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1. Byzantine-Robust Optimization

Distributed optimization problem:

min
x∈Rd

f (x) = 1
G
∑
i∈G

fi(x)

 , fi(x) = 1
m

m∑
j=1

fi,j(x) ∀i ∈ G

• G is the set of good clients
• B is the set of Byzantine workers – the workers that can arbi-
trarily deviate from the prescribed protocol (maliciously or not) and
are assumed to be omniscient
• G ⊔ B = [n] is the set of clients participating in training

Main difficulties in Byzantine-robust optimization:
• When functions are arbitrarily heterogeneous, the problem is im-
possible to solve
• Fraction of Byzantines δ = B/n should be smaller than 1/2

• Standard approaches based on averaging are vulnerable
• Robust aggregation alone does not ensure robustness [1]

2. Robust Aggregation

Popular aggregation rules:
• Krum(x1, . . . , xn) := argminxi∈{x1,...,xn}

∑
j∈Si

∥xj − xi∥2 [7], where
Si ⊆ {x1, . . . , xn} are n − |B| − 2 closest vectors to xi

• Robust Fed. Averaging: RFA(x1, . . . , xn) := argminx∈Rd

∑n
i=1 ∥x − xi∥

• Coordinate-wise Median: [CM(x1, . . . , xn)]t := argminu∈R
∑n

i=1 |u−[xi]t|
These defenses are vulnerable to Byzantine attacks [8,9]
and do not satisfy the following definition.

Definition 1: (δ, c)-Robust Aggregator (modification of the definition from [1])

Assume that {x1, x2, . . . , xn} is such that there exists a subset
G ⊆ [n] of size |G| = G ≥ (1 − δ)n for δ < 0.5 and there
exists σ ≥ 0 such that 1

G(G−1)
∑

i,l∈G E[∥xi − xl∥2] ≤ σ2 where
the expectation is taken w.r.t. the randomness of {xi}i∈G. We say
that the quantity x̂ is (δ, c)-Robust Aggregator ((δ, c)-RAgg)
and write x̂ = RAgg(x1, . . . , xn) for some c > 0, if the following
inequality holds:

E
[
∥x̂ − x∥2

]
≤ cδσ2, (1)

where x = 1
|G|

∑
i∈G xi. If additionally x̂ is computed without

the knowledge of σ2, we say that x̂ is (δ, c)-Agnostic Robust
Aggregator ((δ, c)-ARAgg) and write x̂ = ARAgg(x1, . . . , xn).

One can robustify Krum, RFA, and CM using bucketing [1].
Algorithm Bucketing: Robust Aggregation using bucketing [1]

1: Input: {x1, . . . , xn}, s ∈ N – bucket size, Aggr – aggregation
rule

2: Sample random permutation π = (π(1), . . . , π(n)) of [n]
3: Compute yi = 1

s

∑min{si,n}
k=s(i−1)+1 xπ(k) for i = 1, . . . , ⌈n/s⌉

4: Return: x̂ = Aggr(y1, . . . , y⌈n/s⌉)

3. SGD and Variance Reduction

SGD: xk+1 = xk − γgk, gk = 1
n

∑n
i=1 ∇fi,jk

i
(xk)

✗ Variances of the estimators ∇fi,jk
i
(xk) do not go to zero

✗ Byzantines can easily hide in the noise and create a large bias
(even if the aggregation is robust)

SAGA [2]: xk+1 = xk − γgk, gk = 1
n

∑n
i=1 gk

i ,
gk

i = ∇fjk
i
(xk) − ∇fi,jk

i
(wk

i,jk
i
) + 1

m

m∑
j=1

∇fi,j(wk
i,j)

✓ Variances of the estimators gk
i go to zero

✗ Analysis relies on the unbiasedness: E[gk
i | xk] = ∇fi(xk)

SARAH/Geom-SARAH/PAGE [3,4,5]:
xk+1 = xk − γgk, gk = 1

n

∑n
i=1 gk

i ,

gk
i =

∇fi(xk), with prob. p,

gk−1
i + ∇fi,jk

i
(xk) − ∇fi,jk

i
(xk−1), with prob. 1 − p

✓ Variances of the estimators gk
i go to zero

✓ Analysis does not rely on the unbiasedness: E[gk
i | xk] ̸= ∇fi(xk)

How can variance reduction help? It leaves less space for
Byzantines to hide in the noise.

