A Stochastic Derivative Free Optimization Method with Momentum

Eduard Gorbunov ${ }^{1}$ Adel Bibi ${ }^{2}$ Ozan Sener ${ }^{3}$
 ${ }^{1}$ MIPT, Russia
 ${ }^{2}$ KAUST, Saudi Arabia

1. Introduction

In this paper, we consider the following minimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} f(x), \quad \text { where } \tag{1}
\end{equation*}
$$

- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is L-smooth: $\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}$,
- f is bounded from below by $f\left(x^{*}\right)$ where x^{*} is a minimizer.

2. Stochastic Three Points Method

Stochastic Three Points method [1] is a new method aimed to solve (1). The key properties of STP are its simplicity, generality and practicality

```
Algorithm 1 [1] (STP).
    Parameters: some distribution \(\mathcal{D}\) over \(\mathbb{R}^{d}\), stepsizes \(\left\{\gamma^{k}\right\}_{k \geq 0}\)
    Initialization: Choose \(x_{0} \in \mathbb{R}^{n}\)
    for \(k=0,1,2 \ldots\) do
        Draw a fresh sample \(s^{k}\) from \(\mathcal{D}\)
        \(x^{k+1}=\arg \min \left\{f\left(x^{k}\right), f\left(x^{k}+\gamma^{k} s^{k}\right), f\left(x^{k}-\gamma^{k} s^{k}\right)\right\}\)
    end for
```


3. Key Assumption

Assumption 1. The probability distribution \mathcal{D} on \mathbb{R}^{d} satisfies the following properties:

1) The quantity $\gamma_{\mathcal{D}} \stackrel{\text { def }}{=} \mathbf{E}_{s \sim \mathcal{D}}\|s\|_{2}^{2}$ is finite.
2) There is a constant $\mu_{\mathcal{D}}>0$ for a norm $\|\cdot\|_{\mathcal{D}}$ in \mathbb{R}^{d} such that for all $g \in \mathbb{R}^{d}$

$$
\mathbf{E}_{s \sim \mathcal{D}}|\langle g, s\rangle| \geq \mu_{\mathcal{D}}\|g\|_{\mathcal{D}}
$$

- If \mathcal{D} is the uniform distribution on the unit sphere in \mathbb{R}^{d}, then $\gamma_{\mathcal{D}}=1$ and $\mathbf{E}_{s \sim \mathcal{D}}|\langle g, s\rangle| \sim \frac{1}{\sqrt{2 \pi d}}\|g\|_{2}$.
- If $\left.\mathcal{D}=N\left(0, \frac{I}{d}\right)\right)$ then $\gamma_{\mathcal{D}}=1$ and $\mathbf{E}_{s \sim \mathcal{D}}|\langle g, s\rangle|=\frac{\sqrt{2}}{\sqrt{d \pi}}\|g\|_{2}$.
- If \mathcal{D} is the uniform distribution on $\left\{e_{1}, \ldots, e_{d}\right\}$, then $\gamma_{\mathcal{D}}=1$ and $\mathbf{E}_{s \sim \mathcal{D}}|\langle g, s\rangle|=\frac{1}{d}\|g\|_{1}$.

4. First Ingredient: Momentum Term

Below we introduce Polyak's heavy ball momentum using special technique inspired by virtual iterates analysis from [4].

```
Algorithm 2 (SMTP).
    Parameters: some distribution \(\mathcal{D}\) over \(\mathbb{R}^{d}\), stepsizes \(\left\{\gamma^{k}\right\}_{k \geq 0}\),
    momentum parameter \(\beta \in[0,1)\)
    Initialization: Choose \(x_{0} \in \mathbb{R}^{n}\)
    for \(k=0,1,2 \ldots\) do
        Draw a fresh sample \(s^{k}\) from \(\mathcal{D}\)
        Let \(v_{+}^{k}=\beta v^{k-1}+s^{k}\) and \(v_{-}^{k}=\beta v^{k-1}-s^{k}\)
        Let \(x_{+}^{k+1}=x^{k}-\gamma^{k} v_{+}^{k}\) and \(x_{-}^{k+1}=x^{k}-\gamma^{k} v_{-}^{k}\)
        Let \(z_{+}^{k+1}=x_{+}^{k+1}-\frac{\gamma^{k} \beta}{1-\beta} v_{+}^{k}\) and \(z_{-}^{k+1}=x_{-}^{k+1}-\frac{\gamma^{k} \beta}{1-\beta} v_{-}^{k}\)
        Set \(z^{k+1}=\arg \min \left\{f\left(z^{k}\right), f\left(z_{+}^{k+1}\right), f\left(z_{-}^{k+1}\right)\right\}\)
        Set \(\left(x^{k+1}, v^{k+1}\right)= \begin{cases}\left(x_{+}^{k+1}, v_{+}^{k+1}\right), & \text { if } z^{k+1}=z_{+}^{k+1} \\ \left(x_{-}^{k+1}, v_{-}^{k+1}\right), & \text { if } z^{k+1}=z_{-}^{k+1} \\ \left(x^{k}, v^{k}\right), & \text { if } z^{k+1}=z^{k}\end{cases}\)
    end for
```

