

DISTRIBUTED COORDINATE DESCENT FOR BIG DATA OPTIMIZATION

Martin Takáč

Jakub Mareček

Peter Richtárik

University of Edinburgh

1. Problem Formulation

$$\min_{x \in \mathbb{R}^n} [F(x) \equiv f(x) + \Psi(x)]$$

- 1. f convex, partially separable of degree ω and $\forall x \in \mathbb{R}^n, t \in \mathbb{R} \text{ and } i \in \{1, 2, \dots, n\} \text{ satisfying }$ $|\nabla_i f(x) - \nabla_i f(x + te_i)| \le L_i |t|,$ where L_i are coordinate Lipschitz constants
- 2. Ψ convex and separable $(\Psi(x) = \sum_i \Psi_i(x^i))$
- 3. Description of f so large that it does not fit onto a single computer! \Rightarrow a cluster of C nodes

2. THE ALGORITHM

coordinates Pre-processing: Partition $\{1, 2, ..., n\}$ to C sets $S_1, S_2, ..., S_C$

In one iteration computers c = 1, 2, ..., C in parallel do

- 1. Choose random $S_c \subset S_c$
- 2. For each $i \in \hat{S}_c$ in parallel compute $t_i^* \leftarrow \arg\min_{t \in \mathbb{R}} \nabla_i f(x_k) t + \beta \frac{L_i}{2} t^2 + \Psi_i(x_k^i + t)$
- 3. $x_{k+1} \leftarrow x_k + \sum_{i \in \hat{S}_c} t_i^* e_i$

2. DISTRIBUTED SAMPLING

We can analyze the above algorithm under the following assumptions:

- $|S_c| = \frac{n}{C}$ for all $c = 1, 2, \dots, C$
- S_c is chosen uniformly as one of the subsets of S_c of cardinality τ

Distributed sampling: $\hat{S} = \bigcup_{c=1}^{C} \hat{S}_c$

$$\beta := 1 + \frac{-C(\tau - 1) + \omega[\tau C(1 + \frac{C - 1}{n}) - 1]}{\max\{n - C, 1\}} \quad \text{(see [1])}$$

Special cases:

- $C = 1 \Rightarrow \beta = 1 + \frac{(\tau 1)(\omega 1)}{\max\{n 1, 1\}}$ (see [2])
- $C = \tau = 1 \Rightarrow \beta = 1 \text{ (see [3])}$

However, we need new analysis for the C > 1 case.

4. Complexity Theorem

$$k \ge \frac{\beta n}{\tau C} \frac{2R^2}{\epsilon} \log \left(\frac{F(x_0) - F^*}{\epsilon \rho} \right)$$

$$\downarrow \downarrow$$

$$\mathbf{Prob}(F(x_k) - F(x_*) \le \epsilon) \ge 1 - \rho$$

$$\operatorname{cob}(F(x_k) - F(x_*) \le \epsilon) \ge 1 - \epsilon$$

$$(R^2 \approx \sum_i L_i(x_0^i - x_*^i)^2)$$

5. AC/DC SOLVER

We developed a solver (http://code.google.com/ p/ac-dc/) for

$$f(x) = \sum_{i=1} Loss(x; A_j, b_j), \quad \Psi(x) = \lambda ||x||_1$$

$$3 \text{ supported losses} \quad Loss(x, A_j, b_j)$$

$$square loss \quad \frac{1}{2}(b_j - A_j x)^2$$

$$logistic loss \quad log(1 + e^{-b_j A_j x})$$

$$hinge square loss \quad \frac{1}{2} \max\{0, 1 - b_j A_j x\}^2$$

Note that $A_i \in \mathbb{R}^n$ is a row vector and later will represent the j-th row of matrix A.

6. Data Distribution

Assume that we have C = 4 compute nodes and n = 116 coordinates. The coordinates can be partitioned into 4 balanced groups $\{S_1, S_2, S_3, S_4\}$.

On computer 1, only the first 4 coordinates of vector x are stored and also the corresponding 4 columns of matrix A. Data distribution is crucial for problems whose size exceeds available memory of a single computer!

7. Implementation Details (square loss example)

If we can maintain $g_k = Ax_k - b$ on all computers, then since $\nabla_i f(x_k) = \langle a_i, g_k \rangle$ (a_i is the *i*-th column of matrix A), computer c can compute $\nabla_i f(x_k)$ for $i \in S_c$, and hence the algorithm can be run.

- Note that $g_{k+1} = Ax_{k+1} b = A(x_k + \sum_{c=1}^C \sum_{i \in \hat{S}_c} t_i^* e_i) b = g_k + \sum_{c=1}^C \sum_{i \in \hat{S}_c} a_i t_i^*$
- That is, computer c additively contributes $g_k[c] := \sum_{i \in \hat{S}_c} a_i t_i^*$ to the update of g_k
- So, we need to add up the distributed updates $g_k[c]$

Reduce All (RA)

Asynchronous StreamLine (ASL)

- $G_k[c] = G_{k-1}[Prev(c)] + g_k[c] g_{k-C}[c]$
- $g_{k+1}^c = g_k^c + g_k[c] + G_k[Prev(c)] g_{k-C}[c]$
- ASL: much LESS communication that RA!
- ASL: asynchronous (non-blocking) communication
- ASL: communication only between two closest computers

8. Hybrid Implementations

Left image shows Parallel and Serial (PS) approach, where each MPI process runs few OpenMP threads for computing t_i^* and $g_k[c]$ (black boxes) and afterwards, MPI communication takes places (blue boxes). Right image shows Fully Parallel (FP) approach in which one of the threads deals with communication and when waiting for a new communication, it helps the other threads to do some computation.

9. Numerical Experiments

method

All experiments were done on HECToR - Cray XE6 using 2,048 cores. Problem size $A \in \mathbb{R}^{10^9 \times 5 \cdot 10^8}$ had 1.2 TBytes and we used $\tau = 10^3$.

| avg. time / iter.

	RA-PS RA-FP	2.252 2.052	-
	ASL-FP	0.691	-
10 ¹⁰			→ RA–FP → ASL–FP
*H 10°			
10 ⁻¹⁰			
0	10 20	30 40 Time [min.]	50 60

10. REFERENCES

- Takáč, M., Mareček, J. and Richtárik, P.: Distributed coordinate descent methods for big data optimization, 2013
- Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization, 2012
- Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function, Mathematical Programming, 2012