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5. APPLICATION 6. OPTIMAL PROBABILIT

We are interested in solving the optimization problem Consider problem (P) with ¢ of the form

1. THE PROBLEM

We can design optimal probabilities using (6) for a
sampling (characterized by the sets S, and probabil-

;IliI}L o(x) (P) | v — ) ities ¢;) that minimizes A, which in view of (4) opti-
I =" I dlw) = fz) + 9 z:Zl Vi (5) mizes the convergence rate of the method.
where ¢(x) is differentiable and «-strongly convex wrt a weighted Euclidean
norm with weights vq,...,v,, > 0. That is, for all z, h € R", Smoothness Assumption: f has Lipschitz gradient wrt the coordinates. That Serial setting. Let ¢ = n, with Si = i},
. . is, for some L; >0 and all x e R and t € R: |V, f(x) — V,;f(z + te;)| < Lift|. Prob(|S|=1)=1and p; =¢; for all i € {1,...,n}.
(x+h) > ¢(x) + Z Vip(z)h; + % Z vih;, (1) Partial Separabil.ity Assumption: f(z) =) ;.7 [ J (), Where /7 are differen- ﬁ?n?rrfiiznvgeAgfi (B;U:)mrut]ile pI%be?;iity vector p gives
i=1 i=1 tiable convex functions such that f; depends on coordinates i € J C {1,2,...,n}

the optimal probabilities (we refer to this as the opti-

only. Let w := max |J|. We say that f is separable of degree w. mal serial (OS) method) and optimal complezity

where V;¢(x) = e/ Vé(x) and e; is the i¢th unit coordinate vector.

Nonuniform sampling S. Fix 7 € {1,...,n} and ¢ > 1 and let Si,...,S, be L \/
; a collection of (possibly overlapping) subsets of {1,...,n} such that |S;| > 7 for x i T Vi)/Vi Ao — L;
P; = ) — N T v
2. THE ALGORITHM ( NSYNC) all © and U5_;S5; = {1,...,n}. Moreover, let ¢ = (q1,...,49.) > 0 be a probability 2 (Lj +v5)/v; o 2; 7’
Pre-processing: vector. Now, S is generated as follows: - - _ :
1. Assign a probability ps > 0 to every subset S of {1,...,n} such that > .psg =1 i\TOZe tthit the unz;jorm safrzpl/mg,( bi _lllt/}?' f;)}i all "
2 Fori=1.2.... ick a steps . >0 1. Pick j € {1,...,c} with probability ¢;, €ads 10 Ay g = nnmax; L;/v; (We Call thiS Lhe uni-
| DT DS TR DIGR A DR | { } g form serial (US) method), which can be much larger
Algorithm (‘NSync) 2. Draw S; C S; with cardinality 7, uniformly at random. than Apg.

Input: Initial point o € R"

for k=0.1.2 do Theorem 2: ESO Parameters Fully Parallel (FP) setting. Se/t c=1and 7 = n,
o T 8 J _ which yields App = w+wmax; L;/v;. Since w < n, it
; S:IOOS: rxindozr:n ° 1 {Vl ’;’xk)én} such that Prob(5 = 5) = ps Under assumptions mentioned above, (2) holds with is clear that A;g > App. However, for large enough

) 41 o ieS’ w; ) )

w, we have App > Aps.

_ Li+wv; C T (1) (w,;—1) '
05 Zg:l q~7|S_J|57’] (1 | maX{1,|Sj-|—1}) ] 1 & {1, “ .. ,n},

4 )
3. NONUNIFORM ESO o (6) The optimal serial method can be faster
Assumption: We assume that ¢, S admit the following nonuniform expected sep- where w; = max e 7 |J N S;| < w, and 6;; = 1, ifi ey, than the fully parallel method!
arable overapproximation: For all x,h € R" ’ e / 0, othewise. h 7

! i : !
Elo|x+ Z hie; | | < o(x) + ZPi(qu(w))ihz‘ + % Zpiwih?- (2)
i=1

i€S =1

Parallel setting. Fix 7 and sets S;, j = 1,2,...,¢c,
and define 0 := max; (1 | (T—Dlw; —1) ) Consider

maX{lvlsj [—1}
running ‘NSync with stepsizes w; = 0(L; + v;).

where p;, = Prob(i € §) =% quicg DS 10 — = 10 The complexity of ‘NSync is determined by
| ‘ — Uniform Serial .
.. |—Optimal Serial e A = maxs 2 — 9 max, (1 n &) (ZC'— q5_a) |
4. CONVERGENCE THEOREM N S
: : TR The probability vector ¢ minimizing this quantity
Theorem 1: Iteration Complexity Guarantees can be computed by solving a linear program with
. . T c+ 1 variables (q1, ..., q., @), 2n linear inequality con-
Let (1) and (2) be satisfied. Choose zg € R", 0 < € < ¢(x9) — ¢* and ; T straints and a single lin;ar equality constraint.
0 < p < 1, where ¢* := min, ¢(x). Let N
. —Fully Parallel
w
A= Hhax p; (3) . ; . \ —Serial Nonuniform 8. REFERENCES
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1 v;
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