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The Problem

P(a) = f(@) + S| 0

Function f is convex, and has an “average of averages” structure:

— 1S fl). @) wa 2

and A > 0 is a regularization parameter. anh fw is a function of
the form: f;;(x) = @ij(a;;x). The Hessian of fj; at point x is

H;;(z) := hyj(x)ay szv hij(z) = Sﬁz‘j(az‘jx)- (3)
The Hessian H;(x) of local functions f;(x) and the Hessian H(x) of

f can be represented as linear combination of one-rank matrices.

min
reRd

Assumptions

We assume that Problem (1) has at least one optimal solution x*.
For all 2 and j, @i; 1s y-smooth, twice differentiable, and its second
derivative ¢j; is v-Lipschitz continuous.

Main goal

Our goal is to develop a communication efficient Newton-type
method for distributed optimization.

Naive distributed implementation of
Newton’s method

Newton’s step: 2" (i) o — (H(:z:k) + )\I) 1VP(xk).

Each node: computes the local Hessian H;(z*) and gradient
V fi(z"), then sends them to the server.

Server: averages the local Hessians and gradients to produce H(z")
and V f(z"), respectively, adds A\ to H(z") and A\z* to V f(a"),

then performs Newton step. Next, it sends 2*! back to the nodes.
Pros: e Fast local quadratic convergence rate

e Rate is independent on the condition number

Cons: e Requires O(d?) floats to be communicated by each worker
to the server, where d is typically very large

NEWTON-STAR (NS)

Assume that the server has access to coefficients h;;(z*) for all ¢ and
7, i.e access to the Hessian H(z*).

Step of NEWTON-STAR: 2! = 2/ — (H(z*) + \I) ' VP(z").

Theorem 1 (Convergence of NS)

Assume that H(z*) = p*I for some p* > 0 and that p*+ X > 0.
Then for any starting point 2° € R?, the iterates of NEWTON-
STAR satisty the following inequality:

2
ot < (s o) -

1=1 g=1

Pros: e Fast local quadratic convergence rate
e Rate is independent on the condition number
e Communication cost is O(d) per-iteration

Cons: e Cannot be implemented in practice
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NEWTON-LEARN

How to address the communication bottleneck?
e Compressed communication
e Taking advantage of the structure of the problem

In NEWTON-LEARN we maintain a sequence of vectors
he = (hf,... kL) €R™, (4)

for all 2 = 1, ..., n throughout the iterations £ > 0, with the goal

of learning the values h;;(x*) for all 7, 5:
hij(z") — hi(2*) as k — +oo. (5)

Using hy; & hij(x*), we can estimate the Hessian H(z*) via

H(z*) ~ H := 5; HY Z hiaija;; (6)

Compressed learning

Compression operator: A randomized map C : R™ — R"™

is a compression operator (compressor) if there exists a constant
w > 0 such that for all x € R™

E[C()] =2, E[IC@I? <@+Dlel>. (7
Random sparsification (random-r) [1]: Compressor defined
as

Clx) =—-€ou, 8)

where ¢ € R is a random vector distributed uniformly at random
on the discrete set {y € {0,1}" : ||ly|lo = r}. The variance param-
eter associated with this compressor is w = > — 1.

NEWTON-LEARN: NL1

Assumption: We assume that each ¢;;(x) is convex, and A > 0.

Learning the coefficients: the idea

We design a learning rule for vectors h} via the DIANA
trick 2] :
k+1 _ [k k kY 2k
hit = [+ nct (haa®) = i) (9
where 7 > 0 is a learning rate, and C¥ is a freshly sampled
compressor by node ¢ at iteration k.

Main properties: e h > (0 forall 7,9
. update is sparse: ||AFT — Al < s, where
s =0(1)
e H" >0
Each node: Computes update A = {hk +nCh (h (zF) — hf)L
and gradient V fj(2"*). Then the node broadcasts the gradient, up-
date hj*" — hj and data points a;; for which hf;™ — hf; # 0.

Server: averages the local gradients to produce V f(z*) and con-
structs H” via (6). Then it performs a Newton-like step:

= b — (Hk + )\I)_1 (Vf(a:k) + )\xk) , (10)

and finally broadcasts 2"*! back to the nodes.

