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1. Problem Formulation
Consider the following optimization problem

min
x=(x1,...,xd)∈Rd

L(x) ≡ f(x) +
d∑
i=1

Ψi(x
i)

• f : Rd → R is a convex differentiable loss func-
tion such that for all x, h ∈ Rd
f(x+ h) 6 f(x) + (∇f(x))>h+ 1

2h
>A>Ah,

where A is some available n-by-d matrix.
Ex: f(x) =

∑n
j=1 `(x,Aj:, y

j)
where Aj: denotes the j-th sample/example
and ` : R→ R is some loss function:

– square loss: 1
2 (yj −Aj:x)2

– logistic loss: log(1 + exp(−yjAj:x))

• Ψi : R→ R ∪ {+∞} is convex and simple.
Ex: - L1 regularizer: λ‖x‖1

- SVM dual: I[0,1]d(x)

2. Data Distribution

Data distribution is crucial for problems whose

size exceeds available memory of a single com-
puter! We have c nodes available. The coordi-
nates {1, . . . , d} are partitioned into c sets {Pl :
l = 1, . . . , c}, each of size s := d/c. The columns
of matrix A are partitioned accordingly, with those
belonging to Pl stored on node l. Each processor se-
lects uniformly random subset Ŝl ⊆ Pl of cardinality
τ , forming the distributed sampling Ŝ = ∪lŜl.

3. Hydra2 , Approx and Hydra
• Hydra (HYbriD cooRdinAte descent) [2] is the

first distributed coordinate descent method;

• APPROX (Accelerated Parallel PROXimal)[3]
is the first accelerated coordinate descent
method;

• Hydra [2]+APPROX [3]=⇒Hydra2 [1].

4. Hydra2

Algorithm 1: Hydra2

1 pick z0 ∈ dom(Ψ), set θ0 = τ/s and u0 = 0
for k = 0, 1, . . . do

2 zk+1 ← zk, uk+1 ← uk
for each computer l ∈ {1, . . . , c} do

3 Randomly choose Ŝl ⊆ Pl
for each i ∈ Ŝl do

4
tik = argmin

t
∇if(θ2kuk + zk)t+
sθkDi

2τ t2 + Ψi(z
i
k + t)

5 zik+1 ← zik + tik
uik+1 ← uik − ( 1

θ2k
− s

τθk
)tik

θk+1 = 1
2 (
√
θk

4 + 4θk
2 − θk2)

6 OUTPUT: xk+1 := θ2kuk+1 + zk+1

• If θk ≡ θ0, then Hydra2 reduces to Hydra [2].

• The parameters {Di}i should be chosen such
that (f, Ŝ) ∼ ESO(D), namely, the follow-
ing ESO (Expected Separable Overapproxi-
mation) inequality holds for all x, h ∈ Rd:

E[f(x+ hŜ)] 6 f(x) + E[|Ŝ|]
d

(
(∇f(x))>h+ 1

2‖h‖
2
D

)
.

5. Accelerated Convergence

Theorem. If (f, Ŝ) ∼ ESO(D), then,

E[L(xk)− L(x∗)] 6
C1 + C2

((k − 1)τ/s+ 2)2
, ∀k > 1.

where
C1 =

(
1− τ

s

)
(L(x0)− L(x∗)),

C2 =

d∑
i=1

Di(x
i
0 − xi∗)2.

6. Important quantities

ωj := max{x>A>j:Aj:x : x>DA>
j:Aj:x 6 1},

ω′j := max{x>A>j:Aj:x : x>BA>
j:Aj:x 6 1}

σ := max{x>A>Ax : x>DA>Ax 6 1},

σ′ := max{x>A>Ax : x>BA>Ax 6 1}.

(1)

For any matrix G, DG denotes the diagonal matrix
of G and BG the block diagonal matrix of G asso-
ciated to the partition {P1, . . . ,Pc}.

7. Four different stepsizes
The following four parameters all satisfy the ESO
inequality.

D1
i =

n∑
j=1

[1 +
(τ−1)(ωj−1)

s1︸ ︷︷ ︸
αj,1

+ ( τs −
τ−1
s1

)
ω′

j−1
ω′

j
ωj︸ ︷︷ ︸

αj,2

]A2
ji

D2
i = [1 + (τ−1)(σ−1)

s1︸ ︷︷ ︸
β1

+ ( τs −
τ−1
s1

)σ
′−1
σ′ σ︸ ︷︷ ︸

β2

]

n∑
j=1

A2
ji

D3
i = 2

(
1 + τ−1

s1
(max

j
ωj − 1)

)∑n
j=1 A

2
ji

D4
i =

(
τ
τ−11 + τ

s1
(max

i

∑n
j=1 ωjA

2
ji∑n

j=1 A2
ji
− 1)

)∑n
j=1 A

2
ji

where s1 = max(s− 1, 1).
Remark. D3

i was proposed in [2] as an
easily computable upper bound of D2

i .

7. Comparison of stepsizes
Lemma. Let τ > 2. Then for all i ∈ {1, . . . , d}:

D1
i 6 D4

i 6 D3
i , D2

i 6 D4
i 6 D3

i .

In order to investigate the benefit of the new step-
size parameters, we solved the SVM dual problem
on the astro-ph dataset with d = 29, 882 samples
and n = 99, 757 features for (c, τ) = (32, 10). We
plot the evolution of the duality gap, obtained by
using the four different stepsize parameters. We
see clearly that smaller stepsize parameters lead to
faster convergence, as predicted by Theorem. More-
over, using our easily computable new stepsize pa-

rameters {D1
i }i, we achieve comparable convergence

speed with respect to the existing but not easily
computable parameters {D2

i }i.
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8. Weak effect of partition
Lemma. If τ > 2, then

β2 6
β1
τ − 1

, α2,j 6
α1,j

τ − 1
, ∀j = 1, . . . , n.

Insight: as long as τ > 2, the effect of partitioning
the data (across the nodes) on the iteration com-
plexity of Hydra2 is negligible, and vanishes as τ
increases.

9. Big data Experiment

We compare Hydra with Hydra2 on a synthetic
big data LASSO problem. Dimension of matrix
A : d = 50 billion, n = 5, 000, 000 . Dataset size:

5TB .
We have used 128 physical Cray XC30 compute
nodes connected via Aries interconnect. On each
physical node we have run two MPI processes (hence
c = 256 and s = 195, 312, 500)– each process runs 24
OpenMP threads (Hyperthreads). In order to min-
imize communication we have chosen τ = s/1000
(hence each thread computed an update for 8,138
coordinates during one iteration, on average).

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

L
(x

k
)−

L
*

Elapsed time [s]

 

 

hydra

hydra
2

10. References

[1] Fercoq O., Qu Z., Richtárik, P., Takáč, M. : Fast
distributed coordinate descent for non-strongly convex
losses, IEEE workshop on Machine Learning for Signal
Processing, 2014.
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