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1. Problem
Many problems in data science (e.g. machine learning, optimization and statistics)
can be cast as loss minimization problems of the form

min
x∈Rd

f(x), where f(x) =
1

n

n∑
i=1

fi(x). (P)

We assume that each individual function fi : Rd → R is convex and has Lipschitz
continuous partial gradients with constants {Lij}j . That is,

‖∇jfi(x)−∇jfi(y)‖ ≤ Lij‖x− y‖, ∀x, y ∈ Rd.

Further we assume that f : Rd → R is µ-strongly convex:

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2, ∀x, y ∈ Rd.

2. Related Methods
asdfGradient Descent
Update: xk+1 = xk − h∇f(xk)
# of iterations: O(κ log(1/ε)
Cost of 1 iteration: O(n)

Stochastic gradient descent (SGD)
Update: 1. Sample i ∈ {1, . . . , n} := [n]
. 2. xk+1 = xk − hk∇fi(xk)
# of iterations: O(1/ε)
Cost of 1 iteration: O(1)

Coordinate descent (CD)
Update: 1. Sample j ∈ {1, . . . , d} := [d]
. 2. xk+1 = xk − hj∇jf(xk)
# of iterations: O(κ log(1/ε))
Cost of 1 iteration: O(ω) ω — degree of partial separability

Semi-stochastic gradient descent (S2GD) [3]
Update: Outer loop: Compute and store ∇f(xk) yk,0 = xk
. Inner loop: 1. Sample i ∈ [n]
. 2. yk,t+1 = yk,t − h (∇fi(yk,t)−∇fi(xk) +∇f(xk))
. xk+1 = yk,tk
# of iterations: dlog(1/ε)e
Cost of 1 iteration: O(n+ κ)

3. Goal
SGD type of methods are often seen as sampling rows of a data matrix. Conversely,
CD methods usually sample columns of the data matrix.
The aim of this work is to develop a hybrid of S2GD and CD, which effi-
ciently samples both rows and columns of data. The method computes a stochastic
estimate of the partial gradient ∇jfi(x) with variance diminishing property and
updates only one coordinate at each iteration.

4. The S2CD algorithm [1]

S2CD Algorithm — Semi-Stochastic Coordinate Descent

parameters: m (max # of stochastic steps per epoch); h > 0 (stepsize
parameter); x0 ∈ Rd (starting point); set β =

∑m
t=1(1− µh)m−t;

for k = 0, 1, 2, . . . do
Compute and store ∇f(xk) = 1

n

∑
i∇fi(xk);

Initialize the inner loop: yk,0 ← xk;

Let tk = t ∈ [m] with probability (1− µh)
m−t

/β
for t = 0 to tk − 1 do

Pick coordinate j ∈ [d] with probability pj
Pick function index i from the set {i : Lij > 0} with probability qij
yk,t+1 ← yk,t − hp−1j

(
∇jf(xk) + 1

nqij
(∇jfi(yk,t)−∇jfi(xk))

)
ej ;

end for
Reset the starting point: xk+1 ← yk,tk ;

end for

The selection probability {pj} and {qij} in S2CD are defined by:

pj :=

∑n
i=1 ωiLij

L̂
, qij :=

ωiLij∑n
i=1 ωiLij

,

where

ωi := |{j : Lij 6= 0}|, L̂ :=
1

n

d∑
j=1

n∑
i=1

ωiLij .

Special cases:

• When n = 1: S2CD reduces to a stochastic CD algorithm with importance
sampling for the selection of j ∈ [d].

• It is possible to extend S2CD to the case when coordinates are replaced
by (nonoverlapping) blocks of coordinates. In such a setting, when all the
variables form a single block, S2CD reduces to S2GD but with importance
sampling for the selection of i ∈ [n], as in [5].

Theorem 1

If 0 < h < 1/(2L̂) and m is sufficiently large so that

c :=
(1− µh)m

(1− (1− µh)m)(1− 2L̂h)
+

2L̂h

1− 2L̂h
< 1,

then for all k ≥ 0 we have:

E[f(xk)− f(x∗)] ≤ ck E[f(xk)− f(x∗)].

Corollary: Let κ̂ := L̂/µ. If we run the algorithm S2CD with stepsize
h and m set as

h =
1

(4e+ 2)L̂
, m ≥ (4e+ 2) log (2e+ 2) κ̂,

then for all k ≥ dlog(1/ε)e,

E[f(xk)− f(x∗)] ≤ ε(f(x0)− f(x∗)).

5. Complexity & comparison
Definition
We let Cgrad be the average cost of evaluating the
stochastic gradient ∇fi and Cpd be the average cost of
evaluating the stochastic partial derivative ∇jfi.

S2CD complexity
The total work of S2CD can be written as

O ((nCgrad + κ̂Cpd) log(1/ε)) .

The complexity results of methods such as S2GD/SVRG
[3, 2, 5] and SAG/SAGA [4, 6] — in a similar but not
identical setup to ours (some of these papers assume fi
to be Li-smooth) — can be written in a similar form:

O ((nCgrad + κCgrad) log(1/ε)) ,
where κ = L/µ and either L = Lmax ([4, 2, 3, 6]), or
L = Lavg := 1

n

∑
i,j Lij ([5]).

The difference between our result and existing results
is in the term κ̂Cpd – previous results have κCgrad in
that place. This difference constitutes a trade-off: while
κ̂ ≥ κ, we clearly have Cpd ≤ Cgrad. The comparison
of the quantities κCgrad and κ̂Cpd is not straightforward
and is problem dependent.

Conclusion
S2CD can be both better or worse than
S2GD/SVRG/SAG/SAGA, depending on whether
the increase of the condition number from κ to κ̂ can
or can not be compensated by the decrease of the
derivative evaluation from Cgrad to Cpd.
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