

Accelerated Gossip via Stochastic Heavy Ball Method

Nicolas Loizou* & Peter Richtárik**

1. Average Consensus Problem (ACP)

SETUP: G = (V, E) is a connected network with |V| = n nodes (e.g., sensors) and |E| = m edges (e.g., communication links). Node $i \in V$ stores a private value $c_i \in \mathbb{R}$ (e.g., temperature).

GOAL: Compute the average of the private values (i.e., the quantity $\bar{c} := \frac{1}{n} \sum_i c_i$) in a distributed fashion. That is, exchange of information can only occur along the edges.

2. Optimization Formulation of ACP

The optimal solution of the optimization problem

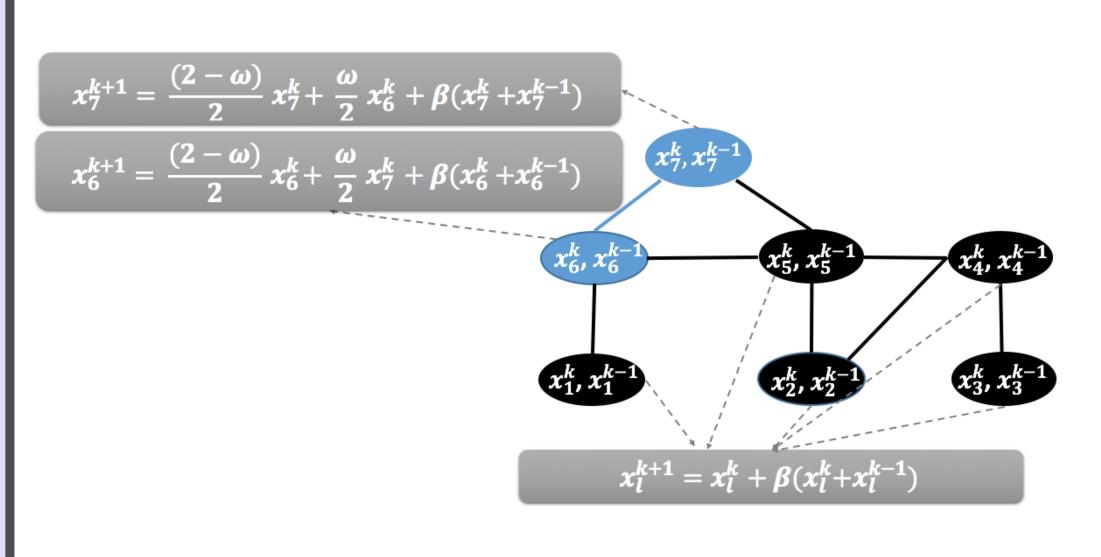
$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} \sum_{i} (x_i - c_i)^2 \quad \text{subject to} \quad x_i = x_j \quad \text{for all} \quad (i, j) \in E$$

is $x_i^* = \bar{c}$ for all i. The constraints can be written compactly as $\mathbf{A}x = 0$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, and the rows of the system enforce the constraints $x_i = x_j$ for $(i, j) \in E$.

QUESTIONS: Can we interpret old RG algorithms for ACP as instances of specific randomized optimization methods for (1)? Can new **RG** methods be developed this way? Can we developed accelerated **RG** methods?

5. Randomized Kaczmarz Method with Momentum

NEW GOSSIP METHODS: We can now formulate many new variants of **RG**, by applying SHB to (1) with various choices of random matrices $\mathbf{S} \sim \mathcal{D}$.



Randomized Block Kaczmarz with momentum (mRBK):

RK with momentum (mRK):

- 1. Pick an edge e = (i, j) following the distribution \mathcal{D} . In this case $\mathbf{S}_k = e_i$.
- 2. The values of the nodes are updated as follows:
 - Node $i: x_i^{k+1} = \frac{2-\omega}{2} x_i^k + \frac{\omega}{2} x_i^k + \beta (x_i^k x_i^{k-1})$
 - Node $j: x_j^{k+1} = \frac{2-\omega}{2} x_j^k + \frac{\omega}{2} x_i^k + \beta (x_j^k x_j^{k-1})$
 - Any other node ℓ : $x_{\ell}^{k+1} = x_{\ell}^k + \beta(x_{\ell}^k x_{\ell}^{k-1})$