Key Lemma. Assume that f is L-smooth and \mathcal{D} satisfies Assumption 1. Then for the iterates of SMTP the following inequalities hold:

$$
f\left(z^{k+1}\right) \leq f\left(z^{k}\right)-\frac{\gamma^{k}}{1-\beta}\left|\left\langle\nabla f\left(z^{k}\right), s^{k}\right\rangle\right|+\frac{L\left(\gamma^{k}\right)^{2}}{2(1-\beta)^{2}}\left\|s^{k}\right\|_{2}^{2}
$$

and

$$
\mathbf{E}_{s^{k} \sim \mathcal{D}}\left[f\left(z^{k+1}\right)\right] \leq f\left(z^{k}\right)-\frac{\gamma^{k} \mu_{\mathcal{D}}}{1-\beta}\left\|\nabla f\left(z^{k}\right)\right\|_{\mathcal{D}}+\frac{L\left(\gamma^{k}\right)^{2} \gamma_{\mathcal{D}}}{2(1-\beta)^{2}}
$$

Using the lemma above one can get convergence guarantees for SMTP in the similar way as it was done in [1].

5. Second Ingredient: Importance Sampling

Assumption 2 (Coordinate-wise L-smoothness). We assume that the objective f has coordinate-wise Lipschitz gradient, with Lipschitz con-

 stants $L_{1}, \ldots, L_{d}>0$, i.e.$$
f\left(x+h e_{i}\right) \leq f(x)+\nabla_{i} f(x) h+\frac{L_{i}}{2} h^{2}, \quad \forall x \in \mathbb{R}^{d}, h \in \mathbb{R}
$$

Algorithm 3 (SMTP_IS).

Parameters: stepsize parameters $w_{1}, \ldots, w_{n}>0$, probabilities $p_{1}, \ldots, p_{n}>0$ summing to 1 , momentum parameter $\beta \in[0,1)$
Initialization: Choose $x_{0} \in \mathbb{R}^{n}$
Set $v^{-1}=0$ and $z^{0}=x^{0}$
for $k=0,1,2 \ldots$ do
Select $i_{k}=i$ with probability $p_{i}>0$
Choose stepsize γ_{i}^{k} proportional to $\frac{1}{w_{i}}$
Let $v_{+}^{k}=\beta v^{k-1}+e_{i_{k}}$ and $v_{-}^{k}=\beta v^{k-1}-e_{i_{k}}$
Let $x_{+}^{+k+1}=x^{k}-\gamma_{i}^{k} v_{+}^{k}$ and $x_{-}^{k+1}=x^{k}-\gamma_{i}^{k} v_{-}^{k}$
Let $z_{+}^{k+1}=x_{+}^{k+1}-\frac{\gamma_{1}^{k} \beta}{1-\beta} v_{+}^{k}$ and $z_{-}^{k+1}=x_{-}^{k+1}-\frac{\gamma_{1}^{k} \beta}{1-\beta} v_{-}^{k}$
Set $z^{k+1}=\arg \min \left\{f\left(z^{k}\right), f\left(z_{+}^{k+1}\right), f\left(z_{-}^{k+1}\right)\right\}$
Set $\left(x^{k+1}, v^{k+1}\right)= \begin{cases}\left(x_{+}^{k+1}, v_{+}^{k+1}\right), & \text { if } z^{k+1}=z_{+}^{k+1} \\ \left(x_{-}^{k+1}, v_{-}^{k+1}\right), & \text { if } z^{k+1}=z_{-}^{k+1} \\ \left(x^{k}, v^{k}\right), & \text { if } z^{k+1}=z^{k}\end{cases}$
end for

