
Distributed Second Order Methods with Fast Rates and Compressed Communication
Rustem Islamov1, 2 Xun Qian1 Peter Richtárik1

1KAUST 2MIPT

The Problem

min
x∈Rd

[
P (x) := f (x) + λ

2
‖x‖2

]
. (1)

Function f is convex, and has an “average of averages” structure:

f (x) := 1
n

n∑
i=1

fi(x), fi(x) := 1
m

m∑
j=1

fij(x), (2)

and λ ≥ 0 is a regularization parameter. Each fij is a function of
the form: fij(x) := ϕij(a>ijx). The Hessian of fij at point x is

Hij(x) := hij(x)aija>ij, hij(x) := ϕ′′ij(a>ijx). (3)
The Hessian Hi(x) of local functions fi(x) and the Hessian H(x) of
f can be represented as linear combination of one-rank matrices.

Assumptions

We assume that Problem (1) has at least one optimal solution x∗.
For all i and j, ϕij is γ-smooth, twice differentiable, and its second
derivative ϕ′′ij is ν-Lipschitz continuous.

Main goal

Our goal is to develop a communication efficient Newton-type
method for distributed optimization.

Naive distributed implementation of
Newton’s method

Newton’s step: xk+1 (1)= xk −
(
H(xk) + λI

)−1
∇P (xk).

Each node: computes the local Hessian Hi(xk) and gradient
∇fi(xk), then sends them to the server.
Server: averages the local Hessians and gradients to produce H(xk)
and ∇f (xk), respectively, adds λI to H(xk) and λxk to ∇f (xk),
then performs Newton step. Next, it sends xk+1 back to the nodes.
Pros: • Fast local quadratic convergence rate

• Rate is independent on the condition number
Cons: • Requires O(d2) floats to be communicated by each worker

to the server, where d is typically very large

NEWTON-STAR (NS)

Assume that the server has access to coefficients hij(x∗) for all i and
j, i.e access to the Hessian H(x∗).
Step of NEWTON-STAR: xk+1 = xk−(H(x∗) + λI)−1∇P (xk).

Theorem 1 (Convergence of NS)

Assume that H(x∗) � µ∗I for some µ∗ ≥ 0 and that µ∗+λ > 0.
Then for any starting point x0 ∈ Rd, the iterates of NEWTON-
STAR satisfy the following inequality:∥∥∥xk+1 − x∗

∥∥∥ ≤ ν
2(µ∗+λ) ·

(
1
nm

n∑
i=1

m∑
j=1
‖aij‖3

)
·
∥∥∥xk − x∗∥∥∥2

.

Pros: • Fast local quadratic convergence rate
• Rate is independent on the condition number
• Communication cost is O(d) per-iteration

Cons: • Cannot be implemented in practice

NEWTON-LEARN

How to address the communication bottleneck?
• Compressed communication
• Taking advantage of the structure of the problem
In NEWTON-LEARN we maintain a sequence of vectors

hki = (hki1, . . . , hkim) ∈ Rm, (4)
for all i = 1, . . . , n throughout the iterations k ≥ 0, with the goal
of learning the values hij(x∗) for all i, j:

hij(xk)→ hij(x∗) as k → +∞. (5)
Using hkij ≈ hij(x∗), we can estimate the Hessian H(x∗) via

H(x∗) ≈ Hk := 1
n

n∑
i=1

Hk
i , Hk

i := 1
m

m∑
j=1

hkijaija
>
ij. (6)

Compressed learning

Compression operator: A randomized map C : Rm → Rm

is a compression operator (compressor) if there exists a constant
ω ≥ 0 such that for all x ∈ Rm

E [C(x)] = x, E
[
‖C(x)‖2

]
≤ (ω + 1)‖x‖2. (7)

Random sparsification (random-r) [1]: Compressor defined
as

C(x) := m

r
· ξ ◦ x, (8)

where ξ ∈ Rm is a random vector distributed uniformly at random
on the discrete set {y ∈ {0, 1}m : ‖y‖0 = r}. The variance param-
eter associated with this compressor is ω = m

r − 1.

NEWTON-LEARN: NL1

Assumption: We assume that each ϕij(x) is convex, and λ > 0.

Learning the coefficients: the idea

We design a learning rule for vectors hki via the DIANA
trick [2] :

hk+1
i =

[
hki + ηCki

(
hi(xk)− hki

)]
+
, (9)

where η > 0 is a learning rate, and Cki is a freshly sampled
compressor by node i at iteration k.

Main properties: • hkij ≥ 0 for all i, j
• update is sparse: ‖hk+1

i − hki ‖0 ≤ s, where
s = O(1)
• Hk � 0

Each node: Computes update hk+1
i =

[
hki + ηCki

(
hi(xk)− hki

)]
+

and gradient ∇fi(xk). Then the node broadcasts the gradient, up-
date hk+1

i − hki and data points aij for which hk+1
ij − hkij 6= 0.