- 1. Form a subgraph G_k of G by selecting a random set of edges $S_k \subseteq E$. Now $\mathbf{S} = \mathbf{I}_{:C}$ with $C \subseteq [m]$.
- 2. The values of the nodes are updated as follows: For each connected component \mathcal{V}_r^k of \mathcal{G}_k , replace the values of its nodes with:

$$x_i^{k+1} = \omega \left[\frac{\sum_{j \in \mathcal{V}_r^k} x_j^k}{|\mathcal{V}_r^k|} \right] + (1-\omega)x_i^k + \beta(x_i^k - x_i^{k-1})$$
Any other node ℓ : $x_\ell^{k+1} = x_\ell^k + \beta(x_\ell^k - x_\ell^{k-1})$

3. New Viewpoints

Best Approximation Problem:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \sum_i (x_i - c_i)^2$$
 subject to $\mathbf{A}x = b$

Stochastic Reformulation [7]:

$$\min_{x \in \mathbb{R}^n} f(x) := \mathbb{E}_{\mathbf{S} \sim \mathcal{D}}[f_{\mathbf{S}}(x)], \tag{}$$

$$\min_{x \in \mathbb{R}^n} f(x) := \mathbb{E}_{\mathbf{S} \sim \mathcal{D}}[f_{\mathbf{S}}(x)], \qquad (2)$$
where, $f_{\mathbf{S}}(x) := \frac{1}{2} ||\mathbf{A}x - b||_{\mathbf{H}}^2 \text{ and } \mathbf{H} := \mathbf{S}(\mathbf{S}^{\top} \mathbf{A} \mathbf{A}^{\top} \mathbf{S})^{\dagger} \mathbf{S}^{\top}$

4. Stochastic Heavy Ball [5]

Algorithm 1 Stochastic Heavy Ball (SHB)

- 1: **Parameters:** Distribution \mathcal{D} from which to sample matrices; stepsize/relaxation parameter $\omega > \mathbb{R}$; momentum parameter $\beta \geq 0$.
- 2: Initialize: $x^0, x^1 \in \mathbb{R}^n$
- 3: **for** k = 1, 2, ... **do**
- Draw a fresh $\mathbf{S}_k \sim \mathcal{D}$
- 5: Set $x^{k+1} = x^k \omega \nabla f_{\mathbf{S}_k}(x^k) + \beta(x^k x^{k-1})$
- 6: end for

6. Theoretical Results and Numerical Experiments

L2 Convergence:

Theorem 1 [5] Let λ_{\min}^+ (resp. λ_{\max}) be the smallest nonzero (resp. largest) eigenvalue of $\mathbf{W} := \mathbf{A}^{\top} \mathbb{E}[\mathbf{H}] \mathbf{A}$. Assume $0 < \omega < 2$ and $\beta \geq 0$ and that the expressions $a_1 := 1 + 3\beta + 2\beta^2 (\omega(2-\omega)+\omega\beta)\lambda_{\min}^+$ and $a_2:=\beta+2\beta^2+\omega\beta\lambda_{\max}$ satisfy $a_1 + a_2 < 1$. Then

$$\left| \mathbb{E}[\|x^k - x^*\|^2] \le q^k (1 + \delta) \|x^0 - x^*\|^2 \right|$$

where $q = \frac{a_1 + \sqrt{a_1^2 + 4a_2}}{2}$ and $\delta = q - a_1$. Moreover, $a_1 + a_2 \le q < 1$.

