3: for k = 0, 1, . . . do
4: Sample realizations of S and U , and perform sketches SG(xk) and UG(xk)
5: Jk+1 = Jk − S(Jk −G(xk)) update the Jacobian estimate via (2)
6: gk = 1

nJ
ke + 1

nU
(
G(xk)− Jk

)
e construct the gradient estimator via (1)

7: xk+1 = proxαψ(xk − αgk) perform the proximal SGD step
8: end for

Convergence rate

Single convergence theorem, tightest known rate in
every special case (many new rates in special cases for
known methods; many new methods as well).

•LetM : Rd×n→ Rd×n be linear operator such that
(MX):j = MjX:j for any X ∈ Rd×n.

•Let B : Rd×n→ Rd×n be a linear operator (to be
chosen; only for theory) such that with stepsize α we
have:

(1− ασ)
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Theorem (simplified)

For GJS we have E
[
Ψk
]
≤ (1− ασ)k Ψ0 for Ψk def=∥∥∥xk − x∗∥∥∥2 + α

∥∥∥B (Jk −G(x∗)
)∥∥∥2.

•Linear convergence under minimal assumptions
•Rate depends on smoothness patterns (matrices Mj),
distributions of S,U (controllable in practice) and quasi
strong convexity σ

•Full version: exploits possible prior knowledge about
G(x∗), exploits structure of ψ, extends quasi strong
convexity to strong growth.

Special cases

• SAGA [1]: recovers best known results
• JacSketch [2] More general + better rate
• LSVRG: Arbitrary sampling + prox
• SEGA [3]: Better rate under arbitrary sampling
•Extensions of algorithms from [4] – arbitrary sampling
and conjectured ISEAGA.

•Many more:

Arbitrary sampling

•Tight rate under any distribution of S,U
•Allows to exploit data structure from smoothness
(matrices Mj) and design importance samplings

•New for many well established algorithms, bridged by
our analysis

Specific algorithms

Algorithm 2 SEGA with arbitrary sampling
Require: Stepsize α > 0, starting point x0 ∈ Rd, random

sampling L ⊆ {1, 2, . . . , d}
Set h0 = 0
for k = 0, 1, 2, . . . do

Sample random Lk ⊆ {1, 2, . . . , d}
Set hk+1 = hk + ∑

i∈Lk
(∇if (xk)− hki )ei

gk = hk + ∑
i∈Lk

1
pi

(∇if (xk)− hki )ei
xk+1 = proxαψ(xk − αgk)

end for

Algorithm 3 ISAEGA [NEW METHOD]

Input: x0 ∈ Rd, # parallel units T , each owning set
of indices Nt (for 1 ≤ t ≤ T ), distributions Dt over
subsets of Nt, distributions Dt over subsets coordinates
[d], stepsize α
J0 = 0
for k = 0, 1, . . . do

for t = 1, . . . , T in parallel do
Sample Rt ∼ Dt; Rt ⊆ Nt, Lt ∼ Dt; Lt ⊆ [d]
Observe ∇Ltfj(xk) for j ∈ Rt

Set Jk+1
i,j =


∇ifj(xk) if , j ∈ Rt, i ∈ Lt
Jki,j otherwise

Send Jk+1
:Nt
− Jk:Nt

to master . Sparse
end for
gk =

(
Jk +

T∑
t=1

(
pt
−1
pt
−1>

)
◦
((∑

i∈Lt eiei
>) (Jk+1 − Jk

)
:Nt

(∑
j∈Rt

ejej
>
)))

e

xk+1 = proxαψ(xk − αgk)
end for
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