

We are

$$\min_{x \in \mathbb{R}^n} \phi(x)$$

where norm

5. A PPLICATION
5. A PPLICATION
5. Consider problem

$$\frac{m_{in}}{c_{in}}\phi(x) \qquad (P)$$
(creatiable and γ -strongly convex with a weighted Euclidean
is $v_1, \ldots, v_n > 0$. Thus is, for all $x, h \in \mathbb{R}^n$,
 $g(x + h) > g(x) + \sum_{i=1}^n \nabla_i \phi(x)h_i + \frac{\gamma}{2} \sum_{i=1}^n v_i h_i^2$. (1)
 $\frac{1}{c_i} (or some $L_i > 0$ and $u > c I$
5. Smoothness Assumption: f
is, for some $L_i > 0$ and $u > c I$
5. Smoothness Assumption: f
is, for some $L_i > 0$ and $u > c I$
5. Smoothness Assumption: f
is, for some $L_i > 0$ and $u > c I$
5. Smoothness Assumption: f
is, for some $L_i > 0$ and $u > c I$
5. Smoothness Assumption: f
is, for some $L_i > 0$ and $u > c I$
5. Smoothness Assumption: f
is, for some $L_i > 0$ and $u > c I$
5. Smoothness Assumption: f
is, for some $L_i > 0$ and $u > c I$
5. Smoothness Assumption: f
is, for some $L_i > 0$ and $u > c I$
5. Smoothness Assumption: f
is, for some $L_i > 0$ and $u > c I$
5. Smoothness Assumption: f
is (or some $L_i > 0$ and $u > c I$
5. Smoothness Assumption: f
is (or some $L_i > 0$ and $L_i > 0$ ($u > 0$)
5. Smoothness Assumption: f of $u > 0$ ($u > c = 0$)
5. Smoothness Assumption: f of $u = 0$, $u = max J_i > 0$
5. Smoothness Assumption: f is generated as i
1. Fick $j \in \{1, \ldots, n\}$ with p
2. Draw $\hat{S}_i \subseteq S_i$ with cardin
 $w_i > w_i^* := \frac{L_i + w_i \sum_{j = 1}^n y_j} w_i h_j^2$.
5. States Ps .
5. States Ps .$

where

Pre-p

1. Assi 2. For

Algor

Input

for k

1. C 2. x_1

3.

Assur arable

15. APPL
16. PROBLEM
16. PROBLEM
16. Matter extend in solving the optimization problem

$$\lim_{x \in \mathbb{T}^{n}} \phi(x) \qquad (P)$$
17. Consider pro-

$$\int_{x}^{\infty} (x) = e_{1}^{x} \nabla \phi(x) = 0$$
That is, for all $x_{1} h \in \mathbb{R}^{n}$,

$$\phi(x + h) \geq \phi(x) = \sum_{i=1}^{n} \nabla_{i} \phi(x) h_{i} + \frac{\gamma}{2} \sum_{i=1}^{n} v_{i} h_{i}^{2}$$
(1)

$$\int_{i}^{1} \phi(x) = e_{1}^{x} \nabla \phi(x) \text{ and } e_{i} \text{ is the ith unit coordinate vector.}$$
10. ALGORITHM ('NSYNC)
11. Provide a slepsize $w_{i} \geq 0$
in a probability $p_{0} \geq 0$ to every subset S of $\{1, \ldots, n\}$ such that $\sum_{g} p_{g} = 1$
11. Provide a slepsize $w_{i} \geq 0$
11. Prove a slepsize $w_{i} \geq 0$
11. P

where

Le

$$\Lambda := \max_i \frac{w_i}{p_i v_i}.$$

If

Moreo

ON OPTIMAL PROBABILITIES IN STOCHASTIC COORDINATE DESCENT METHODS — 'NSYNC

Peter Richtárik

[CATION]

2000

Iteration k

University of Edinburgh

Martin Takáč

oblem (P) with ϕ of the form

$$\phi(x) := f(x) + \frac{\gamma}{2} \sum_{i=1}^{n} v_i x_i^2.$$

ss Assumption: f has Lipschitz gradient wrt the coordinates. That $L_i > 0$ and all $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$: $|\nabla_i f(x) - \nabla_i f(x + te_i)| \leq L_i |t|$.

parability Assumption: $f(x) = \sum_{J \in \mathcal{J}} f_J(x)$, where f_J are differenex functions such that f_J depends on coordinates $i \in J \subseteq \{1, 2, \ldots, n\}$ $:= \max_J |J|$. We say that f is separable of degree ω .

