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1. Introduction
Many problems in data science (e.g. machine learning, optimization and statistics)
can be cast as loss minimization problems of the form

min
x∈Rd

f(x), where f(x) =
1

n

n∑
i=1

fi(x). (P)

Assumption 1. The functions f1, f2, . . . , fn have Lipschitz continuous gradients
with constant L > 0. That is, for all x, z ∈ Rd we have

fi(z) ≤ fi(x) + 〈f ′i(x), z − x〉+
L

2
‖z − x‖2.

Assumption 2. The average loss f is µ-strongly convex. That is, for all x, z ∈ Rd
we have

f(z) ≥ f(x) + 〈f ′(x), z − x〉+
µ

2
‖z − x‖2.

There are two basic approaches to solving this problem. In first place, Gradient
Descent (GD) iteration sets

xj+1 = xj − hf ′(xj),

where h is a stepsize parameter and f ′(xj) is the gradient of f at xj .
If n is large, it is prohibitive to evaluate full gradient at each iteration. Stochastic
Gradient Descent (SGD) picks i ∈ {1, 2, . . . , n} uniformly at random, and sets

xj+1 = xj − hf ′i(xj).

SGD drastically reduces the amount of work that needs to be done in each
iteration (by factor of n), but for fixed step size converges only to certain
neighbourhood of optimal solution. GD enjoys linear convergence, but iteration
complexity depends on n.

The aim of this work is to provide an algorithm for solving (P), which
has linear rate of convergence, but retains the work efficiency of SGD.

2. The Algorithm (S2GD)
In the S2GD algorithm, we compute full gradient (gj) once, followed by a random
number of updates, where we use two stochastic gradients in each of them.

Algorithm (S2GD)

parameters: m = max # of stochastic steps per epoch; h = stepsize; ν = lower
bound on µ; initial point x0

for j = 0, 1, 2, . . . do
gj ← 1

n

∑n
i=1 f

′
i(xj) . Compute full gradient

yj,0 ← xj
Let tj ← t with probability (1− νh)m−t/β for t = 1, 2, . . . ,m
for t = 0 to tj − 1 do . β =

∑m
t=1(1− νh)m−t

Pick i ∈ {1, 2, . . . , n}, uniformly at random
yj,t+1 ← yj,t − h (gj + f ′i(yj,t)− f ′i(xj))

end for
xj+1 ← yj,tj

end for

3. Rate of convergence

Theorem 1

Consider the S2GD algorithm applied to solving problem (P). Choose
0 ≤ ν ≤ µ, 0 < h < 1/2L, and let m be sufficiently large so that

c :=
(1− νh)m

βµh(1− 2Lh)
+

2(L− µ)h

1− 2Lh
< 1,

Then, we have the following convergence in expectation:

E(f(xj)− f(x∗)) ≤ cj(f(x0)− f(x∗)).

It is worth noting two special cases. With ν = 0 we recover the result of [1], and
with ν = µ, c can be written in the form

c =
(1− µh)m

(1− (1− µh)m)(1− 2Lh)
+

2(L− µ)h

1− 2Lh

5. Experiments
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The Figure presents practical performance of different stochastic methods on least
squares problem with n = 106, κ = 105.

SAG is Stochastic Average Gradient of [3]. S2GD is our proposed algorithm.
S2GD+ is algorithm we propose, but do not analyse. The algorithm runs SGD for
1 pass through the data, and then runs S2GD with fixed size of the inner loop.
Note that the S2GD+ solves the problem to machine precision in just 20 passes
through data. This is a vast improvement over the full Gradient Descent, which
would need O(105) passes through data.

4. Optimal Choice of Params
The natural question is, if I require ε-accuracy, what
are the parameters m,h I should use, and for how
many iterations j should I run the algorithm? One
can see this as a 3-dimensional work minimization
problem dependent on parameters j,m, h, subject to
achieving ε-accuracy.

While it is not possible to obtain closed form solution
for this problem, we provide the following suboptimal
values of parameters. Fix j, let ∆ = ε1/j and κ = L

µ .

h = h(j) =
1

4
∆ (L− µ) + 2L

m = m(j) ≥

{
6κ
∆ log

(
5
∆

)
, if ν = µ,

20κ
∆2 , if ν = 0.

In particular, if we set j∗ = dlog(1/ε)e, then 1
∆ ≤

exp(1), and hence m(j∗) = O(κ), leading to the opti-
mal workload

W(j∗) = O

(
(n+ κ) log

(
1

ε

))
In order to illustrate the strength of our method, we
provide a comparison of work needed to solve a prob-
lem with n = 109 for small values of j, and different
values of κ and ε.
Wµ andW0 is the work needed with parameter ν = µ
and ν = 0, measured in evaluations of f ′i .

ε = 10−6, κ = 103

j Wµ(j) W0(j)

1 116n 107n
2 2.12n 34.0n
3 3.01n 3.48n
4 4.00n 4.06n
5 5.00n 5.02n

ε = 10−9, κ = 103

j Wµ(j) W0(j)

2 7.58n 104n
3 3.18n 51.0n
4 4.03n 6.03n
5 5.01n 5.32n
6 6.00n 6.09n

ε = 10−6, κ = 106

j Wµ(j) W0(j)

4 8.29n 70.0n
5 7.30n 26.3n
6 7.55n 16.5n
8 9.01n 12.7n
10 10.8n 13.2n

ε = 10−9, κ = 106

j Wµ(j) W0(j)

5 17.3n 328n
8 10.9n 32.5n
10 11.9n 21.4n
13 14.3n 19.1n
20 21.0n 23.5n

ε = 10−6, κ = 109

j Wµ(j) W0(j)

13 737n 2409n
16 717n 2126n
19 727n 2025n
22 752n 2005n
30 852n 2116n

ε = 10−9, κ = 109

j Wµ(j) W0(j)

15 1251n 4834n
24 1076n 3189n
30 1102n 3018n
32 1119n 3008n
40 1210n 3078n
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