

Olivier Fercoq, Zheng Qu, Peter Richtárik and Martin Takáč olivier.fercoq@ed.ac.uk,zheng.qu@ed.ac.uk,Peter.Richtarik@ed.ac.uk,Takac.MT@gmail.com

1. PROBLEM FORMULATION

Consider the following optimization problem

$$\min_{x=(x^1,\ldots,x^d)\in\mathbb{R}^d} L(x) \equiv f(x) + \sum_{i=1}^d \Psi_i(x^i)$$

- $f: \mathbb{R}^d \to \mathbb{R}$ is a convex differentiable loss function such that for all $x, h \in \mathbb{R}^d$ $f(x+h) \leqslant f(x) + (\nabla f(x))^{\top}h + \frac{1}{2}h^{\top}\mathbf{A}^{\top}\mathbf{A}h,$ where \mathbf{A} is some available *n*-by-*d* matrix. $f(x) = \sum_{j=1}^{n} \ell(x, \mathbf{A}_{j:}, y^j)$ Ex: where \mathbf{A}_{j} : denotes the *j*-th sample/example and $\ell : \mathbb{R} \to \mathbb{R}$ is some loss function: - square loss: $\frac{1}{2}(y^j - \mathbf{A}_{j:}x)^2$ - logistic loss: $\log(1 + \exp(-y^j \mathbf{A}_{j:}x))$ • $\Psi_i : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ is convex and simple. Ex: - L_1 regularizer: $\lambda \|x\|_1$
 - SVM dual: $I_{[0,1]^d}(x)$

2. DATA DISTRIBUTION

Data distribution is crucial for problems whose size exceeds available memory of a single computer! We have c nodes available. The coordinates $\{1, \ldots, d\}$ are partitioned into c sets $\{\mathcal{P}_l :$ $l = 1, \ldots, c$, each of size s := d/c. The columns of matrix **A** are partitioned accordingly, with those belonging to \mathcal{P}_l stored on node l. Each processor selects uniformly random subset $\hat{S}_l \subseteq \mathcal{P}_l$ of cardinality τ , forming the distributed sampling $S = \bigcup_l S_l$.

3. $HYDRA^2$, APPROX AND HYDRA

- Hydra (HYbriD cooRdinAte descent) [2] is the first distributed coordinate descent method;
- APPROX (Accelerated Parallel PROXimal)[3] is the first accelerated coordinate descent method;
- Hydra [2]+APPROX [3] \Longrightarrow Hydra² [1].

Fast Distributed Coordinate Descent (Hydra²)

4. $HYDRA^2$

Algorithm 1: Hvdra²

1 pick
$$z_0 \in \operatorname{dom}(\Psi)$$
, set $\theta_0 = \tau/s$ and $u_0 = 0$
for $k = 0, 1, \dots$ do
2 $z_{k+1} \leftarrow z_k, u_{k+1} \leftarrow u_k$
for each computer $l \in \{1, \dots, c\}$ do
3 Randomly choose $\hat{S}_l \subseteq \mathcal{P}_l$
for each $i \in \hat{S}_l$ do
4 $t_k^i = \operatorname{argmin}_t \quad \nabla_i f(\theta_k^2 u_k + z_k)t + \frac{s\theta_k \mathbf{D}_i}{2\tau}t^2 + \Psi_i(z_k^i + t)t + \frac{s\theta_k \mathbf{D}_i}{2\tau}t^2 + \Psi_i(z_k^i + t)t + \frac{z_{k+1}^i \leftarrow z_k^i + t_k^i}{u_{k+1}^i \leftarrow u_k^i - (\frac{1}{\theta_k^2} - \frac{s}{\tau\theta_k})t_k^i}$
 $\theta_{k+1} = \frac{1}{2}(\sqrt{\theta_k}^4 + 4\theta_k^2 - \theta_k^2)$

6 **OUTPUT**: $x_{k+1} := \theta_k^2 u_{k+1} + z_{k+1}$

- If $\theta_k \equiv \theta_0$, then Hydra² reduces to Hydra [2].
- The parameters $\{\mathbf{D}_i\}_i$ should be chosen such that $(f, \hat{S}) \sim ESO(\mathbf{D})$, namely, the following ESO (Expected Separable Overapproximation) inequality holds for all $x, h \in \mathbb{R}^d$:

 $\mathbf{E}[f(x+h^{\hat{S}})] \leqslant f(x) + \frac{\mathbf{E}[|\hat{S}|]}{d} \left((\nabla f(x))^{\top} h + \frac{1}{2} \|h\|_{\mathbf{D}}^2 \right).$

5. Accelerated Convergence

Theorem. If $(f, \hat{S}) \sim ESO(\mathbf{D})$, then,

$$\mathbf{E}[L(x_k) - L(x^*)] \leqslant \frac{C_1 + C_2}{((k-1)\tau/s + 2)^2}, \ \forall k \ge 1.$$

where

$$C_{1} = \left(1 - \frac{\tau}{s}\right) \left(L(x_{0}) - L(x_{*})\right)$$
$$C_{2} = \sum_{i=1}^{d} \mathbf{D}_{i} (x_{0}^{i} - x_{*}^{i})^{2}.$$

