One Method to Rule Them All: Variance Reduction for Data, Parameters and Many New Methods

Filip Hanzely ${ }^{1}$ Peter Richtárik ${ }^{1,2}$

Optimization Problem

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{n} \sum_{j=1}^{n} f_{j}(x)+\psi(x),
$$

- $f_{j}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is M_{j} smooth and convex:

$$
0 \preceq \nabla^{2} f_{j}(x) \preceq M_{j}
$$

- $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper, closed and convex regularizer, admitting a cheap proximal operator - $f \stackrel{\text { def }}{=} \frac{1}{n} \sum_{j} f_{j}$ is σ quasi strongly convex

Oracle

$G(x) \stackrel{\text { def }}{=}\left[\nabla f_{1}(x), \nabla f_{2}(x), \ldots, \nabla f_{n}(x)\right]:$ Jacobian matrix - Oracle can be accessed via: $\mathcal{U} G(x), \mathcal{S} G(x)$

- $\mathcal{U}: \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{d \times n}$ - random linear operator, identity in expectation
- $\mathcal{S}: \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{d \times n}$ - random projection operator possibly correlated with \mathcal{U}
- \mathcal{U}, \mathcal{S} might correspond to right matrix multiplication (SAGA [1], JacSketch [2]), left matrix multiplication (SEGA [3]), their combination (ISAEGA) and many more
- Different choices of \mathcal{U}, \mathcal{S} yield different methods.

Variance reduction (unbiased)

Given sequence J^{k} which estimates $G\left(x^{k}\right)$ such that $\lim _{k \rightarrow \infty} J^{k}=G\left(x^{*}\right)$, unbiased variance reduced gradent is the following:

$$
g^{k}=\frac{1}{n} J^{k} e+\frac{1}{n} \mathcal{U}\left(G\left(x^{k}\right)-J^{k}\right) e
$$

Jacobian Sketching
Observing $\mathcal{S} G\left(x^{k}\right)$ every iteration, how to design Jacobian estimator sequence J^{k} ? Projecting:
$J^{k+1}=\operatorname{argmin}_{J}\left\|J-J^{k}\right\| \quad$ s. t. $\mathcal{S} J=\mathcal{S} G\left(x^{k}\right)$ $=J^{k}-\mathcal{S}\left(G\left(x^{k}\right)-J^{k}\right)$

Algorithm

Algorithm 1 Generalized JacSketch (GJS)
1: Parameters: Stepsize $\alpha>0$, random projector \mathcal{S} and unbiased sketch \mathcal{U}
2: Initialization: Choose solution estimate $x^{0} \in \mathbb{R}^{d}$ and Jacobian estimate $J^{0} \in \mathbb{R}^{d \times n}$
3: $\mathbf{f o r} k=0,1, \ldots$ do
Sample realizations of \mathcal{S} and \mathcal{U}, and perform sketches $\mathcal{S} G\left(x^{k}\right)$ and $\mathcal{U} G\left(x^{k}\right)$
$J^{k+1}=J^{k}-\mathcal{S}\left(J^{k}-G\left(x^{k}\right)\right)$
update the Jacobian estimate via (2)
6: $\quad g^{k}=\frac{1}{n} J^{k} e+\frac{1}{n} \mathcal{U}\left(G\left(x^{k}\right)-J^{k}\right) e$
$x^{k+1}=\operatorname{prox}_{\alpha \psi}\left(x^{k}-\alpha g^{k}\right)$
construct the gradient estimator via (1)
8: end for

> Convergence rate

Single convergence theorem, tightest known rate in every special case (many new rates in special cases for known methods; many new methods as well).

- Let $\mathcal{M}: \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{d \times n}$ be linear operator such that $(\mathcal{M} X)_{: j}=M_{j} X_{: j}$ for any $X \in \mathbb{R}^{d \times n}$.
- Let $\mathcal{B}: \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{d \times n}$ be a linear operator (to be chosen; only for theory) such that with stepsize α we have:
$(1-\alpha \sigma)\left\|\mathcal{B} \mathcal{M}^{\frac{1}{2}} X\right\|^{2} \geq \frac{2 \alpha}{n^{2}} \mathbb{E}\left[\|\mathcal{U} X e\|^{2}\right]$

$$
+\left\|(\mathcal{I}-\mathbb{E}[\mathcal{S}])^{\frac{1}{2}} \mathcal{B} \mathcal{M}^{\frac{1}{2}} X\right\|^{2}
$$

$$
\frac{1}{n}\left\|\mathcal{M}^{\dagger^{\frac{1}{2}}} X\right\|^{2} \geq \frac{2 \alpha}{n^{2}} \mathbb{E}\left[\|\mathcal{U} X e\|^{2}\right]+\left\|(\mathbb{E}[\mathcal{S}])^{\frac{1}{2}} \mathcal{B M}^{\dagger^{\frac{1}{2}}} X\right\|^{2}
$$

