

A Privacy Preserving Randomized Gossip Algorithm

via Controlled Noise Insertion

Jakub Konečný² Nicolas Loizou³ Peter Richtárik^{1, 3, 4} Dmitry Grishchenko⁵ Filip Hanzely[⊥] ¹KAUST ²Google ³University of Edinburgh ⁴MIPT ⁵Université Grenoble Alpes

Grenoble

Alpes

JOOGle

Average Consensus Problem (ACP)

SETUP: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a connected graph with $|\mathcal{V}| = n$ nodes (e.g., sensors) and $|\mathcal{E}| = m$ edges (e.g., communication links). Node $i \in \mathcal{V}$ stores a private value $c_i \in \mathbb{R}$ (e.g., temperature). Let $\alpha(\mathcal{G})$ be the algebraic connectivity of \mathcal{G} .

GOAL: Compute the average of the private values (i.e., the quantity $\bar{c} := \frac{1}{n} \sum_{i} c_{i}$) in a **distributed** fashion. That is, exchange of information can only occur along the edges.

Primal and Dual Problems

Observe that the optimal solution of the problem

Privacy Preserving Randomized Gossip

- Algorithm 2 Privacy Preserving Randomized Gossip via Controlled Noise Insertion
- 1: **Parameters:** vector of private values $c \in \mathbb{R}^n$; initial variances $\sigma_i^2 \in \mathbb{R}_+$ and variance decrease rate ϕ_i such that $0 \le \phi_i < 1$ for all nodes *i*.
- 2: Initialize: Set $x^0 = c$; $t_1 = t_2 = \cdots = t_n = 0$, $v_1^{-1} = v_2^{-1} = \cdots = v_n^{-1} = 0$.
- 3: for $t = 0, 1, \dots, k 1$ do
- Choose edge $e = (i, j) \in \mathcal{E}$ uniformly at random 4:
- Generate $v_i^{t_i} \sim N(0, \sigma_i^2)$ and $v_j^{t_j} \sim N(0, \sigma_j^2)$ 5:
- 6: Set $w_i^{t_i} = \phi_i^{t_i} v_i^{t_i} \phi_i^{t_i-1} v_i^{t_i-1}$ and $w_j^{t_j} = \phi_j^{t_j} v_j^{t_j} \phi_j^{t_j-1} v_j^{t_j-1}$

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} \sum_{i} (x_i - c_i)^2 \quad \text{s.t} \quad x_i = x_j \quad \forall \quad (i, j) \in \mathcal{E}$$
(1)

is $x_i^* = \bar{c}$ for all *i*. The constraints can be written as $\mathbf{A}x = 0$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, and the rows of **A** enforce the constraints $x_i = x_j$ for $(i, j) \in \mathcal{E}$.

Primal Problem (equivalent to (1))

Consider solving the (primal) problem of projecting a given vector $c \in \mathbb{R}^n$ of (private values) onto the solution space of a linear system:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|x - c\|^2 \quad \text{subject to} \quad \mathbf{A}x = 0, \tag{2}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Dual Problem

$$\max_{y \in \mathbb{R}^m} D(y) \stackrel{\text{def}}{=} -c^\top \mathbf{A}^\top y - \frac{1}{2} \|\mathbf{A}^\top y\|^2.$$
(3)

This is an unconstrained concave quadratic maximization problem.

Lemma: Primal-Dual Relationship

Suppose that $x \in \mathbb{R}^n$ is the primal variable corresponding to the dual variable $y \in \mathbb{R}^m$ through the affine mapping $x \leftarrow c + \mathbf{A}^{\top} y$. Then:

$$D(y^*) - D(y) = \frac{1}{2} ||x - x^*||^2,$$

where y^* is any solution of the dual problem.

Update the primal variable:
$$x_i^{t+1} = x_j^{t+1} = \frac{x_i^t + w_i^t + x_j^t + w_j^t}{2}$$
, $\forall l \neq i, j : x_l^{t+1} = x_l^t$
Set $t_i = t_i + 1$ and $t_j = t_j + 1$
Even the primal variable: $x_i^{t+1} = x_j^{t+1} = \frac{x_i^t + w_i^t + x_j^t + w_j^t}{2}$, $\forall l \neq i, j : x_l^{t+1} = x_l^t$
Even the primal variable: $x_i^{t+1} = x_j^{t+1} = \frac{x_i^t + w_i^t + x_j^t + w_j^t}{2}$, $\forall l \neq i, j : x_l^{t+1} = x_l^t$
Even the primal variable: $x_i^{t+1} = x_j^{t+1} = \frac{x_i^t + w_i^t + x_j^t + w_j^t}{2}$, $\forall l \neq i, j : x_l^{t+1} = x_l^t$
Even the primal variable: $x_i^{t+1} = x_j^{t+1} = \frac{x_i^t + w_i^t + w_j^t}{2}$, $\forall l \neq i, j : x_l^{t+1} = x_l^t$
Even the primal variable: $x_i^{t+1} = x_j^{t+1} = \frac{x_i^t + w_i^t + w_j^t}{2}$.

