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1. Byzantine-Robust Optimization

Distributed optimization problem:
1 m

min Zf@ , —> fij(@)
reR4 { ZEQ } m 7=1

e ( is the set of good clients
e 5 is the set of Byzantine workers — the workers that can arbi-

Vieg

trarily deviate from the prescribed protocol (maliciously or not) and
are assumed to be omniscient

e JLIB =

n| is the set of clients participating in training

Main difficulties in Byzantine-robust optimization:

e When functions are arbitrarily heterogeneous, the problem is im-
possible to solve

e [raction of Byzantines d = B/n should be smaller than 1/2

e Standard approaches based on averaging are vulnerable

e Robust aggregation alone does not ensure robustness [1]

2. Robust Aggregation

Popular aggregation rules:

o Krum(wy, ..., o) == argming cq, 12 z;||* [7], where
S; CHx1,...,x,} are n — |B| — 2 closest vectors to z;

e Robust Fed. Averaging: RFA(zy,...,z,) = argmin, .y ., ||z — x|
e Coordinate-wise Median: [CM(xy,...,z,)], = argmin, g > ., [u—[zi
These defenses are vulnerable to Byzantine attacks [8,9]
and do not satisfy the following definition.

Definition 1: (4, ¢)-Robust Aggregator (modification of the definition from [1])

, X, } is such that there exists a subset
G > (1 —=9)n for 6 < 0.5 and there
o Sie Ellle; — ai]Y) < o where

Assume that {x1, 2o, . ..
G C [n] of size |G| =
exists o > 0 such that
the expectation is taken w.r.t. the randomness of {x; };eg. We say
that the quantity 7 is (9, c)-Robust Aggregator ((9, ¢)-RAgg)
and write ¥ = RAgg(xy,...,x,) for some ¢ > 0, if the following
inequality holds:

E || - 7| < cdo” (1)

where ¥ = ﬁl\zz'eg x;. It additionally x is computed without
the knowledge of o2, we say that 7 is (9, c)-Agnostic Robust

Aggregator ((, c)-ARAgg) and write T = ARAgg(xy, ..., x,).

One can robustify Krum, RFA, and CM using bucketing [1].

Algorithm Bucketing: Robust Aggregation using bucketing [1]

1. Input: {z,...,2,}, s € N — bucket size, Aggr — aggregation
rule

2. Sample random permutation 7 = (7w (1),...,m(n)) of |n|

3: Compute y; = 12?11{? ?}+1:L* ) fori=1,...,[n/s]

4. Return: 7 = Aggr(y1, . af‘/f"/ﬂ)

3. SGD and Variance Reduction

SGD: ot = 2t — qgh g =L VF (ah)
X Variances of the estimators V f; (") do not go to zero
X DByzantines can easily hide in the noise and create a large bias

(even if the aggregation is robust)
SAGA [2]: 2"t =zF —vg", ¢" =131 gF,

v/~ Variances of the estimators gF go to zero
X Analysis relies on the unbiasedness: E[gF | %] = V f;(z¥)

SARAH /Geom-SARAH /PAGE [3.4,5]:

o =at —qg" gt =1l

- sz( o, with prob. p,

Ji +Vf’jz( ) — ijjz( F71), with prob. 1 —p

v Vanances of the estimators g* go to zero

C| 2t £V fi(a")

v/ Analysis does not rely on the unbiasedness: E|g;

How can variance reduction help? It leaves less space for
Byzantines to hide in the noise.
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Main Contributions

¢ New method: Byz-VR-MARINA. We make VR-MARINA

(VR-method with compression) [6] applicable to Byzantine-
robust learning using robust agnostic aggregation [1].

o New SOTA results under more general assump-

tions. Under quite general assumptions (no strong assump-

tions on the compression and second moment of the stochastic
gradient; non-uniform sampling is supported), we prove new
theoretical convergence results that are tight and outperform
known ones when the target accuracy is small enough.

4. Technical Preliminaries

Definition 2: Unbiased Compression

Stochastic mapping Q : R? — R? is called unbiased compres-

sor/compression operator if there exists w > 0 such that for any
r € R?

E[Qu) == E[|Q@) -z’ <wllzI>. (2
Sismptions

e Smoothness and lower-boundedness: Vo, y € R? we have
IVf(x) =Vl < Lile —yl| and fi = inf,ega f2) > —00
o (*heterogeneity: &> ;g |V fi(z) — Vf(@)|* < ¢* VreR?
e Global Hessian variance assumption:
é Zg IV fi(z) = Vill* = IV f(z) -
o Zfoced Hessian variance assumption:

= _ZQEH&(%?/) — Ai(z,y)|]* <
1€

Vfi(z) — Vfi(y) and A;(z,y) is an unbiased mini-batched esti-
mator of A;(z,y) with batch size b