6. Important quantities

$$\omega_{j} := \max\{x^{\top} \mathbf{A}_{j:}^{\top} \mathbf{A}_{j:} x : x^{\top} D^{\mathbf{A}_{j:}^{\top} \mathbf{A}_{j:}} x \leqslant 1\},\$$
$$\omega_{j}' := \max\{x^{\top} \mathbf{A}_{j:}^{\top} \mathbf{A}_{j:} x : x^{\top} B^{\mathbf{A}_{j:}^{\top} \mathbf{A}_{j:}} x \leqslant 1\},\$$
$$\sigma := \max\{x^{\top} \mathbf{A}^{\top} \mathbf{A} x : x^{\top} D^{\mathbf{A}^{\top} \mathbf{A}} x \leqslant 1\},\$$
(1)

 $\sigma' := \max\{x^{\top} \mathbf{A}^{\top} \mathbf{A} x : x^{\top} B^{\mathbf{A}^{\top} \mathbf{A}} x \leqslant 1\}.$

For any matrix \mathbf{G} , $D^{\mathbf{G}}$ denotes the diagonal matrix of **G** and $B^{\mathbf{G}}$ the block diagonal matrix of **G** associated to the partition $\{\mathcal{P}_1, \ldots, \mathcal{P}_c\}$.

$$D_{i}^{2} =$$

In order to investigate the benefit of the new stepsize parameters, we solved the SVM dual problem on the *astro-ph* dataset with d = 29,882 samples and n = 99,757 features for $(c,\tau) = (32,10)$. We plot the evolution of the duality gap, obtained by using the four different stepsize parameters. We see clearly that smaller stepsize parameters lead to faster convergence, as predicted by Theorem. Moreover, using our easily computable new stepsize parameters $\{\mathbf{D}_i^1\}_i$, we achieve comparable convergence speed with respect to the existing but not easily computable parameters $\{\mathbf{D}_i^2\}_i$.

7. FOUR DIFFERENT STEPSIZES

The following four parameters all satisfy the **ESO** inequality.

$\mathbf{D}_{i}^{1} = \sum_{j=1}^{n} \left[1 + \frac{(\tau-1)(\omega_{j}-1)}{s_{1}} + \left(\frac{\tau}{s} - \frac{\tau-1}{s_{1}}\right) \frac{\omega_{j}'-1}{\omega_{j}'} \omega_{j}\right] \mathbf{A}_{ji}^{2}$
$lpha_{j,1}$ $lpha_{j,2}$
$\mathbf{D}_{i}^{2} = \left[1 + \frac{(\tau-1)(\sigma-1)}{s_{1}} + \left(\frac{\tau}{s} - \frac{\tau-1}{s_{1}}\right)\frac{\sigma'-1}{\sigma'}\sigma\right]\sum_{i=1}^{n}\mathbf{A}_{ji}^{2}$
β_1 β_2 β_2
$\mathbf{D}_{i}^{3} = 2\left(1 + \frac{\tau - 1}{s_{1}}(\max_{j} \omega_{j} - 1)\right)\sum_{j=1}^{n} \mathbf{A}_{ji}^{2}$
$\mathbf{D}_{i}^{4} = \left(\frac{\tau}{\tau-1}1 + \frac{\tau}{s_{1}}\left(\max_{i}\frac{\sum_{j=1}^{n}\omega_{j}\mathbf{A}_{ji}^{2}}{\sum_{j=1}^{n}\mathbf{A}_{ji}^{2}} - 1\right)\right)\sum_{j=1}^{n}\mathbf{A}_{ji}^{2}$
where $\dot{s}_1 = \max(s - 1, 1)$.
Remark. \mathbf{D}_i^3 was proposed in [2] as an
easily computable upper bound of \mathbf{D}_i^2 .

COMPARISON OF STEPSIZES

Lemma. Let $\tau \ge 2$. Then for all $i \in \{1, \ldots, d\}$:

 $\mathbf{D}_i^1 \leqslant \mathbf{D}_i^4 \leqslant \mathbf{D}_i^3, \quad \mathbf{D}_i^2 \leqslant \mathbf{D}_i^4 \leqslant \mathbf{D}_i^3.$

8. Weat
Lemma. I
$\beta_2 \leqslant -\frac{1}{7}$
Insight: a the data (a plexity of increases.
9. Big
We compared big data I $\mathbf{A} : d = 5$
5TB. We have under nodes control physical notes control of the second se
c = 256 and OpenMP t imize com
(hence eac coordinates
10. RE
[1] Fercoq C distribute losses. <i>H</i>
[2] Richtárik
[3] Fercoq O mal coore

PARTITION EFFECT

archer

If $\tau \ge 2$, then

 $\frac{\beta_1}{\tau-1}, \quad \alpha_{2,j} \leqslant \frac{\alpha_{1,j}}{\tau-1}, \quad \forall j = 1, \dots, n.$

as long as $\tau \ge 2$, the effect of partitioning (across the nodes) on the iteration com-Hydra² is negligible, and vanishes as τ

DATA EXPERIMENT

are Hydra with $Hydra^2$ on a synthetic LASSO problem. Dimension of matrix 0 billion, n = 5,000,000. Dataset size:

used 128 physical Cray XC30 compute nected via Aries interconnect. On each de we have run two MPI processes (hence d s = 195, 312, 500) – each process runs 24 threads (Hyperthreads). In order to minmunication we have chosen $\tau = s/1000$ the thread computed an update for 8,138es during one iteration, on average).

FERENCES

O., Qu Z., Richtárik, P., Takáč, M. : Fast ed coordinate descent for non-strongly convex EEE workshop on Machine Learning for Signal ng, 2014.

, P., Takáč, M.: Distributed Coordinate Descent for learning with Big Data, arXiv:1310.2059,

., Richtárik, P.: Accelerated, parallel and proxidinate descent, arXiv:1312.5799, 2013.