6. Summary of The Convergence Results

Assumptions on f	SMTP	Importance	SMTP_IS
	Complexity	Sampling	Complexity
None	$2 r_{0} L \gamma_{\mathcal{D}} / \mu_{\mathcal{D}}^{2} \epsilon^{2}$	$p_{i}=L_{i} / \sum_{i=1}^{d} L_{i}$	$2 r_{0} d \sum_{i=1}^{d} L_{i} / \epsilon^{2}$
Convex, $R_{0}<\infty$	$L \gamma_{\mathcal{D}} R_{0}^{2} \ln \left(2 r_{0} / \varepsilon / \mu_{D}^{2} \varepsilon\right.$	$p_{i}=L_{i} / \sum_{i=1}^{d} L_{i}$	$R_{0}^{2} \ln \left(2 r_{0} / \varepsilon\right) d \sum_{i=1}^{d} L_{i} / \epsilon$
μ-strongly convex	$L \ln \left(2 r_{0} / \varepsilon / \varepsilon / \mu \mu_{\mathcal{D}}^{2}\right.$	$p_{i}=L_{i} / \sum_{i=1}^{d} L_{i}$	$\ln \left(2 r_{0} / \varepsilon\right) \sum_{i=1}^{d} L_{i} / \mu$

Note that $r_{0}=f\left(x_{0}\right)-f\left(x_{*}\right)$ and that all assumptions listed are in addition to L-smoothness. Complexity means number of iterations in order to guarantee $\mathbf{E}\left\|\nabla f\left(\bar{z}^{K}\right)\right\|_{\mathcal{D}} \leq \varepsilon$ for the non-convex case, $\mathbf{E}\left[f\left(z^{K}\right)-f\left(x^{*}\right)\right] \leq \varepsilon$ for convex and strongly convex cases. $R_{0}=\max \left\{\left\|x-x^{*}\right\|_{\mathcal{D}}^{*} \mid f(x) \leq f\left(x^{0}\right)\right\}<+\infty$. We notice that for SMTP_IS $\|\cdot\|_{\mathcal{D}}=\|\cdot\|_{1}$ and $\|\cdot\|_{\mathcal{D}}^{*}=\|\cdot\|_{\infty}$ in non-convex and convex cases and $\|\cdot\|_{\mathcal{D}}=\|\cdot\|_{2}$ in the strongly convex case.

7. Numerical Experiments

We conduct extensive experiments on challenging non-convex problems on the continuous control task from the MuJoCO suit [3]. In particular, we address the problem of model-free control of a dynamical system.

Figure: SMTP is far superior to STP on all 5 different MuJoCo tasks. The horizontal dashed lines are the thresholds used in Table 1 to demonstrate complexity of each method.
Table: For each MuJoCo task, we report the average number of episodes required to achieve a predefined reward threshold. Results for our method is averaged over five random seeds, the rest is copied from [2] (N/A means the method failed to reach the threshold. UNK means the results is unknown since they are not reported in the literature.)

	Threshold	STP	STP_IS	SMTP	SMTP_IS	ARS(V1-t)	ARS(V2-t)	NG-lin	TRPO-nn
Swimmer-v1	325	320	110	80	100	100	427	1450	N/A
Hopper-v1	3120	3970	2400	1264	1408	51840	1973	13920	10000
HalfCheetah-v1	3430	13760	4420	1872	1624	8106	1707	11250	4250
Ant-v1	3580	107220	43860	19890	14420	58133	20800	39240	73500
Humanoid-v1	6000	N/A	530200	161230	207160	N/A	142600	130000	UNK

8. Bibliography

[^0]
[^0]: 1] E. H. Bergou, E. Gorbunov, ${ }_{\text {ar Xiv:1902. 03591, } 2019 .}$
 arXiv:1902.03591, 2019.
 2] H. Mania, A. Guy, and B.
 arXiv:1803.07055, 2018. (3). Todorov T Erez ad

 010 IFEF I. SSI I, and Y. Tassa. Mujoco: A physics engine for model-based control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 5026-5033. IEEE, 2012.

