Stochastic Spectral and Conjugate Descent Methods

Dmitry Kovalev ${ }^{1,2}$ Eduard Gorbunov ${ }^{2}$
${ }^{1}$ King Abdullah University of Science and Technology (KAUST), Kingdom of Saudi Arabia

Elnur Gasanov ${ }^{1,2}$
Peter Richtárik ${ }^{1,2,3}$

1. Introduction

Consider the optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x):=\frac{1}{2} x^{\top} \mathbf{A} x-b^{\top} x
$$

where \mathbf{A} is an $n \times n$ symmetric positive definite matrix. The problem has a unique solution: $x_{*}=\mathbf{A}^{-1} b$. We are interested in the case when n is huge (millions, billions). Note that f is (strongly) convex and quadratic

2. Algorithm: Stochastic Descent

The state-of-the-art methods for convex optimization in huge dimensions are randomized coordinate descent (RCD) methods. We now describe a method which includes RCD as a special case: stochastic descent (SD). SD is a special case of the sketch-and-project method developed in [1].
Algorithm 1 [1, 3] (Stochastic Descent).
Parameter: some distribution \mathcal{D} over vectors in \mathbb{R}^{n}
Initialization: Choose $x_{0} \in \mathbb{R}^{n}$
for $t=0,1,2 \ldots$ do
Draw a fresh sample s_{t} from \mathcal{D}
$x_{t+1} \leftarrow x_{t}-\frac{s_{t}^{\top}\left(\mathbf{A} x_{t}-b\right)}{s_{t}^{\top} \mathbf{A} s_{t}} s_{t}$
end for
RCD is obtained as a special case by letting \mathcal{D} be a distribution over unit coordinate (i.e., basis) vectors in $\mathbb{R}^{n}:\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$:

$$
s_{t} \sim \mathcal{D} \quad \Leftrightarrow \quad s_{t}=e_{i} \quad \text { with probability } \quad p_{i}>0 \text {. }
$$

Theorem $1[1,3]$. Algorithm 1 converges linearly in expectation as

$$
\left(1-\rho_{\max }\right)^{t}\left\|x_{0}-x_{*}\right\|_{\mathbf{A}}^{2} \leq \mathbb{E}_{s \sim \mathcal{D}}\left[\left\|x_{t}-x_{*}\right\|_{\mathbf{A}}^{2}\right] \leq\left(1-\rho_{\min }\right)^{t}\left\|x_{0}-x_{*}\right\|_{\mathbf{A}}^{2},
$$

where $\|x\|_{\mathbf{A}}=\left(x^{\top} \mathbf{A} x\right)^{1 / 2}, \mathbf{W}:=\mathbb{E}_{s \sim \mathcal{D}}\left[\frac{\mathbf{A}^{1 / 2} s^{\top} \mathbf{A}^{1 / 2}}{s^{\top} \mathbf{A} s}\right], \rho_{\max }=\lambda_{\max }(\mathbf{W})$, $\rho_{\min }=\lambda_{\min }(\mathbf{W})$. Moreover, $0<\rho_{\min } \leq 1 / n$ and $\rho_{\max } \leq 1$.

3. Research Question

RCD with probabilities $p_{i}=\mathbf{A}_{i i} / \operatorname{Tr}(\mathbf{A})$ satisfies: $\rho_{\text {min }}=\lambda_{1} / \operatorname{Tr}(\mathbf{A})$, where λ_{1} is the smallest eigenvalue of \mathbf{A}. When $\rho_{\text {min }}$ is small, RCD is slow. Can we modify RCD by utilizing some spectral information, if known, so that the rate gets improved?