Main Contributions

⋄ New method: Byz-VR-MARINA. We make VR-MARINA
(VR-method with compression) [6] applicable to Byzantine-
robust learning using robust agnostic aggregation [1].

⋄ New SOTA results under more general assump-
tions. Under quite general assumptions (no strong assump-
tions on the compression and second moment of the stochastic
gradient; non-uniform sampling is supported), we prove new
theoretical convergence results that are tight and outperform
known ones when the target accuracy is small enough.

4. Technical Preliminaries

Definition 2: Unbiased Compression

Stochastic mapping Q : Rd → Rd is called unbiased compres-
sor/compression operator if there exists ω ≥ 0 such that for any
x ∈ Rd

E [Q(x)] = x, E
[
∥Q(x) − x∥2

]
≤ ω∥x∥2. (2)

Assumptions

• Smoothness and lower-boundedness: ∀x, y ∈ Rd we have
∥∇f (x) − ∇f (y)∥ ≤ L∥x − y∥ and f∗ = infx∈Rd f (x) > −∞
• ζ2-heterogeneity: 1

G

∑
i∈G ∥∇fi(x) − ∇f (x)∥2 ≤ ζ2 ∀x ∈ Rd

• Global Hessian variance assumption:
1
G

∑
i∈G

∥∇fi(x) − ∇fi(y)∥2 − ∥∇f (x) − ∇f (y)∥2 ≤ L2
±∥x − y∥2

• Local Hessian variance assumption:
1
G

∑
i∈G

E∥∆̂i(x, y) − ∆i(x, y)∥2 ≤ L2
±
b ∥x − y∥2, where ∆i(x, y) =

∇fi(x) − ∇fi(y) and ∆̂i(x, y) is an unbiased mini-batched esti-
mator of ∆i(x, y) with batch size b

5. New Method: Byz-VR-MARINA

Algorithm Byz-VR-MARINA: Byzantine-tolerant VR-MARINA

1: Input: starting point x0, stepsize γ, minibatch size b, probability
p ∈ (0, 1], number of iterations K, (δ, c)-ARAgg

2: for k = 0, 1, . . . , K − 1 do
3: Get a sample from Bernoulli distribution with parameter p: ck ∼

Be(p). Broadcast gk, ck to all workers
4: for i ∈ G in parallel do
5: xk+1 = xk − γgk

6: Set gk+1
i =

∇fi(xk+1), if ck = 1,

gk + Q
(
∆̂i(xk+1, xk)

)
, otherwise,

, where

minibatched estimator ∆̂i(xk+1, xk) of ∇fi(xk+1) − ∇fi(xk);
Q(·) for i ∈ G are computed independently

7: end for
8: gk+1 = ARAgg(gk+1

1 , . . . , gk+1
n )

9: end for

6. Convergence in the Non-Convex Case
Theorem 1
Let the introduced assumptions hold. Assume that 0 <

γ ≤ 1
L+

√
A
, where A = 6(1−p)

p

(
4cδ
p + 1

2G

) (
ωL2 + (1+ω)L2

±
b

)
+

6(1−p)
p

(
4cδ(1+ω)

p + ω
2G

)
L2

±. Then for all K ≥ 0 the point x̂K chosen
uniformly at random from the iterates x0, x1, . . . , xK produced
by Byz-VR-MARINA satisfies

E
[
∥∇f (x̂K)∥2

]
≤ 2Φ0

γ(K + 1)
+ 24cδζ2

p
, (3)

where Φ0 = f (x0) − f∗ + γ
p∥g0 − ∇f (x0)∥2 and E[·] denotes the

full expectation.
• When ζ = 0 (homogeneous data) the method converges asymp-
totically to the exact solution with rate O(1/K)