Server: averages the local gradients to produce ∇f (xk) and con-
structs Hk via (6). Then it performs a Newton-like step:

xk+1 = xk −
(
Hk + λI

)−1 (
∇f (xk) + λxk

)
, (10)

and finally broadcasts xk+1 back to the nodes.
Pros • Local linear and superlinear rates

• Rates are independent on the condition number
• Communication cost O(d) per iteration

Algorithm 1: NL1: NEWTON-LEARN (λ > 0 case)
Parameters: learning rate η > 0
Initialization: x0 ∈ Rd; h0

1, . . . , h
0
n ∈ Rm

+ ;
H0 = 1

nm

∑n
i=1
∑m

j=1 h
0
ijaija

>
ij ∈ Rd×d

for k = 0, 1, . . . do
Broadcast xk to all workers
for each node i = 1, . . . , n do

Compute local gradient ∇fi(xk)
hk+1
i = [hki + ηCki (hi(xk)− hki)]+ Send ∇fi(xk), hk+1

i − hki
and corresponding aij to server

end
xk+1 = xk −

(
Hk + λI

)−1
(

1
n

n∑
i=1
∇fi(xk) + λxk

)
Hk+1 = Hk + 1

nm

n∑
i=1

m∑
j=1

(hk+1
ij − hkij)aija>ij

end

Convergence theory

The analysis relies on the Lyapunov function

Φk
1 =

∥∥∥xk − x∗∥∥∥2
+ 1
ηnmν2R2H

k, Hk =
n∑
i=1

∥∥∥hki − hi(x∗)∥∥∥2
,

where R = max
i,j
‖aij‖.

Theorem 2 (convergence of NL1)

Theorem 2. Let each ϕij is convex, λ > 0, and η ≤ 1
ω+1.

Assume that ‖xk − x∗‖2 ≤ λ2

12ν2R6 for all k ≥ 0. Then for
Algorithm 1 we have the inequalities

E[Φk
1] ≤ θk1Φ0

1,

E
[
‖xk+1 − x∗‖2

‖xk − x∗‖2

]
≤ θk1

(
6η + 1

2

)
ν2R6

λ2 Φ0
1,

where θ1 = 1−min
{
η
2,

5
8

}
, which is independent on the condi-

tion number.

Assumption on ‖xk−x∗‖ can be relaxed using the following lemma:

Lemma 1

Assume hkij is a convex combination of {hij(x0), . . . , hij(xk))}
for all i, j and k. Assume ‖x0 − x∗‖2 ≤ λ

12ν2R6. Then

‖xk − x∗‖2 ≤ λ2

12ν2R6for all k > 0.

It is easy to verify that if we choose h0
ij = hij(x0), use the random

sparsification compressor (8) and η ≤ 1
ω+1, then hkij is always a

convex combination of {hij(x0), . . . , hij(xk)} for k > 0.

NEWTON-LEARN: NL2

We additionally develop a modified method (NL2) which handles
the case where P is µ-strongly convex, |hkij| ≤ γ, and λ ≥ 0.
Pros: • Local linear and superlinear rates

• Rates are independent on the condition number
• O(d) bits are communicated per iteration

CUBIC-NEWTON-LEARN

We also constructed a method (CNL) with global convergence guar-
antees using cubic regularization [3].
Pros: • Local linear and superlinear rates

• Global linear rate in the strongly convex case and
global sublinear rate in the convex case
• Rates are independent on the condition number
• O(d) bits are communicated per iteration

Experiments

222 225 228 231 234
communicated bits

10-14

10-12

10-10

10-8

10-6

10-4

10-2

P
(x

k
)
−
P
(x

∗
)

NL1, r= 1

NL2, r= 1, p= 1/20

BFGS

220 223 226 229 232
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x

k
)
−
P
(x

∗
)

NL1, r= 1

NL2, r= 1, p= 1/20

BFGS

(a) w8a, λ = 10−3 (b) a9a, λ = 10−4

217 220 223 226 229
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x

k
)
−
P
(x

∗
)

NL1, r= 1

NL2, r= 1, p= 1/20

ADIANA-NC
ADIANA-RS, r= d/4

ADIANA-RD, s=
√
d

218 221 224 227 230
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x

k
)
−
P
(x

∗
)

NL1, r= 1

NL2, r= 1, p= 1/20

ADIANA-NC
ADIANA-RS, r= d/4

ADIANA-RD, s=
√
d

(c) phishing, λ = 10−3 (d) a7a, λ = 10−4

219 221 223 225
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x

k
)
−
P
(x

∗
)

NL1, r= 1

NL2, r= 1, p= 1/20

DINGO

221 223 225 227 229 231
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x

k
)
−
P
(x

∗
)

NL1, r= 1

NL2, r= 1, p= 1/20

DINGO

(e) a2a, λ = 10−3 (f) phishing, λ = 10−5

218 221 224 227 230 233
communicated bits

10-15

10-12

10-9

10-6

10-3

100

103

P
(x

k
)
−
P
(x

∗
)

CNL, r= 1, p= 1/20

DCGD-NC
DCGD-RS, r= d/4

DIANA-NC
DIANA-RS, r= d/4

218 221 224 227 230 233
communicated bits

10-15

10-12

10-9

10-6

10-3

100

103

P
(x

k
)
−
P
(x

∗
)

CNL, r= 1, p= 1/20

DCGD-NC
DCGD-RS, r= d/4

DIANA-NC
DIANA-RS, r= d/4

(g) a2a, λ = 10−3 (h) a7a, λ = 10−4

Figure 1:Comparison of NL1, NL2 with (a), (b) BFGS; (c), (d) ADIANA; (e),
(f) DINGO in terms of communication complexity. Comparison of CNL with
(g), (h) DIANA and DCGD in terms of communication complexity.

References

[1] Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi.
Sparsified SGD with memory. In Advances in Neural Information
Processing Systems, pages 4447− 4458, 2018.
[2] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and
Peter Richtárik. Distributed learning with compressed gradient dif-
ferences. arXiv preprint arXiv:1901.09269, 2019.
[3] Yurii Nesterov and Boris T. Polyak. Cubic regularization of
Newton method and its global performance. Mathematical Pro-
gramming, 108(1) : 177− 205, 2006.
[4] Rustem Islamov, Xun Qian, and Peter Richtárik. Distributed
Second Order Methods with Fast Rates and Compressed Commu-
nication. arXiv preprint arXiv:2102.07158, 2021.