4. New Algorithm

Let $\mathbf{A}=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top}$ be the eigenvalue decomposition of \mathbf{A}, with $0<\lambda_{1} \leq \lambda_{2} \leq$ $\cdot \leq \lambda_{n}$ being the eigenvalues, and u_{1}, \ldots, u_{n} the eigenvectors.
Algorithm 2 [2] (Stochastic Spectral Coordinate Descent).
Parameter: Choose $k \in\{0, \ldots, n-1\}$; set $C_{k}=k \lambda_{k+1}+\sum_{i=k+1}^{n} \lambda_{i}$ Run Algorithm 1 with the following distribution \mathcal{D} :

$$
s_{t}= \begin{cases}e_{i} & \text { with probability } p_{i}=\frac{\mathbf{A}_{i i}}{C_{k}}, \quad i=1,2, \ldots, n \\ u_{i} & \text { with probability } p_{n+i}=\frac{\lambda_{k+1}-\lambda_{i}}{C_{k}}, \quad i=1,2, \ldots, k\end{cases}
$$

Note that for $k=0$, Algorithm 2 reduces to RCD
Theorem 2. For every $n \geq 2$, Algorithm 2 has the rate

$$
\rho_{\min }=\frac{\lambda_{k+1}}{C_{k}} .
$$

Moreover, the rate improves as k grows, and interpolates between the $R C D$ rate $\lambda_{1} / \operatorname{Tr}(\mathbf{A})$ for $k=0$, and the optimal rate $1 / n$ for $k=n-1$:

$$
\frac{\lambda_{1}}{\operatorname{Tr}(\mathbf{A})}=\frac{\lambda_{1}}{C_{0}} \leq \cdots \leq \frac{\lambda_{k+1}}{C_{k}} \leq \cdots \leq \frac{\lambda_{n-1}}{C_{n-2}} \leq \frac{\lambda_{n}}{C_{n-1}}=\frac{1}{n} .
$$

The total work of Algorithm 2 depends on k :
$W \operatorname{lor} k(\mathcal{D}):=\underbrace{P(\mathcal{D})}_{\text {preprocessing cost }}+\underbrace{C(\mathcal{D})}_{\text {cost of } 1 \text { iteration }} \times \underbrace{I(\mathcal{D})}_{\text {number of iterations till } \epsilon \text {-solution }}$

k	$P(\mathcal{D})$	$C(\mathcal{D})$	$I(\mathcal{D})$
0	$O(n)$	$O(n)$	$\frac{\operatorname{Tr}(\mathbf{A})}{\lambda_{1}} \ln (1 / \epsilon)$
$0<k<n-1$	computation of λ_{i} for $i=1,2, \ldots, k+1$ computation of u_{i} for $i=1,2, \ldots, k$	$O(n)$	$\frac{C_{k}}{\lambda_{k+1}} \ln (1 / \epsilon)$
$n-1$	computation of λ_{i} for $i=1,2, \ldots, n$ computation of u_{i} for $i=1,2, \ldots, n-1$	$O(n)$	$n \ln (1 / \epsilon)$

5. Numerical Experiments

Figure: Eigenvalues were sampled from uniform distribution on $[10 ; 11] ; n=50$

Figure: Eigenvalues decay exponentially; $n=10$

Figure: Eigenvalues were sampled from uniform distribution on $[0 ; 100,000] ; n=50$

Figure: All eigenvalues equal to 1 , except for the largest, which is equal to 1,$000 ; n=10$

Figure: Half of eigenvalues were sampled from uniform distribution on $[10,11]$ and half from uniform distribution on $[100,101] ; n=20$

Figure: Half of eigenvalues were sampled from uniform distribution on $[50,51]$ and half from uniform distribution on $[100,101] ; n=20$

Figure: One third of eigenvalues were sampled from uniform distribution on $[10 ; 11$], one third from uniform distribution on $[100 ; 101]$ and one third from uniform distribution on [1, 000; 1, 001); $n=30$

Figure: Two thirds of eigenvalues were sampled from uniform distribution on $[100 ; 101]$ and one third from uniform distribution on [1000, 1001]; $n=30$

6. Bibliography

[1] R. M. Gower and P. Richtárik. Randomized iterative methods for linear systems. SIAM Journal on Matrix Analysis and Applications, 36(4):1660 1690, 2015.
[2] D. Kovalev, E. Gorbunov, E. Gasanov, and P. Richtárik. Stochastic spectral and conjugate descent methods. NeurIPS 2018.
[3] P. Richtárik and M. Takáč. Stochastic reformulations of linear systems: Algorithms and convergence theory. arXiv:1706.01108, 2017.

Λ MIPT