Pros e Local linear and superlinear rates
e Rates are independent on the condition number
e Communication cost O(d) per iteration

Distributed Second Order Methods with Fast Rates and Compressed Communication
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Algorithm 1: NL1: NEWTON-LEARN (A > 0 case)

Parameters: learning rate n > (

Initialization: 2 Rd hy,...,h) € R™;

H =57, Z;n:r awa S RdXd

for k=0,1,... do

Broadcast x* to all workers

for each nodei=1,....,n do

Compute local gradient sz(flfk)

hith = [hf +nCf(hi(a*) — h)]s Send V fia"), it — hj
and corresponding a;; to server

end

1 n
it = gh — (Hk + )\I) (% >V fi(z") + )\azk>
Hk—l—l Hk 4+ 1 Z Z (hfj—l hk )aZ] T

i, a,
nmi 1= J

end

Convergence theory

The analysis relies on the Lyapunov function
2 1 1
nnmu?R?

*

O = ka — "

HE =

where R = max ||a;;]|.

Y

Theorem 2 (convergence of NL1)

Theorem 2. Let each ¢;; is convex A >0, and n < +1

Assume that [|zF — z*||* < for all & > 0. Then for

—  19u 2R6
Algorithm 1 we have the inequalities

K

||£Uk _

where 61 = 1 — min {727, g} , which is independent on the condi-

tion number.

Assumption on ||z — z*|| can be relaxed using the following lemma:

 hij(2*))}

Assume hj; is a convex combination of {hw( N, ...

for all 4, j and k. Assume [|z" — z*[|* < Then

)\2
1202 RS

12v 2R6

for all k£ > 0.

2" —2"|* <

It is easy to verify that if we choose hy; = hjj(x"), use the random

sparsification compressor (8) and 77 < % then hj; is always a

convex combination of {h;;(z), ..., hy(z")} for k > 0.

NEWTON-LEARN: NL2

We additionally develop a modified method (NL2) which handles
the case where P is u-strongly convex, \h | <~,and A > 0.
Pros: e Local linear and superlinear rates
e Rates are independent on the condition number
e O(d) bits are communicated per iteration
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CUBIC-NEWTON-LEARN

We also constructed a method (CNL) with global convergence guar-
antees using cubic regularization [3].
Pros: e Local linear and superlinear rates
e GGlobal linear rate in the strongly convex case and
olobal sublinear rate in the convex case
e Rates are independent on the condition number
e O(d) bits are communicated per iteration

Experiments

102

—@— NL1,r=1
—— NL2,r=1,p=1/20
—- BFGS

- NL1,r=1
—A— NL2,r=1,p=1/20
—- BFGS

104
10

108

z*) — P(x

21010

10-12

104

522 575 578 531 23f— 1015 520 523 526 5729 532
communicated bits communicated bits

(a) w8a, A = 1079

100 100

(b) a9a, A = 10~

103

—~

—@— NL1,r=1
o —A— NL2,r=1,p=1/20
—e— ADIANA-NC
1012{ —4— ADIANA-RS, r=d/4
—@- ADIANA-RD, s=Vd
217 220 223 226 229
communicated bits

—@— NL1,r=1
3 —&— NL2,r=1,p=1/20 )
—e— ADIANA-NC
10'2| —4— ADIANA-RS, r=d/4
—@- ADIANA-RD, s=Vd
218 221 224 227 230
communicated bits

(c) phishing, A = 1077

100 100

(d) a7a, A =10"*

—%— NL1,r=1

—4— NL2, r=1,p=1/20
—< DINGO

. —%— NL1,r=1
1077 = NL2, r=1,p=1/20
—< DINGO

221 223 225 227 229 231
communicated bits

219 221 223 225
communicated bits

(e) a2a, A = 107"

(f) phishing, A = 107"

10°

107 0K

1073

}‘.J | 10
5:; —%— CNL,r=1,p=1/20 \ o —%— CNL,r=1,p=1/20
T 10° —4— DCGD-NC N = 10 —#— DCGD-NC
—«& DCGD-RS, r=d/4 i" —«& DCGD-RS, r=d/4
1012, —»— DIANA-NC \ 10-12{ »— DIANA-NC
—®— DIANA-RS, r=d/4 LQ —®— DIANA-RS, r=d/4 \
10-15 LD 10-15 h?
218 221 224 227 230 233 218 221 224 227 230 233
communicated bits communicated bits

(¢) a2a, A = 1079 (h) a7a, A = 107"
Figure 1:Comparison of NL1, NL2 with (a), (b) BFGS; (c), (d) ADIANA; (e),

(f) DINGO in terms of communication complexity. Comparison of CNL with
(), (h) DIANA and DCGD in terms of communication complexity.
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