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8. HYBRID IMPLEMENTATIONS

1. PROBLEM FORMULATION

4. COMPLEXITY THEOREM 6. DATA DISTRIBUTION
min [F(z) = f(z) + U(z) . Bn 2R? o ( F(zo) — F*) Assume that we have C' = 4 compute nodes and n = Parallel /Sequential Just Parallel

5
Update g for next

3. Description of f so large that it does not fit
onto a single computer! = a cluster of C' nodes

Computation of g[c

rCR" = —C ¢ €p 16 coordinates. The coordinates can be partitioned ‘
1. f convex, partially separable of degree w and I into 4 balanced groups 151, 52, 53, S4}- 1 e _ —
Ve e R".t € Randi € {1,2,...,n} satisfying ! ! | | | - 1 Iy
IV, f(z) — Vif(z +te))| < Lilt], Prob(F(zy) — F(z.) <€) >1—p S1 ! S2 + Ss 1 Sa
I where L; are coordinate Lipschitz constants I (R? ~ ZL(.CCZ _ 21?2 1][2][3][4]]5][6][7][8 \: 9 |[10][12 12:13 14][15][16
i N . LA * | X I - = penMP Barrier
2. W convex and separable (U(z) =) . V;(z")) ’ | | |
|
| ]
|

5. AC/DC SOLVER i A /

We developed a solver (http://code.google.com/ / / N
2. THE ALGORITHM p/ac-dc/) for X[1] X[2 X[3] - x[4]

. e : T) = oss(x; Aj;,05), T) = Al|Z||1
Pre-processing: Partition coordinates f(z) ZL ( bj) W(z) = Allz| A[l] A[2] A[3] A[4]

where each MPI process runs few OpenMP threads for

\ | | Left image shows Parallel and Serial (PS) approach,

computing ¢; and gix|c] (black boxes) and after-

wards, MPI communication takes places (blue boxes).

11,2,....n} to C sets Sy, S, ..., Sc i=1 Right image shows Fully Parallel (FP) approach in
3 supported losses Loss(x : Aj, bj) which one of the threads deals with communication and
In one iteration computers ¢ = 1,2. ..., C in paral- I square loss %(bj — AjCC)Q I On computer 1, only the first 4 coordinates of vector when waiting for a new communication, it helps the
lel do logistic loss log(1 + et 4i%) x are stored and also the corresponding 4 columns = other threads to do some computation.
| 1. Choose random 9. C S. | hinge square loss %max{(), 1 — bjij}Q of matrix A. Data distribution is crucial for
9. For each i € S, in parallel compute Note that A; € R™ is a row vector and later will | = problems whose size exceeds available memory 9. NUMERICAL EXPERIMENTS

represent the j-th row of matrix A. of a single computer!

t; < argminger V, f(z)t + 5567 + Uy (), + 1)
3. Tpi1 ¢ X + Zz’eS’C tre;

All experiments were done on HECToR - Cragy XEQ
using 2,048 cores. Problem size A € R0 X010
had 1.2 TBytes and we used 7 = 10°.

7. IMPLEMENTATION DETAILS (SQUARE LOSS EXAMPLE)
2. DISTRIBUTED SAMPLING If we can maintain g = Az, — b on all computers, then since V; f(zr) = (a;, gr) (a; is the i-th column of

. | . . method avg. time / iter.

We can analyze the above algorithm under the fol- matrix A), computer ¢ can compute V; f(xy) for ¢« € S., and hence the algorithm can be run. g S5

lowing assumptions: e Note that gry1 = Axp 1 — b= A(xr + Zle Ziégc tie;) —b=gr + Zle Ziegc a;t; RA-FP 2.052
e Sc|=gforalle=1,2,...,C ASL-FP

e That is, computer ¢ additively contributes gi(c| := ) . g a;t; to the update of g

e 5. is chosen uniformly as one of the subsets of e So, we need to add up the distributed updates gx|c]
S. of cardinality 7

Reduce All (RA) Asynchronous StreamLine (ASL)
Distributed sampling: h
Each computer Each computer
computeslilis gl J[3] O4] computes his 2LE Gk
U update g|c] 5'. 35‘! update g]c] g g
C_l < S - o
B =1+ —C(1 —1) + w[rC(1 - n ) — 1] (see [1]) | ‘ a a a a a
T | = 0 10 20 30 40 50 60
_ g[1,2] = g[1] + 9[2] [1,2] 3,4 . .
max{n — C, 1} [3,4] = g[3] + gl4] J SR Jl ]'EE ~—R Each computer S Gl Gl Time [min ]
% 33 % § sends only one ;; _-— : e —— :
vector to closest 3 % :..-

computer

10. REFERENCES

Special cases:

G

o Gilc] = Gi—1[Prev(c)] + gklc] — gr—c|c]

g[1-4] = g[1,2] + g[3,4]
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e C=1= =14 -] (see [2])
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