

(1) SPARSE PCA PROBLEM

- Input: Matrix $A = [a_1, \ldots, a_n] \in \mathbb{R}^{p \times n}, \quad p \leq n$
- **Goal:** Find vector $z^* \in \mathbf{R}^n$ which simultaneously
 - . maximizes variance $z^T A^T A z$
 - 2. is **sparse**

If sparsity is not required, z^* is the dominant right singular vector of A. This is the single-unit (m = 1) case. Often m > 1 components (sparse dominant singular directions) are needed – block case.

Our approach:

- 1. Formulate sPCA as an optimization problem with sparsityinducing penalty (ℓ_1 or ℓ_0) controlled by a single parameter γ
- 2. Reformulate to get problem of a suitable form
- 3. Solve reformulation using a gradient scheme
- 4. Do post-processing in the ℓ_1 case (will not detail it here)

Notation: $||z||_1 = \sum_i |z_i|, ||z||_0 = \operatorname{Card}\{i : z_i \neq 0\}.$

Single-unit sPCA via ℓ_1 -penalty

$$\phi_{\ell_1}(\gamma) \stackrel{\text{def}}{=} \max_{z^T z \le 1} \sqrt{z^T A^T A z} - \gamma \|z\|_1. \tag{1}$$

1. To solve (1), first solve this reformulation

$$\phi_{\ell_1}^2(\gamma) = \max_{\substack{x \in \mathbf{R}^p \\ x^T x = 1}} \sum_{i=1}^n [|a_i^T x| - \gamma]_+^2.$$
(2)

2. and then set

 $z_i = \operatorname{sign}(a_i^T x)[|a_i^T x| - \gamma]_+, \qquad z^* = z/||z||_2.$

Single-unit sPCA via ℓ_0 -penalty

$$\phi_{\ell_0}(\gamma) \stackrel{\text{def}}{=} \max_{z \in \mathcal{B}^n} z^T A^T A z - \gamma \|z\|_0, \tag{3}$$

1. To solve (3), first solve this reformulation

$$\phi_{\ell_1}(\gamma) = \max_{\substack{x \in \mathbf{R}^p \\ x^T x = 1}} \sum_{i=1}^n [(a_i^T x)^2 - \gamma]_+.$$
(4)

2. and then set

$$z_i = [\operatorname{sign}((a_i^T x)^2 - \gamma)]_+ a_i^T x, \qquad z^* = z/\|z\|_2.$$

Generalized Power Method for Sparse Principal Component Analysis

Yu. Nesterov[†] P. Richtárik[†] M. Journée* [†]Université Catholique de Louvain

(3) GRADIENT SCHEME

Problems (2) and (4) (and their block generalizations) are of the form (P)

$$f^* = \max_{x \in \mathcal{Q}} f(x).$$

- E is a finite-dimensional vector space
- $f : \mathbf{E} \to \mathbf{R}$ is a convex function
- $\mathcal{Q} \subset \mathbf{E}$ is compact

In the single-unit case (m = 1), Q is the unit Euclidean sphere in \mathbb{R}^p , in the block case (m > 1), \mathcal{Q} is the Stiefel manifold in $\mathbb{R}^{p \times m}$, i.e. the set of $p \times m$ matrices with orthonormal columns.

We will solve (P) using this **gradient algorithm (GA)**:

- 1. Input: Initial iterate $x_0 \in \mathbf{E}$
- 2. For $k \ge 0$ repeat
 - $x_{k+1} \in \operatorname{Arg\,max}\{f(x_k) + \langle f'(x_k), y x_k \rangle \mid y \in \mathcal{Q}\}$
 - $k \leftarrow k+1$

Theorem 1 (Convergence) Let f be convex with strong convexity parameter $\sigma_f \geq 0$ and $\operatorname{Conv}(\mathcal{Q})$ be strongly convex with parameter $\sigma_{Q} \geq 0$. If $0 < \delta_{f} \leq \inf_{x \in Q} \|f'(x)\|_{*}$ and either $\sigma_f > 0$ or $\sigma_Q > 0$, then

$$\sum_{k=0}^{N} \|x_{k+1} - x_k\|^2 \le \frac{2(f^* - f(x_0))}{\sigma_{\mathcal{Q}}\delta_f + \sigma_f}$$

Our algorithm generalizes the power method for computing the largest eigenvalue of a symmetric positive definite matrix C:

 $\max f(x) \equiv \frac{1}{2}x^T C x \quad \to \quad x_{k+1} = \frac{C x_k}{\|C x_k\|_2}.$

We compare the following Sparse PCA algorithms:

$Power_{\ell_1}$	Single-unit sparse PCA via ℓ_1 -penalty
$SPower_{\ell_0}$	Single-unit sparse PCA via ℓ_0 -penalty
$SPower_{\ell_1,m}$	Block sparse PCA via ℓ_1 -penalty
$SPower_{\ell_0,m}$	Block sparse PCA via ℓ_0 -penalty
SPCA	SPCA algorithm [1]
Greedy	Greedy method [2]
SVD_{ℓ_1}	Method [3] with ℓ_1 -penalty ("soft thresholding")
SVD_{ℓ_0}	Method [3] with ℓ_0 -penalty ("hard thresholding")

Greedy slows down dramatically, compared to the other methods, if aimed at obtaining a component of higher cardinality.

