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Problem and Assumptions

Regularized Optimization

min
x∈Rn

F (x) = f (x) + R(x) (1)

• f : M–smooth & µ–strongly convex convex:
f (x + h) ≤ f (x) + 〈∇f (x), h〉 + 1

2〈Mh, h〉
f (x) + 〈∇f (x), h〉 + µ

2‖h‖
2 ≤ f (x + h)

(natural assumptions for ERM with linear predictors)
•R non-smooth, convex & proximable

New Oracle: Gradient Sketch

We do not have direct access to ∇f (x). Instead, we have
access to a random linear transformation of the gradient:

S>∇f (x) ∈ Rb, S ∼ D (2)

•S: random n× b matrix (b small)
•D: distribution from which S is drawn

Goal

Design a proximal stochastic gradient-type method for solving
(1) using the gradient sketch oracle (2).

Simple Algorithmic Idea

xk+1 = proxαR(xk − αgk), (3)
α = stepsize; gk = a “nice” estimator of ∇f (xk).

How to design a good gradient estimator gk?
Key Challenges:
• In the case when D is a distribution over standard basis
vectors e1, . . . , en in Rn, i.e., if we have access to random
partial derivatives of f , then we can use

gk = e>i ∇f (xk)ei,
and (3) reduces to proximal randomized coordinate
descent (CD). However, CD does not work with
non-separable regularizers R. So, we have an issue even in
this simple case! How to resolve it?
•How to deal with gradient sketches coming from any
distribution D?

Resolution: The SEGA estimator. We will iteratively learn
an unbiased variance-reduced estimator gk of the gradient
∇f (xk) by incorporating the latest information provided by
the gradient sketch.

Constructing the SEGA Estimator

SEGA Estimator

1 Ask oracle for a gradient sketch at xk: S>k∇f (xk)
2 Define hk+1 as the closest (in some energy norm
‖h‖2

B
def= h>Bh, where B � 0) vector to hk consistent

with the gradient sketch:
hk+1 = arg min

h∈Rn
‖h− hk‖2

B

subject to S>k h = S>k∇f (xk) (4)
Closed-form solution of (4):

hk+1 = hk + B−1Zk(∇f (xk)− hk); Zk
def= Sk

(
S>k Sk

)†
S>k

3 Define the SEGA estimator:
gk = hk + θkB−1Zk(∇f (xk)− hk) (5)

(θk is a random variable ensuring that gk is unbiased)

Key property: As xk → x∗, we get gk → 0, and hence SEGA
estimator is variance-reduced.
Variants:
• biasSEGA estimator: use hk+1 instead of gk

• subspaceSEGA estimator: If f (x) = φ(Ax) for some
matrix A ∈ Rd×n, we can improve the SEGA estimator by
exploiting the fact that ∇f lies in Range(A>). We do this
by adding the constraint h ∈ Range(A>) to (4).

SEGA (SkEtched GrAdient descent)

SEGA = Method (3) + SEGA estimator (5)
biasSEGA = Method (3) + biasSEGA estimator (4)
subspaceSEGA = Method (3) + subspaceSEGA estimator

Convergence of SEGA

Let D be the uniform distribution over standard basis vec-
tors e1, . . . , en ∈ Rn, and choose B = I. Then with step-
size α = Ω( 1

nλmax(M)) and some constant σ > 0, we have

E
[
Φk
]
≤ (1− αµ)kE

[
Φ0
]
,

where Φk def= ‖xk − x∗‖2 + σα‖hk − ∇f (x∗)‖2, x∗ =
arg minxF (x).

•Note that xk → x∗ and hk → ∇f (x∗)
•General convergence result for any B � 0 and any D can
be found in the paper [1].
• subspaceSEGA: If D samples from the columns of A>, the
rate can be Ω(nd) faster than standard SEGA.
•For coordinate sketches, we designed an accelerated SEGA,
and established accelerated rate (read next).

Iterates of SEGA (in 2D)

Iterates evolution of SEGA, CD and biasSEGA (updates made
using hk+1 instead of gk).

Bottom plot: R is the indicator function of the unit ball.
While CD does not converge, SEGA does!

Experiments

1. SEGA vs Random Direct Search (RDS) [2] (coordinate and
Gaussian sketches) for derivative-free optimization

2. SEGA vs subspaceSEGA

3. SEGA vs Coordinate Descent (CD) [3] (left) and ASEGA vs
Accelerated Coordinate Descent (ACD) [4, 5] (right) on ridge
regression with R = 0

SEGA with Coordinate Sketches

Setup:
•S are column submatrices of the identity matrix
•Probability vector p ∈ Rn: pi def= Prob(ei ∈ S)
•Probability matrix P ∈ Rn×n: Pij

def= Prob(ei ∈ S, ej ∈ S)
•ESO vector v ∈ Rn (for mini-batching) defined by:

P •M � Diag(p • v)
Acceleration: For coordinate sketches we also designed an
accelerated variant of SEGA:
Algorithm Accelerated SEGA (ASEGA)

1: x0 = y0 = z0 ∈ Rn; h0 ∈ Rn; params α, β, τ, µ > 0
2: for k = 1, 2, . . . do
3: xk = (1− τ )yk−1 + τzk−1

4: Sample Sk ∼ D, and compute gk and hk+1

5: yk = xk − αp−1 • gk
6: zk = 1

1+βµ(zk + βµxk − βgk)
7: end for

Rates: We prove the following iteration complexity bounds
of SEGA and ASEGA with coordinate sketches:

Method Complexity
SEGA

importance sampling 8.55 · Tr(M)
µ log 1

ε

SEGA
arbitrary sampling 8.55 ·

(
maxi vipiµ

)
log 1

ε

ASEGA
importance sampling 9.8 ·

∑
i

√
Mii√
µ log 1

ε

ASEGA
arbitrary sampling 9.8 ·

√
maxi vi

p2
iµ

log 1
ε

Up to the constant factors 8.55 and 9.5, these rates are exactly
the same as the rates of coordinate descent [3] and accelerated
coordinate descent [4, 5]. So, we extend the reach of coordi-
nate descent methods to problem (1) with a non-separable
regularizer (e.g., arbitrary convex constraint)
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