Sinkhorn Algorithm as a Special Case of Stochastic Mirror Descent

Konstantin Mishchenko
KAUST

Problem 1: Matrix Scaling

Given a matrix $X^{0} \in \mathbb{R}_{++}^{n \times n}$, find vectors $u, v \in \mathbb{R}_{+}^{n}$ such that
$W \stackrel{\text { def }}{=} \operatorname{diag}(u) X^{0} \operatorname{diag}(v)$
is doubly stochastic, i.e. $W 1=1$ and $W^{\top} 1=1$.

Motivation

- Matrix preconditioning for improved linear algebra operations such as solving $X^{0} w=b$.
- Ranking web page significance: take network connectivity matrix and find the stationary distribution of its doublly-stochastic form
- Estimation of transition probabilities in Markov chains; traffic and transportation planning; network optimization (see [2] for more details).

Sinkhorn Algorithm

Algorithm 1: Sinkhorn Algorithm
for $k=1, \ldots$ do
$X_{i}^{k+1}=X_{i /}^{k} /\left\|X_{i:}^{k}\right\|_{1}$ for all i;
$X_{: j}^{k+2}=X_{: j}^{k+1} /\left\|X_{: j}^{k+1}\right\|_{1}$ for all j;
end
Note that
$\log X^{k+1}=\log X^{k}+\operatorname{diag}\left(u_{1}^{k}, \ldots, u_{n}^{k}\right) 11^{\top}$,
$\log X^{k+2}=\log X^{k+1}+11^{\top} \operatorname{diag}\left(v_{1}^{k+1}, \ldots, v_{n}^{k+1}\right)$.
This is very helpful for showing the equivalence.
Can be trivially generalized to finding W such that
$W 1=p, W^{\top} 1=q$ for any $p, q \in \mathbb{R}_{+}^{d}$.
[1] Marco Cuturi.
Sinkhorn distances: Lightspeed computation of optimal transport.
In Advances in neural information processing systems, 2013.
[2] Bahman Kalantari, Isabella Lari, Federica Ricca, and Bruno Simeone.
On the complexity of general matrix scaling and entropy minimization via the ras algorithm.
Mathematical Programming, 2008
[3] Richard Sinkhorn.
Diagonal equivalence to matrices with prescribed row and column sums.
The American Mathematical Monthly, 1967.

Problem 2: Entropy Regularization Introduce entropy penalty:

$$
\min _{X \in \mathbb{R}^{\times \times \times}} \sum_{i, j=1}^{n}\left(C_{i j} X_{i j}+\gamma X_{i j} \log X_{i j}\right)
$$

$$
\text { s.t. } X 1=p, X^{\top} 1=q \text {. }
$$

Linear Programming
Given a matrix $C \in \mathbb{R}_{++}^{n \times n}$ and vectors $p, q \in \mathbb{R}_{+}^{n}$ such that $\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} q_{i}$ solve

$$
\begin{aligned}
& \min _{X \in \mathbb{R}^{\mathbb{N} \times n}} \sum_{i, j=1}^{n} C_{i j} X_{i j} \\
& \text { s.t. } X 1=p, X^{\top} 1=q, X \geqslant 0 .
\end{aligned}
$$

Motivation: discrete optimal transport.

Problem 3: Nonsmooth Minimization

Given matrices $A_{1}, \ldots, A_{m} \in \mathbb{R}_{++}^{n_{i} \times d}$ and vectors $b_{1}, \ldots, b_{m} \in \mathbb{R}_{++}^{n_{i}}$ solve

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{K} \mathcal{L}\left(A_{i} x \| b_{i}\right) .
$$

Problem Properties
For $f_{i}(x) \stackrel{\text { def }}{=} \mathcal{K} \mathcal{L}\left(A_{i} x \| b_{i}\right)$ the gradients are given by

$$
\nabla f_{i}(x)=A_{i}^{\top} \log \frac{A_{i} x}{b_{i}}
$$

where \log and division are taken coordinate-wise. Note f_{i} is nonsmooth.

Main result
Sinkhorn algorithm $=$ Method of Stochastic Bregman projections $=$ Stochastic Mirror Descent.

Bregman Projections

$$
\sum_{i, j=1}^{n}\left(C_{i j} X_{i j}+\gamma X_{i j} \log X_{i j}\right)=\mathcal{K} \mathcal{L}\left(X \| X^{0}\right)+\text { const },
$$

where $X^{0} \stackrel{\text { def }}{=} \exp (-C / \gamma)$.
Let $\omega: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a strictly convex function. The associated Bregman divergence is

$$
D_{\omega}(x, y) \xlongequal{=\text { def }} \omega(x)-\omega(y)-\langle\nabla \omega(y), x-y\rangle .
$$

If $\omega(x)=\sum_{i=1}^{d} x_{i}\left(\log x_{i}-1\right)$, then $D_{\omega}(x, y)$ is the Kullback-Leibler divergence,

$$
\mathcal{K} \mathcal{L}\left(x|\mid y) \stackrel{\text { def }}{=} \sum_{i=1}^{n}\left(x_{i} \log \frac{x_{i}}{y_{i}}-x_{i}+y_{i}\right) .\right.
$$

Thus, we are interested in projecting onto the intersection of some sets C_{1}, \ldots, C_{m}

$$
\min _{x \in \prod_{i=1}^{m} C_{i}} D_{\omega}\left(x, x^{0}\right)
$$

Algorithm 2: Stochastic projections.
for $k=1, \ldots$ do
Sample $i \in\{1, \ldots, m\}$;
$x^{k+1}=\operatorname{argmin}_{x \in C_{i}} D_{\omega}\left(x, x^{k}\right) ;$
end

Algorithm 3: Stochastic Mirror Descent.
for $k=1, \ldots$ do
Sample $i \in\{1, \ldots, m\}$;
$\nabla \omega\left(x^{k+1}\right)=\nabla \omega\left(x^{k}\right)-\gamma_{k} \nabla f_{i}\left(x^{k}\right) ;$
end

Intuition

Since $\omega(x)=\sum_{i=1}^{d} x_{i}\left(\log x_{i}-1\right), \nabla \omega(x)=\log (x)$. Then, the iterates live in a certain range space,

$$
\log \left(x^{k+1}\right) \in \log \left(x^{0}\right)+\operatorname{Range}\left(A^{\top}\right),
$$

where $A=\left(A_{1}^{\top}, \ldots, A_{m}^{\top}\right)^{\top}$.
To show equivalence with Problems 1-2, we set $x=$ $\operatorname{vec}(X), d=n^{2}, A_{1}, A_{2} \in\{0,1\}^{d}, A_{1} x=X 1, A_{2} x=$ $X^{\top} 1, b_{1}=p, b_{2}=q$.
New insight: there is no guarantee for convergence of stochastic mirror descent on that problem, because $\mathcal{K} \mathcal{L}(\cdot \| b)$ is a nonsmooth function. Moreover, Problem 3 is not constrained, so there is no strong convexity. This is a gap in theory of stochastic mirror descent.