10: return x^{κ}

Main Theorem (Linear Convergence in the Dual)

Let
$$\rho \stackrel{\text{def}}{=} 1 - \frac{\alpha(\mathcal{G})}{2m}$$
 and $\psi^t \stackrel{\text{def}}{=} \frac{1}{\sum_{i=1}^n (d_i \sigma_i^2)} \sum_{i=1}^n d_i \sigma_i^2 \left(1 - \frac{d_i}{m} \left(1 - \phi_i^2\right)\right)^t$, where $\alpha(\mathcal{G})$ stands for algebraic connectivity of \mathcal{G} and d_i denotes the degree of node i . Then for all $k \ge 1$,
 $\mathbf{E} \left[D(y^*) - D(y^k) \right] \le \rho^k \left(D(y^*) - D(y^0) \right) + \frac{\sum (d_i \sigma_i^2)}{4m} \sum_{t=1}^k \rho^{k-t} \psi^t$.
If we further choose $\phi_i \stackrel{\text{def}}{=} \sqrt{1 - \frac{\gamma}{d_i}}$ for all i , where $\gamma \le d_{\min}$, then
 $\mathbf{E} \left[D(y^*) - D(y^k) \right] \le \left(1 - \min \left(\frac{\alpha(\mathcal{G})}{2m}, \frac{\gamma}{m} \right) \right)^k \left(D(y^*) - D(y^0) + \mathcal{O}(k) \right)$.

Experiments

Fixed variance $\sigma_i = 1, \forall i$, identical decay rates $\phi_i = \phi$:

Randomized Gossip

Algorithm 1 Pairwise Randomized Gossip [1, 2]

- 1: **Parameters:** vector of private values $c \in \mathbb{R}^n$; initial variances $\sigma_i^2 \in \mathbb{R}_+$ and variance decrease rate ϕ_i such that $0 \le \phi_i < 1$ for all nodes *i*.
- 2: Initialize: Set $x^0 = c$
- 3: for t = 0, 1, ..., k 1 do
- Choose edge $e = (i, j) \in \mathcal{E}$ uniformly at random
- Update the primal variable: $x_l^{t+1} = \begin{cases} \frac{x_i^t + x_j^t}{2}, & l \in \{i, j\} \\ x_l^t, & l \notin \{i, j\}. \end{cases}$ 5:

6: end for

7: return x^k

Theorem [1, 2]

The random iterates of the randomized gossip algorithm converge to $x^* = (\bar{c}, \cdots, \bar{c})^\top$, where $\bar{c} = \frac{1}{n} \sum_{i} c_i$, at a linear rate:

$$\mathbf{E}\left[\|x^k - x^*\|^2\right] \le \left(1 - \frac{\alpha(\mathcal{G})}{2m}\right)^k \|x^0 - x^*\|^2$$

where $\alpha(\mathcal{G})$ is the algebraic connectivity of graph \mathcal{G} .

Figure: Convergence of Algorithm 2, on the cycle graph with 10 nodes (left) and random geometric graph with 100 nodes (right) for different values of ϕ . The "Relative Error" on the vertical axis represents the $\frac{\|x^k - x^*\|^2}{\|x^0 - x^*\|^2}$

Fixed variance $\sigma_i = 1, \forall i$, different decay rates $\phi_i = \sqrt{1 - \frac{\gamma}{d_i}}$:

References

- [1] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip algorithms.
- IEEE Transactions on Information Theory, 14(SI):2508–2530, 2006.
- [2] Nicolas Loizou and Peter Richtárik.
- A new perspective on randomized gossip algorithms. In 4th IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2016.
- [3] F. Hanzely, J. Konečný, N. Loizou, P. Richtárik, and D. Grishchenko. Privacy preserving randomized gossip algorithms. arXiv:1706.07636, 2017.

Figure: Convergence of Algorithm 2 on random geometric graph with 100 nodes for different values of ϕ_i , controlled by γ .

Impact of varying ϕ_i :

Figure: Network: random geometric graph with 100 nodes. Left: Performance of Algorithm 2 with noise decrease rate chosen according to $\phi_i = \sqrt{1 - \frac{\alpha(\mathcal{G})}{2d_i}}$. Right: Histogram of of distribution of ϕ_i