L1 Convergence:

Theorem 2 [5] Let $0 < \omega \le 1/\lambda_{\text{max}}$ and (1 - 1) $\sqrt{(\omega \lambda_{\min}^+)^2} < \beta < 1$. Then $\exists C > 0$ such that for all k > 0 we have

$$\left| \| \mathbb{E}[x^k - x^*] \|^2 \le \beta^k C \right|$$

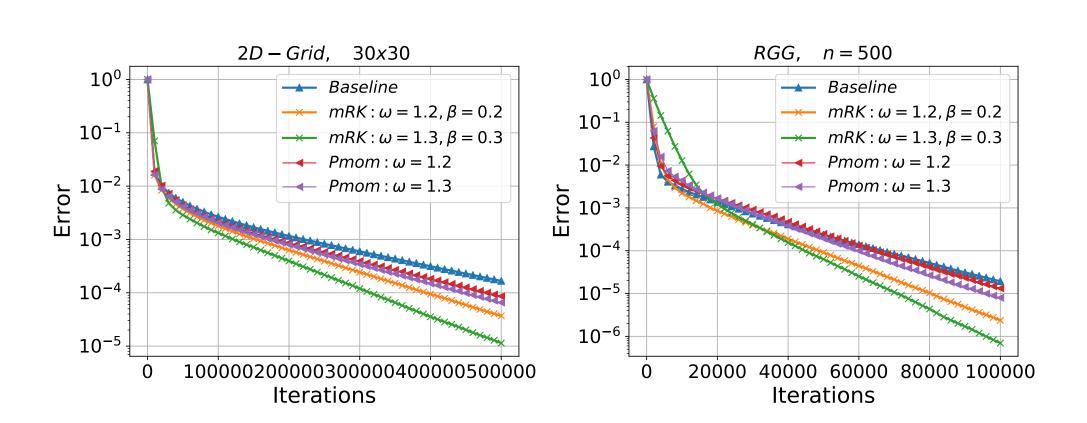


Figure 1: mRK vs. simple pairwise gossip (Baseline) vs. pairwise momentum method (Pmom) [3]

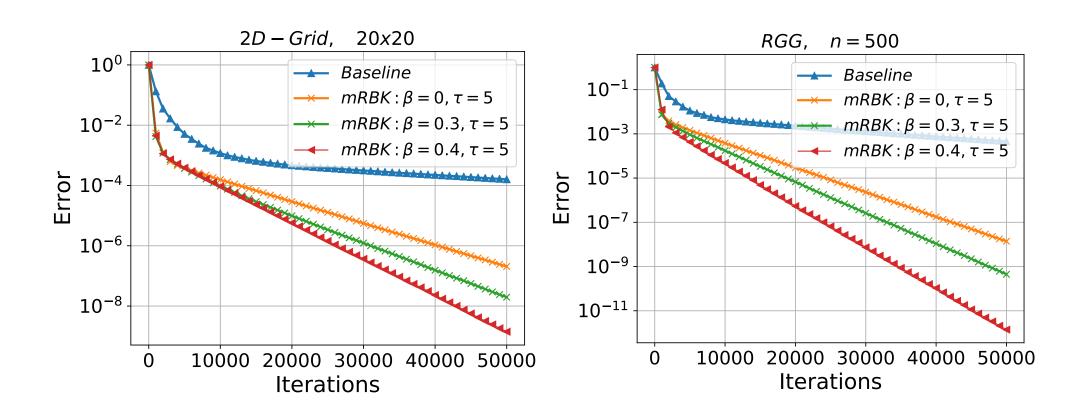


Figure 2: mRBK vs RBK ($\beta = 0$) [4] (stepsize: $\omega = 1$; block size: $\tau = 5$.

7. References

- [1] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. *IEEE Trans. Inf. Theory*, 2006.
- [2] Robert Mansel Gower and Peter Richtárik. Stochastic dual ascent for solving linear systems. arXiv:1512.06890, 2015.
- [3] J. Liu, B.D.O Anderson, M. Cao, and A.S. Morse. Analysis of accelerated gossip algorithms. Automatica, 2013.
- [4] N. Loizou and P. Richtárik. A new perspective on randomized gossip algorithms. In GlobalSIP, 2016.
- [5] N. Loizou and P. Richtárik. Momentum and stochastic momentum for stochastic gradient, Newton, proximal point and subspace descent methods. arXiv:1712.09677, 2017.
- [6] N. Loizou and P. Richtárik. Accelerated gossip via stochastic heavy ball method. In Allerton, 2018.
- [7] P. Richtárik and M. Takáč. Stochastic reformulations of linear systems: algorithms and convergence theory. arXiv:1706.01108, 2017.