Theorem (simplified)
For GJS we have $\mathbb{E}\left[\Psi^{k}\right] \leq(1-\alpha \sigma)^{k} \Psi^{0}$ for $\Psi^{k} \stackrel{\text { def }}{=}$ $\left\|x^{k}-x^{*}\right\|^{2}+\alpha\left\|\mathcal{B}\left(J^{k}-G\left(x^{*}\right)\right)\right\|^{2}$

- Linear convergence under minimal assumptions
- Rate depends on smoothness patterns (matrices M_{j}), distributions of \mathcal{S}, \mathcal{U} (controllable in practice) and quasi strong convexity σ
- Full version: exploits possible prior knowledge about $G\left(x^{*}\right)$, exploits structure of ψ, extends quasi strong convexity to strong growth.

Special cases

- SAGA [1]: recovers best known results - JacSketch [2] More general + better rate
- LSVRG: Arbitrary sampling + prox
- SEGA [3]: Better rate under arbitrary sampling
- Extensions of algorithms from [4] - arbitrary sampling and conjectured ISEAGA.
- Many more:

Arbitrary sampling

- Tight rate under any distribution of \mathcal{S}, \mathcal{U}
- Allows to exploit data structure from smoothness (matrices M_{j}) and design importance samplings - New for many well established algorithms, bridged by our analysis

Specific algorithms

Algorithm 2 SEGA with arbitrary sampling

Require: Stepsize $\alpha>0$, starting point $x^{0} \in \mathbb{R}^{d}$, random sampling $L \subseteq\{1,2, \ldots, d\}$
Set $h^{0}=0$
for $k=0,1,2, \ldots$ do
Sample random $L^{k} \subseteq\{1,2, \ldots, d\}$
Set $h^{k+1}=h^{k}+\sum_{i \in L^{k}}\left(\nabla_{i} f\left(x^{k}\right)-h_{i}^{k}\right) e_{i}$
$g^{k}=h^{k}+\sum_{i \in L^{k}} \frac{1}{p_{i}}\left(\nabla_{i} f\left(x^{k}\right)-h_{i}^{k}\right) e_{i}$
$x^{k+1}=\operatorname{prox}_{\alpha \psi}\left(x^{k}-\alpha g^{k}\right)$
end for

Algorithm 3 ISAEGA [NEW METHOD]

Input: $x^{0} \in \mathbb{R}^{d}, \#$ parallel units T, each owning set of indices N_{t} (for $1 \leq t \leq T$), distributions \mathcal{D}_{t} over subsets of N_{t}, distributions \mathcal{D}_{t} over subsets coordinates [d], stepsize α
$J^{0}=0$
for $k=0,1, \ldots$ do
for $t=1, \ldots, T$ in parallel do Sample $R_{t} \sim \mathcal{D}_{t} ; R_{t} \subseteq N_{t}, L_{t} \sim \mathcal{D}_{t} ; L_{t} \subseteq[d]$ Observe $\nabla_{L_{t}} f_{j}\left(x^{k}\right)$ for $j \in R_{t}$
Set $J_{i, j}^{k+1}= \begin{cases}\nabla_{i} f_{j}\left(x^{k}\right) & \text { if } \quad, j \in R_{t}, i \in L_{t} \\ J_{i, j}^{k} & \text { otherwise }\end{cases}$ Send $J_{: N_{t}}^{k+1}-J_{: N_{t}}^{k}$ to master \triangleright Sparse end for
$g^{k}=\left(J^{k}+\sum_{t=1}^{T}\left(p^{t-1} p^{t-1 \top}\right) \circ\left(\left(\sum_{i \in L_{t}} e_{i} e_{i}^{\top}\right)\left(J^{k+1}-J^{k}\right)_{: N_{i}}\left(\sum_{j \in R_{i}} e_{j} e_{j}^{\top}\right)\right)\right) e$ $x^{k+1}=\operatorname{prox}_{\alpha \psi}\left(x^{k}-\alpha g^{k}\right)$
end for

References

[1] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien.
SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives.
11 Advances in Neural Information Processing Systems, pages 1646-1654
${ }^{[2]}$ Robeert M Gower, Peter Richtárik, and Francis Bach.
Stochastic quasi-gradient methods: Variance reduction via Jacobian sketching
arXiv preprint arXiv:1805.02632, 2018.
[3] Filip Hanzely, Konstantin Mishchenko, and Peter Richtarik. SEGA: Variance reduction via gradient sketching,
In Advances in Neural Information Processing Systems, pages 2082 2093
4) Konsta
4) Konstantin Mishchenko, Filip Hanzely, and Peter Richtarik.
99% of distributed optimization is a waste of time: The issue and how to fix it.

