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Motivation
• Convex optimization problems can often be efficiently solved as

saddle point problems [1].
• In many applications (e.g. CT, parallel MRI, PET) saddle point

problems are separable in the dual variable y = (y1, . . . , yn):

(x ], y ]) ∈ arg min
x

max
y

{
n∑
i=1

〈Aix, yi〉 − f ∗i (yi) + g(x)

}
• Exploit structure by extending primal-dual hybrid gradient [1] to

randomization over dual variables.

Stochastic PDHG Algorithm (SPDHG) [2]
• probability of the i th variable being selected: pi = P(i ∈ Sk) > 0

• evaluation of Ai and A∗i only for j ∈ Sk
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Efficient Implementation of SPDHG [3]
• example for separable samplings: Sk = {i}
• auxiliary variable zk =
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∗
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k
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Initialize: z0 =
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∗
i y

0
i , z0 = z0

I xk+1 = proxτg(xk + τzk)

I Select j ∈ {1, . . . , n}
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j − y kj )

I zk+1 = zk + ∆z, zk+1 = zk+1 + θ
pj

∆z

Convergence of SPDHG [2]

Theorem. Let (x ], y ]) be a saddle point and the random
sampling Sk be iid and separable. Choose θ = 1 and σi, τ
such that

σiτ‖Ai‖2 < pi .

Then the iterates of SPDHG converge to a saddle point in a
Bregman sense almost surely:

Dr ]
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Moreover, the ergodic sequence (xK, yK) = 1
K

∑K
k=1(xk, y k)

converges to a saddle point with rate O(1/K):
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• see [2] for other samplings, acceleration and linear convergence

Faster PET Reconstruction [3]
• SPDHG converges to solution of deterministic problem.

saddle point (PDHG, 2000 iterations)

SPDHG (252 subsets, 100 epochs)

• SPDHG is faster with more subsets (example for 20 epochs).

1 subset 21 subsets 252 subsets

• SPDHG is faster in terms of objective decrease and PSNR.

Faster by Acceleration [2]
• Accelerated SPDHG converges as O(1/k2) for ROF denoising.

PDHG (30 epochs)

PA-SPDHG (30 epochs)

Conclusions
• Stochastic optimization for dual separable cost functionals.
•Generalization of PDHG as it is recovered for n = 1, p1 = 1.
• Convergence rates for SPDHG in expectation.
• Faster PET reconstruction: 10x speed-up on clinical data.
• SPDHG can be accelerated to achieve O(1/k2) convergence.
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