Better Communication Complexity for Local SGD

Ahmed Khaled¹ Konstantin Mishchenko² Peter Richtárik²

¹ Cairo University ² KAUST

We consider the optimization problem

 $\min_{x \in \mathbb{R}^d} f\left(x\right)$

(1)

where $f : \mathbb{R}^d \to \mathbb{R}$ is smooth and convex and d is large. We assume that there is a solution $x_* \in \mathbb{R}^d$ of Problem (1). Problems such as (1) routinely arise in machine learning and optimization and are solved in a distributed manner on clusters of computing nodes typically connected to a central parameter server.

Local SGD

We sample multiple gradients on each node and take multiple SGD steps locally then average at the end. The result is an algorithm that communicates once every H steps rather than once every step.

Algorithm 1 Local SGD

Input: Stepsize $\gamma > 0$, initial vector $x_0 = x_0^m$ for all $m \in [M]$, synchronization interval H.

Convergence under $\mu = 0$

For $\bar{x}_T = \frac{1}{MT} \sum_{t=1}^T \sum_{m=1}^M x_t^m$ we have that $f(x) - f(x_*) \leq \varepsilon$ provided that

$$T = \Omega\left(\frac{\sigma^4}{M\varepsilon^2}\right)$$
 and $C = \Omega\left(\sqrt{TM^3}\right)$.

This result is new: the setting with $\mu = 0$ was not considered explicitly in prior work. There is clearly a **linear speedup** in the number of nodes M: the total number of iterations needed halves when M doubles, but we have to pay the price of communicating more often.

- 1: for t = 0, 1, ... do
- 2: for m = 1, ..., M do
- 3: Sample local stochastic gradient g_t^m such that $\mathbb{E}\left[g_t^m \mid x_t^m\right] = \nabla f\left(x_t^m\right).$
- 4: **if** t + 1 is a multiple of H **then**
- 5: Communicate local nodes to parameter server, average them and communicate them back to each node

$$x_{t+1}^m = rac{1}{m} \sum_{j=1}^M (x_t^j - \gamma g_t^j).$$

6: **else**

7: Take one step of SGD locally on each node

 $x_{t+1}^m = x_t^m - \gamma g_t^m.$

8: end if
9: end for
10: end for

Assumptions

Experimental Results

We run experiments on ℓ_2 regularized logistic regression problem with M = 20 nodes, each with Intel(R) Xeon(R) Gold 6146 CPU @3.20GHz core. We set ℓ_2 penalty to be $\frac{1}{n}$, where n is the dataset size.

Figure 1:Parameter Server Setting

Stochastic Gradient Descent

One of the most popular methods in practice for solving (1) is **Minibatch Stochastic Gradient Descent (SGD)**. Minibatch SGD applied to problem (1) takes the form

$$x_{t+1} = x_t - \frac{\gamma_t}{M} \sum_{1 \le m \le M} g_t^m.$$
(2)

Here $\gamma_t > 0$ is the stepsize used at time t and g_t^m is an unbiased estimator of the gradient: $\mathbb{E}[g_t^m] = \nabla f(x_t)$. The stochastic gradients g_t^m are computed in parallel by all nodes m, communicated to a parameter server, which performs (2) and communicates the result to each of the nodes, then the process is repeated until convergence.

Linear speedup

Assumption 1: f is L-smooth and μ -strongly convex (we allow $\mu = 0$). That is, for all $x, y \in \mathbb{R}^d$ we have:

$$f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} ||x - y||^2 \leq f(x)$$

$$f(x) \leq f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2.$$

Assumption 2: The stochastic gradients $(g_t^m)_{t \ge 0, m \in [M]}$ are unbiased estimates of the true gradient with uniformly bounded variance

 $\mathbb{E}\left[g_{t}^{m}\right] = \nabla f\left(x_{t}^{m}\right) \text{ and }$ $\mathbb{E}\left[\left\|g_{t}^{m} - \nabla f\left(x_{t}^{m}\right)\right\|^{2}\right] \leq \sigma^{2} \text{ for all } t \geq 0 \text{ and } m \in [M].$

Convergence under $\mu > 0$

Let $\kappa \stackrel{\text{def}}{=} L/\mu \ge 1$. By properly choosing stepsizes γ_t we can obtain for the average of the local iterates \hat{x}_t that $\mathbb{E}\left[\|\hat{x}_t - x_*\|^2\right] \le \varepsilon$ when the total number of

Figure 2:All local iterates converge to a neighborhood within a small number of communication rounds due to large stepsizes.

Figure 3:With more local iterations, fewer communication rounds are required to get to a neighborhood of the solution.

We say that a distributed algorithm shows a *linear* speedup in the number of nodes M if doubling the number of nodes leads to halving the time to convergence. The theoretical analysis of Minibatch SGD shows that it attains a *linear speedup* in the number of nodes M [1].

In Minibatch SGD, we communicate once per computed stochastic gradient. **Can we communicate less?** iterates T and the total number of communication rounds $C \stackrel{\text{def}}{=} T/H$ are:

 $T = \tilde{\Omega}\left(\frac{\sigma^2}{\varepsilon M}\right)$ and $C = \Omega(\kappa M)$, (3)

where $\tilde{\Omega}(\cdot)$ indicates possibly ignoring polylogarithmic factors. Clearly the analysis shows that there is a linear speedup in the number of nodes M. **Constant number of communications** When the number of nodes M is fixed, we only need a *constant* number of communication rounds regardless of the total number of local steps T. This tightens the previous analysis [2], where $C = \Omega\left(\kappa\sqrt{T/M}\right)$ was required.

References

[1] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao.

Optimal Distributed Online Prediction using Mini-Batches. *arXiv:1012.1367*, 2010.

[2] Sebastian U. Stich.

Local SGD converges fast and communicates little. In *International Conference on Learning Representations*, 2019.

Acknowledgements

Icons used include Computer icon by WPZOOM under Creative Commons (Attribution-Share Alike 3.0 Unported) and the Computer icon by Danilo Demarco.