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1. Introduction 5. Second Ingredient: Importance Sampling
In this paper, we consider the following minimization problem ‘

,Assumption 2 (Coordinate-wise L-smoothness). We assume that
?é%b f(x), where the objective f has coordinate-wise Lipschitz gradient, with Lipschitz con-
stants Lq,...,L; >0, i.e.

o f:R? — Ris L-smooth: ||V f(z)—Vf(y)l: < Lz — yl, f(z + he)) < f(z)+ Vif(z)h + %hQ, Vi e R h e R.

e f is bounded from below by f(z*) where z* is a minimizer.

| Algorithm 3 (SMTP_IS).

2. Stochastic Three Points Method 1. Parameters: stepsize parameters wy, ..., w, > 0, probabilities
Stochastic Three Points method |1 is a new method aimed to solve (1). The Py .-+, Pn > 0 summing to 1, momentum parameter 5 € |0, 1)
key properties of STP are its simplicity, generality and practicality. 2. Initialization: Choose xy; € R”

/Algorithm 1 [1] (STP). | 3 Set v =0 and 27 = 27

1. for £k=0,1,2 ... do

5: Select 2. = ¢ with probability D > O

6: Choose stepsize 7

- Parameters: some distribution D over R?, stepsizes {Vk}kzo

. Initialization: Choose xy € R"
- for £=0,1,2...do

1

2

’ ' k—1 k— 1

4 Draw a fresh sample s* from D k Let v = Bt~ + elk and v¥ = fot! — 6%
5

6

k+l ok % U+ and xk:Jrl — kb _ %

k+1 k+1 kB kel okl

okl arg min{f(xk), f(xk 4 Wksk), f(:l:k _ 7/@8/@)} 8: :Jet T

Set zkﬂ = arg min {f(zk) F(25), f(z

| _ ok
- end for | 0: Let 207" = o¥ - gvf and 2~
T

3. Key Assumption bt

| | ( T ol
Assumption 1. The probability distribution D on RY satisfies the follow- : Set (z*T1 vt = (xk“ o) if
Ing properties: (

(2", 0"), if
1) The quantity vp “E E, pls||5 is finite. ~12. end for

2) There is a constant up > 0 for a norm || - ||p in R? such that for all
g € R 6. Summary of The Convergence Results

E.p[(g,s)| = pollg|/p- | | SMTP Importance | SMTP_IS
Assumptions on f

Complexity =~ Sampling Complexity
E..p [(9,5)| ~ 7=llgl None mlanfige py = LSl L] 2red X Lfe
" s~D [\ ] Joral 9112 . Convex, Ry < oo LwRin(/)/,2 - p; = Li/s™ [, Riln(rofz)d 320, Lif
° :f D = N(0,7)) then yp =1 and Es.p (g, 5)| = \/ﬁHQHZ p-strongly convex  LICr/)/,2 pp = Lifs™ ;) (/)30 Lif,
o If D is the uniform distribution on {ey, ..., eq}, then yp = 1 and Note that rg = f(xy) — f(z,) and that all assumptions listed are in addition

Esp [(g,5)] = 5“9“1- to L-smoothness. Complexity means number of iterations in order to guarantee
E||Vf(Z")|p < e for the non-convex case, E [f(zK) — f(x*)} < ¢ for convex

4. First Ingredient: Momentum Term and strongly convex cases. Ry = max {||z — z*||5 | f(z) < f(2")} < +00. We

Below we introduce Polyak’s heavy ball momentum using special technique in- notice that for SMTP_IS || - |[p = || - || and || - ||p = || - || in non-convex and
spired by virtual iterates analysis from [4]. convex cases and || - |[p = || - ||2 in the strongly convex case.

o If D is the uniform distribution on the unit sphere in R?, then vp = 1 and

Algorithm 2 (SMTP). 7. Numerical Experiments

1. Parameters: some distribution D over RY, stepsizes {v"}i>0, We conduct extensive experiments on challenging non-convex problems on the
momentum parameter 5 € [0, 1) continuous control task from the MuJoCO suit [3]. In particular, we address the

2 Initialization: Choose zy € R" problem of model-free control of a dynamical system.
3 for k — O 1 2 d Swimmer-v1l Hopper-vl HalfCheetah-v1

4; Draw a fresh sample s¥ from D ’ -

- k—1 k—1 ok
Let v% = Bv* ! 4+ s¥ and v* = Bof~1 — 5

Let 2% = 2 — "% and 2" = ¥ — yFoF
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Set zk“ = arg min {f(zk) f(28), f(zﬁ“)}
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Key Lemma. Assume that f is L-smooth and D satisties Assumption 1. Figure: SMTP is far superior to STP on all 5 different MuJoCo tasks. The horizontal dashed
Then for the iterates of SMTP the following inequalities hold: lines are the thresholds used in Table 1 to demonstrate complexity of each method.

k kN2
f(zkﬂ) < f(Zk) Y |<Vf(zk) Skﬂ | L(7 ) HSkHQ Table: For each MuJoCo task, we report the average number of episodes required to achieve a
— 1—p5 ’ | 2(1 _ 5)2 2 predefined reward threshold. Results for our method is averaged over five random seeds, the
rest is copied from [2] (N/A means the method failed to reach the threshold. UNK means the

kN2 results is unknown since they are not reported in the literature.
L(v")*yp W Y P )

Epp[f(z")] < f(%) _‘“’Wf( o -

2(1 = B)* Threshold STP STP_IS SMTP SMTP_IS ARS(VI-t) ARS(V2-t) NG-lin TRPO-nn
_ _ / Swimmer-vl 325 320 110 S0 100 100 427 1450 N/A
Usmg the lemma above one can get convergence guarantees for SMTP in the Hopper-vi 3120 3070 2400 1264 1408 51840 1973 13920 10000
similar way as it was done in []_] HalfCheetah-vl 3430 13760 4420 1872 1624 38106 1707 11250 4250
Ant-v1 3580 107220 43860 19890 14420 58133 20800 39240 73500
Humanoid-v1i 6000 N/A 530200 161230 207160 N/A 142600 130000 UNK
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