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1. Average Consensus Problem (ACP)
SETUP: G = (V,E) is a connected network with |V | = n nodes (e.g., sensors) and |E| = m edges (e.g.,
communication links). Node i ∈ V stores a private value ci ∈ R (e.g., temperature).

GOAL: Compute the average of the private values (i.e., the quantity c̄ := 1
n

∑
i ci) in a distributed

fashion. That is, exchange of information can only occur along the edges.

2. Optimization Formulation of ACP
The optimal solution of the optimization problem

minx∈Rn
1
2

∑
i(xi − ci)2 subject to xi = xj for all (i, j) ∈ E (1)

is x∗i = c̄ for all i. The constraints can be written compactly as Ax = 0, where A ∈ Rm×n, and the rows of
the system enforce the constraints xi = xj for (i, j) ∈ E.

QUESTIONS: Can we interpret old RG algorithms for ACP as instances of specific randomized optimiza-
tion methods for (1)? Can new RG methods be developed this way? Can we developed accelerated RG
methods?

3. New Viewpoints
Best Approximation Problem:

minx∈Rn
1
2

∑
i(xi − ci)2 subject to Ax = b

Stochastic Reformulation [7]:

min
x∈Rn

f(x) := ES∼D[fS(x)], (2)

where, fS(x) := 1
2‖Ax − b‖2H and H :=

S(S>AA>S)†S>

4. Stochastic Heavy Ball [5]

Algorithm 1 Stochastic Heavy Ball (SHB)
1: Parameters: Distribution D from which to sam-

ple matrices; stepsize/relaxation parameter ω > R;
momentum parameter β ≥ 0.

2: Initialize: x0, x1 ∈ Rn

3: for k = 1, 2, . . . do
4: Draw a fresh Sk ∼ D
5: Set xk+1 = xk − ω∇fSk (x

k) + β(xk − xk−1)
6: end for

5. Randomized Kaczmarz Method with Momentum
NEW GOSSIP METHODS: We can now formulate many new variants of RG, by applying SHB to (1)
with various choices of random matrices S ∼ D.

RK with momentum (mRK):

1. Pick an edge e = (i, j) following the distribution
D. In this case Sk = ei.

2. The values of the nodes are updated as follows:

• Node i: xk+1
i = 2−ω

2 xki +ω
2 x

k
j +β(xki−x

k−1
i )

• Node j: xk+1
j = 2−ω

2 xkj +ω
2 x

k
i +β(xkj−x

k−1
j )

• Any other node `: xk+1
` = xk` +β(xk`−x

k−1
` )

Randomized Block Kaczmarz with momentum
(mRBK):

1. Form a subgraph Gk of G by selecting a random
set of edges Sk ⊆ E. Now S = I:C with C ⊆ [m].

2. The values of the nodes are updated as follows:
For each connected component Vk

r of Gk, replace
the values of its nodes with:

xk+1
i = ω

[∑
j∈Vk

r
xkj

|Vk
r |

]
+(1−ω)xki +β(xki −xk−1i )

Any other node `: xk+1
` = xk` + β(xk` − x

k−1
` )

6. Theoretical Results and Numerical Experiments

L2 Convergence:
Theorem 1 [5] Let λ+min (resp. λmax) be the
smallest nonzero (resp. largest) eigenvalue of
W := A>E[H]A. Assume 0 < ω < 2 and β ≥ 0
and that the expressions a1 := 1 + 3β + 2β2 −
(ω(2−ω)+ωβ)λ+min and a2 := β+2β2 +ωβλmax

satisfy a1 + a2 < 1. Then

E[‖xk − x∗‖2] ≤ qk(1 + δ)‖x0 − x∗‖2

where q =
a1+
√

a2
1+4a2

2 and δ = q − a1. More-
over, a1 + a2 ≤ q < 1.

L1 Convergence:
Theorem 2 [5] Let 0 < ω ≤ 1/λmax and (1 −√
ωλ+min)2 < β < 1. Then ∃C > 0 such that for

all k ≥ 0 we have

‖E[xk − x∗]‖2 ≤ βkC
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Figure 1: mRK vs. simple pairwise gossip (Baseline) vs.
pairwise momentum method (Pmom) [3]
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Figure 2: mRBK vs RBK (β = 0) [4] (stepsize: ω = 1; block
size: τ = 5.
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