

MINI-BATCH PRIMAL AND DUAL METHODS FOR SVMS

Martin Takáč Edinburgh University Avleen Bijral TTI-Chicago

Peter Richtárik Edinburgh University

Nati Srebro TTI-Chicago

Stochastic SVM Optimization

- $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n), \|\mathbf{x}_i\| \le 1, y_i \in \pm 1$
- SVM Primal Objective:

$$\min_{\mathbf{w}\in\mathbb{R}^d} \mathcal{P}(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^n \ell(y_i \langle \mathbf{w}, \mathbf{x}_i \rangle) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

where $\ell(z) := [1-z]_+ = \max\{0, 1-z\}$

• SVM Dual Objective: $\max_{\alpha \in \mathbb{R}^n, 0 \le \alpha_i \le 1} \mathcal{D}(\alpha) := \frac{-1}{2\lambda n^2} \alpha^T \mathbf{Q} \alpha + \frac{1}{n} \sum_{i=1}^{n} \alpha_i,$ where $\mathbf{Q} \in \mathbb{R}^{n \times n}$, $\mathbf{Q}_{i,j} = y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$ Mini-Batch SGD

SGD Mini-Batch Update $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta_t \frac{1}{b} \sum_{j \in A_t} \nabla \hat{\mathcal{P}}_j(\mathbf{w}^{(t)})$

Output: $\bar{\mathbf{w}}^{(T)} = \frac{2}{T} \sum_{t=T/2+1}^{T} \mathbf{w}^{(t)}$

- Mini-batching is bad in worst case
- Prior work: speedups only when $\ell(\cdot)$ replaced by a smooth loss

Theorem: With $\eta_t = 1/(\lambda t)$, after

Mini-Batch SDCA

Naïve Mini-Batch SDCA Update $\alpha^{(t+1)} = \alpha^{(t)} + \sum_{j \in A_t} \delta_j^* e_j$

(similar to (Bradley et al. 2011) for ℓ_1 learning)

- Naïve mini-batched SDCA can fail to converge to optimum!
- Parallel updates from correlated $\{\mathbf{x}_i\}$ can overshoot desired point

SGD sequential update

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta_t \nabla \hat{\mathcal{P}}_j(\mathbf{w}^{(t)}),$$

where $\hat{\mathcal{P}}_j(\mathbf{w}^{(t)}) := \ell(y_j \langle \mathbf{w}, \mathbf{x}_j \rangle) + \frac{\lambda}{2} \|\mathbf{w}\|^2$
SDCA sequential update
 $\alpha^{(t+1)} = \alpha^{(t)} + \delta_j^* e_j,$
where $\delta_j^* := \arg \max_{0 \le \alpha_j + \delta_j \le 1} \mathcal{D}(\alpha^{(t)} + e_j \delta_j)$
Methods of choice for large data, but inherently
sequential and difficult to parallelize
Parallelization via "mini-batches": at iteration t ,
instead of a single example j , operate on b random
examples $A_t \subseteq \{1, \dots, n\}, |A_t| = b$
Contributions
Data-dependent (not worst-case) analysis with
non-smooth hinge-loss
 $\sigma^2 = \frac{1}{n} ||X||^2 = \frac{1}{n} ||\sum_{i=1}^n \mathbf{x} \mathbf{x}_i^T|| = \frac{1}{n} ||\mathbf{Q}||$
is a data dependent we controlling