Trade-off curves. Trade-off curve between explained variance and cardinality. The algorithms aggregate in two groups. The methods GPower_{ℓ_1}, GPower_{ℓ_0}, Greedy and rSVD_{ℓ_0} do better (black solid lines), and SPCA and rSVD $_{\ell_1}$ do worse (red dashed lines).

Controlling sparsity with γ **.** Dependence of cardinality on the value of the sparsity-inducing parameter γ . The horizontal axis shows a normalized interval of reasonable values of γ . The vertical axis shows percentage of nonzero coefficients of the resulting sparse loading vector z^* .

R. Sepulchre*

*Université de Liège

(4.1) RANDOM DATA: PLOTS

The entries of A are Gaussian with zero mean and unit variance. The first two plots are based on an average of 100 test problems of size p = 100 and n = 300.

How does the trade-off evolve in time?. Evolution of the explained variance (solid lines and left axis) and cardinality (dashed lines and right axis) in time for the methods $GPower_{\ell_1}$ and $rSVD_{\ell_1}$ on a test problem of size p = 250 and n = 2500.

(4.2)) R
$\begin{array}{c} p \times n & 2!\\ \mathbf{GPower}_{\ell_1}\\ \mathbf{GPower}_{\ell_0}\\ \mathbf{SPCA}\\ \mathbf{rSVD}_{\ell_1}\\ \mathbf{rSVD}_{\ell_0} \\ \hline p \times n & 5\\ \mathbf{GPower}_{\ell_1}\\ \mathbf{GPower}_{\ell_0}\\ \mathbf{SPCA}\\ \mathbf{rSVD}_{\ell_1} \\ \end{array}$	50 × 0. 0. 2. 1. 1. 500 × 0 0 7 2
rSVD _{ℓ0}	2
Da Study S Vijver Wang Naderi JRH-2	ata amp 2 1 1
GPo GPo GPo GPo SPC rSVI rSVI	wer_{ℓ} wer_{ℓ} wer_{ℓ} A D_{ℓ_1} D_{ℓ_0}
PEI-values	s ba
PCA GPowe GPowe SPCA SPCA rSVD rSVD	er_{ℓ_1} er_{ℓ_1} er_{ℓ_0} f_1 f_0 men
[1] H. Zou, T. ponent Analy Statistics, 15 [2] A. d'Aspre lutions for Sp of Machine L [3] H. Shen, C ysis via regul	Ha vsis (2): emo oars ear J. Z ariz

P) RANDOM DATA: SPEED TABLES

Speed (in seconds):			
250×2500	500×5000	750×7500	1000×10000
0.85	2.61	3.89	5.32
0.46	1.21	2.41	2.93
2.77	14.0	41.0	81.6
1.40	6.80	17.8	41.2
1.33	6.20	15.4	36.3
500×2000	500×4000	500×8000	500×16000
0.97	1.96	4.30	8.43
0.39	0.97	2.01	4.63
7.37	11.4	22.4	44.6
2.56	5.27	11.3	26.8
2.30	4.70	10.3	23.8

Data sets (breast cancer cohorts):			
Samples (p)	Genes (n)	Reference	
295	13319	van de Vijver et al. [2002]	
285	14913	Wang et al. [2005]	
135	8278	Naderi et al. [2006]	
101	14223	Sotiriou et al. [2006]	

Speed (in seconds):				
	Vijver	Wang	Naderi	JRH-2
$\operatorname{ower}_{\ell_1}$	7.72	6.96	2.15	2.69
$\operatorname{Power}_{\ell_0}$	3.80	4.07	1.33	1.73
$\operatorname{Power}_{\ell_1,m}$	5.40	4.37	1.77	1.14
Power $_{\ell_0,m}$	5.61	7.21	2.25	1.47
CA	77.7	82.1	26.7	11.2

49.3

48.4

46.4

46.8

es based on 536 cancer-related pathways:

13.8

13.7

15.7

16.5

	Vijver	Wang	Naderi	JRH-2
	0.0728	0.0466	0.0149	0.0690
$\operatorname{wer}_{\ell_1}$	0.1493	0.1026	0.0728	0.1250
wer _{ℓ1}	0.1250	0.1250	0.0672	0.1026
wer $_{\ell_1,m}$	0.1418	0.1250	0.1026	0.1381
wer $_{\ell_0,m}$	0.1362	0.1287	0.1007	0.1250
A	0.1362	0.1007	0.0840	0.1007
D_{ℓ_1}	0.1213	0.1175	0.0914	0.0914
D_{ℓ_0}	0.1175	0.0970	0.0634	0.1063

hment Index (PEI) measures the statistical significance of tween two kinds of gene sets.

T. Hastie, R. Tibshirani. "Sparse Principal Comlysis". Journal of Computational and Graphical 5(2):265-286, 2006.

remont, F. R. Bach, L. El Ghaoui. "Optimal So-Sparse Principal Component Analysis". Journal Learning Research, 9:1269–1294, 2008.

J. Z. Huang. Sparse principal component analularized low rank matrix approximation". Journal of Multivariate Analysis, 99(6):1015–1034, 2008.