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Distributed Stochastic
Optimization

We consider the optimization problem

min
xPRd

f pxq (1)

where f : Rd
Ñ R is smooth and convex and d is

large. We assume that there is a solution x˚ P Rd of
Problem (1). Problems such as (1) routinely arise in
machine learning and optimization and are solved in
a distributed manner on clusters of computing nodes
typically connected to a central parameter server.

Figure 1:Parameter Server Setting

Stochastic Gradient Descent

One of the most popular methods in practice for solv-
ing (1) is Minibatch Stochastic Gradient De-
scent (SGD). Minibatch SGD applied to problem
(1) takes the form

xt`1 “ xt ´
γt
M

ÿ

1ďmďM
gmt . (2)

Here γt ą 0 is the stepsize used at time t and gmt is an
unbiased estimator of the gradient: E

”

gmt
ı

“ ∇f `

xt
˘.

The stochastic gradients gmt are computed in parallel
by all nodesm, communicated to a parameter server,
which performs (2) and communicates the result to
each of the nodes, then the process is repeated until
convergence.

Linear speedup

We say that a distributed algorithm shows a linear
speedup in the number of nodes M if doubling
the number of nodes leads to halving the time to
convergence. The theoretical analysis of Minibatch
SGD shows that it attains a linear speedup in the
number of nodes M [1].

In Minibatch SGD, we communicate once per com-
puted stochastic gradient. Can we communicate
less?

Local SGD

We sample multiple gradients on each node and take
multiple SGD steps locally then average at the end.
The result is an algorithm that communicates once
every H steps rather than once every step.
Algorithm 1 Local SGD
Input: Stepsize γ ą 0, initial vector x0 “ xm0 for all

m P rM s, synchronization interval H.
1: for t “ 0, 1, . . . do
2: for m “ 1, . . . ,M do
3: Sample local stochastic gradient gmt such that

E
”

gmt | xmt
ı

“ ∇f
´

xmt
¯

.

4: if t ` 1 is a multiple of H then
5: Communicate local nodes to parameter server,

average them and communicate them back to
each node

xmt`1 “
1
m

M
ÿ

j“1
pxjt ´ γg

j
t q.

6: else
7: Take one step of SGD locally on each node

xmt`1 “ x
m
t ´ γgmt .

8: end if
9: end for

10: end for

Assumptions

Assumption 1: f is L-smooth and µ-strongly
convex (we allow µ “ 0). That is, for all x, y P Rd we
have:

f
`

y
˘

`
@∇f `

y
˘

, x ´ y
D

`
µ

2
‖x ´ y‖2

ď f pxq

f pxq ď f
`

y
˘

`
@∇f `

y
˘

, x ´ y
D

`
L

2
‖x ´ y‖2.

Assumption 2: The stochastic gradients
pgmt qtě0,mPrM s are unbiased estimates of the true
gradient with uniformly bounded variance

E
”

gmt
ı

“ ∇f
´

xmt
¯

and
E

„∥∥∥∥∥∥∥g
m
t ´ ∇f

´

xmt
¯∥∥∥∥∥∥∥

2
ď σ2 for all t ě 0 and m P rM s.

Convergence under µ ą 0

Let κ def
“ L{µ ě 1. By properly choosing stepsizes

γt we can obtain for the average of the local iterates
x̂t that E

”

‖x̂t ´ x˚‖2ı
ď ε when the total number of

iterates T and the total number of communication
rounds C def

“ T
M

H are:

T “ Ω̃
¨

˝

σ2

εM

˛

‚ and C “ Ω `

κM
˘

, (3)

where Ω̃ p¨q indicates possibly ignoring polylogarith-
mic factors. Clearly the analysis shows that there is
a linear speedup in the number of nodes M .
Constant number of communications When
the number of nodes M is fixed, we only need a con-
stant number of communication rounds regardless of
the total number of local steps T . This tightens the
previous analysis [2], where C “ Ω

ˆ

κ
c

T
M

M
˙

was
required.

Convergence under µ “ 0

For x̄T “
1

MT

řT
t“1

řM
m“1 x

m
t we have that f pxq´f `

x˚
˘

ď

ε provided that

T “ Ω
¨

˝

σ4

Mε2

˛

‚ and C “ Ω
ˆb

TM 3
˙

.

This result is new: the setting with µ “ 0 was not
considered explicitly in prior work. There is clearly a
linear speedup in the number of nodesM : the to-
tal number of iterations needed halves when M dou-
bles, but we have to pay the price of communicating
more often.

Experimental Results

We run experiments on `2 regularized logistic regres-
sion problem with M “ 20 nodes, each with Intel(R)
Xeon(R) Gold 6146 CPU @3.20GHz core. We set `2
penalty to be 1

n, where n is the dataset size.

0 5000 10000 15000 20000
Communication rounds

10 2

10 1

f(x
)

f*

1 local step
2 local steps
4 local steps
8 local steps
16 local steps
32 local steps

0 20 40 60 80
Time, seconds

10 2

10 1

f(x
)

f*

1 local step
2 local steps
4 local steps
8 local steps
16 local steps
32 local steps

Figure 2:All local iterates converge to a neighborhood within a
small number of communication rounds due to large stepsizes.
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Figure 3:With more local iterations, fewer communication
rounds are required to get to a neighborhood of the solution.
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