$$T = \frac{\beta_b}{b} \frac{30}{\lambda \epsilon} \quad \text{iterations}$$

of Mini-Batch SGD: $\mathbf{E} \left[\mathcal{P}(\bar{\mathbf{w}}^{(T)}) \right] - \mathcal{P}(\mathbf{w}^*) \le \epsilon$,
where $\beta_b = 1 + (b-1) \left(\frac{n}{n-1} \sigma^2 - \frac{1}{n-1} \right)$.
• Worst: $\sigma^2 = 1$ (i.e., $\beta_b = b$) \Rightarrow no speedup
(\mathbf{x}_i co-linear—data concentrated on single 1d line)
• "Best": $\sigma^2 = 1/n$ (i.e., $\beta_b = 1$) \Rightarrow linear speedup
(\mathbf{x}_i orthogonal—no correlations between points)
• Realistic: $\sigma^2 < 1 \Rightarrow$
 $\beta_b = O(1)$ and linear speedup until $b = O(1/\sigma^2)$.
Proof sketch
• For a projection $v_{[A]}$ of any $v \in \mathbb{R}^n$ onto b random
coordinates $A \subset \{1, \dots, n\}, |A| = b$:
 $\mathbf{E}[v_{[A]}^T Q v_{[A]}] \le \frac{b}{n} \beta_b ||v||^2$.

Safe Mini-Batch SDCA Update

$$\alpha^{(t+1)} = \alpha^{(t)} + \sum_{j \in A_t} \delta_j^{\beta} e_j$$

$$\delta_j^{\beta} := \arg \max_{0 \le \alpha_j + \delta_j \le 1} \mathcal{D}(\alpha^{(t)} + e_j \delta_j) + \frac{\beta - Q_{jj}}{2\lambda n^2} \delta_j^2$$
Stepsize 1/ β (not present in standard SDCA) needed to ensure convergence:
Theorem: With $\beta = \beta_b$, after

$$\Gamma = 2\frac{n}{b}\log\left(\frac{2\lambda n}{\beta_b} + 2\right) + \frac{\beta_b}{b}\frac{8}{\lambda\epsilon}$$

iterations of Safe SDCA:

 $\mathbf{E}[\mathcal{P}(\mathbf{w}(\bar{\alpha}))] - \mathcal{P}(\mathbf{w}^*) \leq \mathbf{E}[\mathcal{P}(\mathbf{w}(\bar{\alpha})) - \mathcal{D}(\bar{\alpha})] \leq \epsilon,$ where $\bar{\alpha} = \frac{2}{T} \sum_{t=T/2+1}^{T} \alpha^{(t)}, \mathbf{w}(\alpha) := \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i.$

Proof Sketch:

τO

• Modification of Shalev-Shwartz & Zhang (JMLR 2013; duality gap analysis) and Richtárik & Takáč (arXiv:1212.0873; parallelization)

- is a data-dependent quantity controlling speedups
- Both for **SGD** and **SDCA**
- Naïve **SDCA** mini-batching **might** fail! Our modifications make it work and lead to parallelization speedups

iclusion: $\mathbf{E}\left[\left\|\frac{1}{b}\sum_{j\in A_t}\nabla\hat{\mathcal{P}}_j(\mathbf{w}^{(t)})\right\|^2\right] = \mathbf{E}\left[\left\|\frac{1}{b}\sum_{i\in A}\boldsymbol{\chi}_i y_i \mathbf{x}_i\right\|^2\right]$ $= rac{1}{b^2} \mathbf{E}[oldsymbol{\chi}_{[A]}^T \mathbf{Q} oldsymbol{\chi}_{[A]}] \leq rac{1}{b^2} rac{b}{n} eta_b \|oldsymbol{\chi}\|^2 \leq rac{eta_b}{b},$

where $\chi_i = 1$ if $y_i \langle \mathbf{w}, \mathbf{x}_i \rangle < 1$ and $\chi_i = 0$ otherwise

• Standard SGD analysis + refined subgradient bound

Experimental results

• Where does
$$\sigma^2$$
 come in?
 $\mathbf{E}[\delta_{[A]}^{\top}Q\delta_{[A]}] \leq \frac{b}{n}\beta_b \|\delta\|^2 = \beta_b \mathbf{E}[\|\delta_{[A]}\|^2].$

- Stepsize of $\beta = \beta_b$ might be too conservative.
- Might want to avoid calculating (or estimating) σ^2
- We suggest **Aggressive** variant of SDCA, where β is dynamically tuned to get

 $\mathbf{E}[\delta_{[A]}^{\top}Q\delta_{[A]}] \approx \beta \,\mathbf{E}[\|\delta_{[A]}\|^2]$

