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e Convex optimization problems can often be efficiently solved as e SPDHG converges to solution of deterministic problem.
saddle point problems [1].

saddle-point (PDHG, 2000 iterations)
e In many applications (e.g. CT, parallel MRI, PET) saddle point i N « 3ot S
problems are separable in the dual variable y = (v, . . ., Vn): } = .::
(x*, y*) € argmin max {Z<A/x, yi) — £ (i) + g(X)} | s
X y .
=1 SPDHG-(252 subsets, 100 epochs)
e Exploit structure by extending primal-dual hybrid gradient [1] to "" ""-" .

randomization over dual variables.

Stochastic PDHG Algorithm (SPDHG) [2]

e probability of the /th variable being selected: p; = P(i € S¥) > 0
e evaluation of A; and A* only for j € S
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> XK = prox, o (x* + 737 ATYK)
» Select S¥ C {1, ..., n}

k k+1\  if ; k
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>y = { . v, AXT) I e SPDHG is faster in terms of objective decrease and PSNR.
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e example for separable samplings: S* = {/}
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Initialize: z° = > A¥y?, Z°= 2"

Faster by Acceleration [2]

> XK = prox, o(x* + 7Z%)
» Selectj € {1, ..., n} e Accelerated SPDHG converges as O(1/k?) for ROF denoising.
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Convergence of SPDHG [2] ot

iterations [epochs]

Theorem. Let (x* y") be a saddle point and the random

sampling S¥ be iid and separable. Choose § = 1 and o;, T .
such that Conclusions

e Stochastic optimization for dual separable cost functionals.
Then the iterates of SPDHG converge to a saddle pointin a o Generalization of PDHG as it is recovered forn =1, p; = 1.
Bregman sense almost surely:

O','THA,'H2 < pj.

e Convergence rates for SPDHG in expectation.
D7 (x*, x"), DS (v v =0 as. e Faster PET reconstruction: 10x speed-up on clinical data.

e SPDHG can be accelerated to achieve O(1/k?) convergence.
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Moreover, the ergodic sequence (xi,yk) = &> i (x*, y¥)
converges to a saddle point with rate O(1/K):
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