m sampling \hat{S} . Fix $\tau \in \{1, \ldots, n\}$ and $c \geq 1$ and let S_1, \ldots, S_c be of (possibly overlapping) subsets of $\{1, \ldots, n\}$ such that $|S_j| \ge \tau$ for $_{=1}S_j = \{1, \ldots, n\}$. Moreover, let $q = (q_1, \ldots, q_c) > 0$ be a probability , S is generated as follows:

 $\in \{1, \ldots, c\}$ with probability q_i ,

 $\hat{S}_i \subseteq S_i$ with cardinality τ , uniformly at random.

n 2: ESO Parameters

sumptions mentioned above, (2) holds with

$$\psi_i^* := \frac{L_i + \psi_i}{p_i} \sum_{j=1}^c q_j \frac{\tau}{|S_j|} \delta_{ij} \left(1 + \frac{(\tau - 1)(\omega_j - 1)}{\max\{1, |S_j| - 1\}} \right), \quad i \in \{1, \dots, n\},$$
(6)
$$j := \max_{J \in \mathcal{J}} |J \cap S_j| \le \omega, \text{ and } \delta_{ij} = \begin{cases} 1, & \text{if } i \in S_j, \\ 0, & \text{othewise.} \end{cases}$$

 $\mathbb{R}^{2 \times 30}, \gamma = 1, v_1 = 0.05, v_i = 1 \text{ for } i \neq 1 \text{ and } L_i = 1 \text{ for all } i.$ We US method $(p_i = 1/n, \text{ blue})$ with the OS method $(p_i \text{ are optimal})$ 1 lines = 95% confidence intervals (line in the middle is the average). Nonuniform serial (NS) method can be faster than the fully parallel

(5)

than Λ_{OS} .

 $\Lambda = m$

The probability vector q minimizing this quantity can be computed by solving a linear program with c+1 variables $(q_1, \ldots, q_c, \alpha), 2n$ linear inequality constraints and a single linear equality constraint.

0.	N
[1]	Ric
	sto
[2]	Ric
	ods
[3]	Ric
	izec
	com

MATHEMATICS FOR VAST DIGITAL R E S O U R C E S

6. Optimal Probabilities

We can *design* optimal probabilities using (6) for a sampling (characterized by the sets S_i and probabilities q_j) that *minimizes* Λ , which in view of (4) *optimizes the convergence rate* of the method.

Serial setting. Let c = n, with $S_i = \{i\}$, Prob(|S| = 1) = 1 and $p_i = q_i$ for all $i \in \{1, ..., n\}$. From (6) we get $w_i = w_i^* = L_i + v_i$.

Minimizing Λ in (3) over the probability vector p gives the *optimal probabilities* (we refer to this as the *opti*mal serial (OS) method) and optimal complexity

$$p_i^* = \frac{(L_i + v_i)/v_i}{\sum_j (L_j + v_j)/v_j}, \ \Lambda_{OS} = n + \sum_i \frac{L_i}{v_i}.$$

Note that the uniform sampling, $p_i = 1/n$ for all i, leads to $\Lambda_{US} := n + n \max_i L_i / v_i$ (we call this the *uni*form serial (US) method), which can be much larger

Fully Parallel (FP) setting. Set c = 1 and $\tau = n$, which yields $\Lambda_{FP} = \omega + \omega \max_j L_j / v_j$. Since $\omega \leq n$, it is clear that $\Lambda_{US} \geq \Lambda_{FP}$. However, for large enough ω , we have $\Lambda_{FP} \geq \Lambda_{OS}$.

The optimal serial method can be faster than the fully parallel method!

Parallel setting. Fix τ and sets S_j , $j = 1, 2, \ldots, c$, and define $\theta := \max_j \left(1 + \frac{(\tau - 1)(\omega_j - 1)}{\max\{1, |S_j| - 1\}} \right)$. Consider running 'NSync with stepsizes $w_i = \theta(L_i + v_i)$. The complexity of 'NSync is determined by

$$\max_{i} \frac{w_{i}}{p_{i}v_{i}} = \frac{\theta}{\tau} \max_{i} \left(1 + \frac{L_{i}}{v_{i}}\right) \left(\sum_{j=1}^{c} q_{j} \frac{\delta_{ij}}{|S_{j}|}\right)^{-1}$$

8. References

chtárik, P. and Takáč, M.: On optimal probabilities in chastic coordinate descent methods, 2013

- chtárik, P., Takáč, M.: Parallel coordinate descent methfor big data optimization, 2012
- chtárik, P., Takáč, M.: Iteration complexity of randoml block-coordinate descent methods for minimizing a mposite function, Mathematical Programming, 2012