
DistributedCoordinateDescentforBigDataOptimization
Martin Takáč Jakub Mareček Peter Richtárik

University of Edinburgh

1. Problem Formulation

min
x∈Rn

[F (x) ≡ f(x) + Ψ(x)]

1. f convex, partially separable of degree ω and
∀x ∈ Rn, t ∈ R and i ∈ {1, 2, . . . , n} satisfying

|∇if(x)−∇if(x+ tei)| ≤ Li|t|,
where Li are coordinate Lipschitz constants

2. Ψ convex and separable (Ψ(x) =
∑
i Ψi(x

i))

3. Description of f so large that it does not fit
onto a single computer! ⇒ a cluster of C nodes

2. The Algorithm
Pre-processing: Partition coordinates
{1, 2, . . . , n} to C sets S1, S2, . . . , SC

In one iteration computers c = 1, 2, . . . , C in paral-
lel do

1. Choose random Ŝc ⊂ Sc
2. For each i ∈ Ŝc in parallel compute

t∗i ← arg mint∈R∇if(xk)t+β Li

2 t
2 + Ψi(x

i
k + t)

3. xk+1 ← xk +
∑
i∈Ŝc

t∗i ei

2. Distributed Sampling
We can analyze the above algorithm under the fol-
lowing assumptions:

• |Sc| = n
C for all c = 1, 2, . . . , C

• Ŝc is chosen uniformly as one of the subsets of
Sc of cardinality τ

Distributed sampling: Ŝ = ∪Cc=1Ŝc

⇓

β := 1+
−C(τ − 1) + ω[τC(1 + C−1

n )− 1]

max{n− C, 1}
(see [1])

Special cases:

• C = 1 ⇒ β = 1 + (τ−1)(ω−1)
max{n−1,1} (see [2])

• C = τ = 1 ⇒ β = 1 (see [3])

However, we need new analysis for the C > 1 case.

4. Complexity Theorem

k ≥ βn

τC

2R2

ε
log

(
F (x0)− F ∗

ερ

)
⇓

Prob(F (xk)− F (x∗) ≤ ε) ≥ 1− ρ

(R2 ≈
∑
i

Li(x
i
0 − xi∗)2)

5. AC/DC Solver
We developed a solver (http://code.google.com/
p/ac-dc/) for

f(x) =
m∑
i=1

Loss(x;Aj , bj), Ψ(x) = λ‖x‖1

3 supported losses Loss(x,Aj , bj)
square loss 1

2 (bj −Ajx)2

logistic loss log(1 + e−bjAjx)
hinge square loss 1

2 max{0, 1− bjAjx}2
Note that Aj ∈ Rn is a row vector and later will
represent the j-th row of matrix A.

6. Data Distribution
Assume that we have C = 4 compute nodes and n =
16 coordinates. The coordinates can be partitioned
into 4 balanced groups {S1, S2, S3, S4}.

On computer 1, only the first 4 coordinates of vector
x are stored and also the corresponding 4 columns
of matrix A. Data distribution is crucial for
problems whose size exceeds available memory
of a single computer!

7. Implementation Details (square loss example)
If we can maintain gk = Axk − b on all computers, then since ∇if(xk) = 〈ai, gk〉 (ai is the i-th column of
matrix A), computer c can compute ∇if(xk) for i ∈ Sc, and hence the algorithm can be run.

• Note that gk+1 = Axk+1 − b = A(xk +
∑C
c=1

∑
i∈Ŝc

t∗i ei)− b = gk +
∑C
c=1

∑
i∈Ŝc

ait
∗
i

• That is, computer c additively contributes gk[c] :=
∑
i∈Ŝc

ait
∗
i to the update of gk

• So, we need to add up the distributed updates gk[c]

Reduce All (RA) Asynchronous StreamLine (ASL)

• Gk[c] = Gk−1[Prev(c)] + gk[c] − gk−C [c]

• gck+1 = gck + gk[c] + Gk[Prev(c)] − gk−C [c]

• ASL: much LESS communication that RA!

• ASL: asynchronous (non-blocking) communication

• ASL: communication only between two closest
computers

8. Hybrid Implementations
Parallel/Sequential Just Parallel

Left image shows Parallel and Serial (PS) approach,

where each MPI process runs few OpenMP threads for

computing t∗i and gk[c] (black boxes) and after-

wards, MPI communication takes places (blue boxes).

Right image shows Fully Parallel (FP) approach in

which one of the threads deals with communication and

when waiting for a new communication, it helps the

other threads to do some computation.

9. Numerical Experiments
All experiments were done on HECToR - Cray XE6
using 2,048 cores. Problem size A ∈ R109×5·108

had 1.2 TBytes and we used τ = 103.

method avg. time / iter.

RA-PS 2.252
RA-FP 2.052
ASL-FP 0.691

0 10 20 30 40 50 60

10
−10

10
0

10
10

Time [min.]

F
(x

)−
F

*

 

 
RA−FP

ASL−FP

10. References

[1] Takáč, M., Mareček, J. and Richtárik, P.: Distributed co-
ordinate descent methods for big data optimization, 2013

[2] Richtárik, P., Takáč, M.: Parallel coordinate descent
methods for big data optimization, 2012

[3] Richtárik, P., Takáč, M.: Iteration complexity of random-
ized block-coordinate descent methods for minimizing a
composite function, Mathematical Programming, 2012