7. Convergence in PŁ-case
Definition 3: Polyak-Łojasiewicz (PŁ) condition

Function f satisfies Polyak-Łojasiewicz (PŁ) condition with pa-
rameter µ if for all x ∈ Rd there exists x∗ ∈ argminx∈Rdf (x) such
that

∥∇f (x)∥2 ≥ 2µ (f (x) − f (x∗)) . (4)

Theorem 1
Let the introduced assumptions hold and function f satisfies µ-
PŁcondition. Assume that 0 < γ ≤ min

{
1

L+
√

2A
, p

4µ

}
, where A =

6(1−p)
p

(
4cδ
p + 1

2G

) (
ωL2 + (1+ω)L2

±
b

)
+ 6(1−p)

p

(
4cδ(1+ω)

p + ω
2G

)
L2

±.
Then for all K ≥ 0 the iterates produced by Byz-VR-MARINA
satisfy

E
[
f (xK) − f (x∗)

]
≤ (1 − γµ)K Φ0 + 24cδζ2

µ
, (5)

where Φ0 = f (x0) − f∗ + 2γ
p ∥g0 − ∇f (x0)∥2.

• When ζ = 0 (homogeneous data) the method converges linearly
asymptotically to the exact solution

8. Comparison with Prior Work

Setup Method Complexity (NC) Complexity (PŁ)

Hom. data,
no compr.

BR-SGDm [1] 1
ε2 + σ2(cδ+1/n)

bε4 ✗

BR-MVR [1] 1
ε2 + σ

√
cδ+1/n√
bε3 ✗

BTARD-SGD [10] 1
ε2 + n2δσ2

Cbε2 + σ2

nbε4
1
µ + σ2

nbµε + n2δσ
C

√
bµε

Byrd-SAGA [11] ✗ m2

b2(1−2δ)µ2

Byz-VR-MARINA
1+

√
cδm2

b3 + m
b2n

ε2

1+
√

cδm2
b3 + m

b2n

µ

+m
b

Het. data,
no compr.

BR-SGDm [1] 1
ε2 + σ2(cδ+1/n)

bε4 ✗

Byrd-SAGA [11] ✗ m2

b2(1−2δ)µ2

Byz-VR-MARINA
1+

√
cδm2

b2 (1+1
b)+

m
b2n

ε2

1+
√

cδm2
b2 (1+1

b)+
m

b2n

µ

+m
b

Het. data,
compr.

BR-CSGD [12] ✗ 1
µ2

BR-CSAGA [12] ✗ m2

b2µ2(1−2δ)2

BROADCAST [12] ✗ m2(1+ω)3/2

b2µ2(1−2δ)

Byz-VR-MARINA
1+

√
cδ(1+ω)(1+1

b)
pε2

+
√

(1+ω)(1+1
b)√

pnε2

1+
√

cδ(1+ω)(1+1
b)

pµ

+
√

(1+ω)(1+1
b)√

pnµ

+m
b + ω

• Dependencies on numerical constants (and logarithms in PŁ set-
ting), smoothness constants, and initial suboptimality are omitted
• p = min {b/m, 1/(1+ω)} = probability of communication in Byz-VR-
MARINA
• Analyses of BR-SGDm, BR-MVR, BTARD-SGD, BR-CSGD, BR-
CSAGA rely on uniformly bounded variance assumption
• In the het. case, the methods converge only to the error ∼ ζ2

• The result for BROADCAST is derived for ω ≤ µ2(1−2δ)2

56L2(2−2δ2)

9. Experiments

• We consider a logistic regression model with ℓ2-regularization and
non-convex regularization λ

d∑
i=1

x2
i

1+x2
i

• We have 4 good workers and 1 Byzantine worker
• A Little is enough (ALIE) attack [8] is considered: the Byzantine
workers estimate the mean µG and standard deviation σG of the
good updates, and send µG − zσG, z > 0
• Byrd-SVRG – a version of Byrd-SAGA with SVRG-estimator in-
stead of SAGA-estimator
• BR-DIANA – a version of BROADCAST with SGD-estimator in-
stead of SAGA-estimator
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