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1. The Problem
We are interested in solving the optimization problem

min
x∈Rn

φ(x) (P)

where φ(x) is differentiable and γ-strongly convex wrt a weighted Euclidean
norm with weights v1, . . . , vn > 0. That is, for all x, h ∈ Rn,

φ(x+ h) ≥ φ(x) +

n∑
i=1

∇iφ(x)hi +
γ

2

n∑
i=1

vih
2
i , (1)

where ∇iφ(x) = eTi ∇φ(x) and ei is the ith unit coordinate vector.

2. The Algorithm (’NSync)
Pre-processing:
1. Assign a probability pS ≥ 0 to every subset S of {1, . . . , n} such that

∑
S pS = 1

2. For i = 1, 2, . . . , n we pick a stepsize wi > 0

Algorithm (‘NSync)

Input: Initial point x0 ∈ Rn
for k = 0, 1, 2, . . . do

1. Choose random Ŝ ⊆ {1, 2, . . . , n} such that Prob(Ŝ = S) = pS
2. xk+1 ← xk −

∑
i∈Ŝ

1
wi
∇iφ(xk)ei

3. Nonuniform ESO

Assumption: We assume that φ, Ŝ admit the following nonuniform expected sep-
arable overapproximation: For all x, h ∈ Rn

E

φ
x+

∑
i∈Ŝ

hiei

 ≤ φ(x) +
n∑
i=1

pi(∇φ(x))ihi +
1

2

n∑
i=1

piwih
2
i . (2)

where pi = Prob(i ∈ Ŝ) =
∑
S:i∈S pS .

4. Convergence Theorem

Theorem 1: Iteration Complexity Guarantees

Let (1) and (2) be satisfied. Choose x0 ∈ Rn, 0 < ε < φ(x0) − φ∗ and
0 < ρ < 1, where φ∗ := minx φ(x). Let

Λ := max
i

wi
pivi

. (3)

If {xk} are the random iterates generated by ‘NSync, then

K ≥ Λ

γ
log

(
φ(x0)− φ∗

ερ

)
=⇒ Prob(φ(xK)− φ∗ ≤ ε) ≥ 1− ρ. (4)

Moreover, we have the lower bound Λ ≥ (
∑
i
wi

vi
)/E[|Ŝ|].

5. Application
Consider problem (P) with φ of the form

φ(x) := f(x) +
γ

2

n∑
i=1

vix
2
i . (5)

Smoothness Assumption: f has Lipschitz gradient wrt the coordinates. That
is, for some Li > 0 and all x ∈ Rn and t ∈ R: |∇if(x)−∇if(x+ tei)| ≤ Li|t|.

Partial Separability Assumption: f(x) =
∑
J∈J fJ(x), where fJ are differen-

tiable convex functions such that fJ depends on coordinates i ∈ J ⊆ {1, 2, . . . , n}
only. Let ω := maxJ |J |. We say that f is separable of degree ω.

Nonuniform sampling Ŝ. Fix τ ∈ {1, . . . , n} and c ≥ 1 and let S1, . . . , Sc be
a collection of (possibly overlapping) subsets of {1, . . . , n} such that |Sj | ≥ τ for
all i and ∪cj=1Sj = {1, . . . , n}. Moreover, let q = (q1, . . . , qc) > 0 be a probability

vector. Now, Ŝ is generated as follows:

1. Pick j ∈ {1, . . . , c} with probability qj ,

2. Draw Ŝj ⊆ Sj with cardinality τ , uniformly at random.

Theorem 2: ESO Parameters

Under assumptions mentioned above, (2) holds with

wi ≥ w∗i := Li+vi
pi

∑c
j=1 qj

τ
|Sj |δij

(
1 +

(τ−1)(ωj−1)
max{1,|Sj |−1}

)
, i ∈ {1, . . . , n},

(6)

where ωj := maxJ∈J |J ∩ Sj | ≤ ω, and δij =

{
1, if i ∈ Sj ,
0, othewise.

7. Experiments
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LEFT: A ∈ R2×30, γ = 1, v1 = 0.05, vi = 1 for i 6= 1 and Li = 1 for all i. We
compare the US method (pi = 1/n, blue) with the OS method (pi are optimal,
red). Dashed lines = 95% confidence intervals (line in the middle is the average).

RIGHT: Nonuniform serial (NS) method can be faster than the fully parallel
(FP) variant (m = 8, n = 10).

6. Optimal Probabilities
We can design optimal probabilities using (6) for a
sampling (characterized by the sets Sj and probabil-
ities qj) that minimizes Λ, which in view of (4) opti-
mizes the convergence rate of the method.

Serial setting. Let c = n, with Si = {i},
Prob(|Ŝ| = 1) = 1 and pi = qi for all i ∈ {1, . . . , n}.
From (6) we get wi = w∗i = Li + vi.
Minimizing Λ in (3) over the probability vector p gives
the optimal probabilities (we refer to this as the opti-
mal serial (OS) method) and optimal complexity

p∗i =
(Li + vi)/vi∑
j(Lj + vj)/vj

, ΛOS = n+
∑
i

Li

vi
.

Note that the uniform sampling, pi = 1/n for all i,
leads to ΛUS := n+nmaxj Lj/vj (we call this the uni-
form serial (US) method), which can be much larger
than ΛOS .

Fully Parallel (FP) setting. Set c = 1 and τ = n,
which yields ΛFP = ω+ωmaxj Lj/vj . Since ω ≤ n, it
is clear that ΛUS ≥ ΛFP . However, for large enough
ω, we have ΛFP ≥ ΛOS .

The optimal serial method can be faster
than the fully parallel method!

Parallel setting. Fix τ and sets Sj , j = 1, 2, . . . , c,

and define θ := maxj

(
1 +

(τ−1)(ωj−1)
max{1,|Sj |−1}

)
. Consider

running ‘NSync with stepsizes wi = θ(Li + vi).
The complexity of ‘NSync is determined by

Λ = maxi
wi

pivi
= θ

τ maxi

(
1 + Li

vi

)(∑c
j=1 qj

δij
|Sj |

)−1
.

The probability vector q minimizing this quantity
can be computed by solving a linear program with
c+1 variables (q1, . . . , qc, α), 2n linear inequality con-
straints and a single linear equality constraint.
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