VIWIP < Lillz -yl

L3 2 _
||z — yl|*, where Ay(z,y) =

5. New Method: Byz-VR-MARINA

Algorithm Byz-VR-MARINA: Byzantine-tolerant VR-MARINA

1. Input: starting point x', stepsize -, minibatch size b, probability
€ (0, 1], number of iterations K, (0, c)-ARAgg

2. for k=0,1,..., K —1do

3:  Get a sample from Bernoulli distribution with parameter p: ¢ ~
Be(p). Broadcast g”, ¢, to all workers

4. for ¢ € G in parallel do
Rl ok k

5: xr — g
v ; k+1 7 .|‘_‘ _ 17
6: Set gl = f( ) el "ok ", where
g¥ + Q( (" )), otherwise,
minibatched estimator A;(z"t!, z¥) of V f;(zFt) — V f;(zF);
Q(-) for i € G are computed independently
7. end for
s g = ARAgg(gi . gt
o. end for

6. Convergence in the Non-Convex Case

Let the introduced assumptions hold.  Assume that 0 <

Y < oo Where A = L (4;6 n %) (w 124 <1+cz>£i) n
6<1p_ 2 (405<]19+w> + %) L% . Then for all K > 0 the point % chosen

uniformly at random from the iterates z', z!, . .

by Byz-VR-MARINA satisfies

., ! produced

20, 24c0(?

E V@] < —qe + = 3)

— fet 1g" — V f(2")||* and E[-] denotes the

where &y = f(z")
full expectation.

e When ¢ = 0 (homogeneous data) the method converges asymp-
totically to the exact solution with rate O(!/k)

7. Convergence in PL-case

Definition 3: Polyak-t.ojasiewicz (Pt.) condition

Function f satisfies Polyak-t.ojasiewicz (PY) condition with pa-
rameter y if for all z € R? there exists 2* € argmin, gaf(x) such

that
IVF(@)I° > 2u(f(x) = f(z7)) . (4)

Let the introduced assumptions hold and function f satisfies p-
Pt.condition. Assume that 0 < v < min { | } where A =

6(1 —p) (4;5+21G)( I2 1 (1+cg)£2) n 6(1 —p) (4c5(11)+w) )Lg

8. Comparison with Prior Work

Setup Method Complexity (NC) Complexity (Pt.)
BR-SGDm [1] L Tl X
BR-MVR [1] L+ ijs?/” X
n’do? o’ 1 o’ n’do
Hom. data, BTARD-SGD [10] 2 + G+ Lt ;L SNTE
11O Compr' Byrd—SAGA [11] X 52<1T2(5>
2, m 14/ 2
Byz-VR-MARINA “V;j M ¢Z :
3
BR-SGDm [1] 1y ol X
Het. data, Byrd-SAGA [11 X b2(1—20) 112
9 1 o cdm?
P Byz VR-MARINA 1+¢°’i%”‘5<21+b>m W L(LH o
3
BR-CSGD [12] X -
BR-CSAGA [12] X b2u2<ﬂf_2(§>2
Het. data, BROADCAST [12] X )
COTPE 144/ cd(1+w)(1+3) 1+\/05(;:w>(1+5>
pe? o) (11
Byz-VR-MARINA +\/<1+w)<1+%> +\/<1\J/FZTT>LLH6>
i +5 +w

e Dependencies on numerical constants (and logarithms in Pt set-
ting), smoothness constants, and initial suboptimality are omitted
e p = min {¥/m,1/(1+w)} = probability of communication in Byz-VR-
MARINA

e Analyses of BR-SGDm, BR-MVR, BTARD-SGD, BR-CSGD, BR-

CSAGA rely on uniformly bounded variance assumption

e In the het. case, the methods converge only to the error ~ ( 2

e The result for BROADCAST is derived for w < == L(Ql(z 23252>

9. Experiments

e We consider a logistic regression model with fo-regularization and
d

non-convex regularization A »_ 1_”?1 :

e We have 4 good workers an_d 1 Byzantine worker

e A Little is enough (ALIE) attack [8] is considered: the Byzantine
workers estimate the mean pg and standard deviation og of the
good updates, and send pug — zog, z > 0

e Byrd-SVRG — a version of Byrd-SAGA with SVRG-estimator in-
stead of SAGA-estimator

e BR-DIANA — a version of BROADCAST with SGD-estimator in-

stead of SAGA-estimator

T hen for all K > 0 the iterates produced by Byz-VR- I\/IARINA M| ALE M |_:\E'ESGD
SatISfy . o —¥— BR-DIANA
24 5C2 10 10-2 —— Byz-VR-MARINA
K x K & W "
E|f(@") - f@)] < Q=) d+=—= (5 "o s
= —o— SGD =
where &y = f(xo) = Jfo 2_ngo — Vf(ZUO>H2 107° : g;?\(/;RD-mARlNA\-\.\k‘ 107
i —#— Byrd-SVRG o
e When ¢ = 0 (homogeneous data) the method converges linearly 0 5 10 15 20 25 30 0 0 20 30 40
asvmptotically to the exact solution epochs epochs
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