Motivation: Private Learning

= Machine Learning (ML) models can leak
sensitive data.

= DP-SGD (2) is the standard method for
Differentially Private (DP) optimization [1].

= Clipping introduces bias preventing
convergence to the exact solution.

= Existing analyses rely on unrealistic
assumptions (e.g. bounded gradients),
effectively ignoring the clipping bias.

Problem Formulation

Many ML problems can be reformulated as finite-
sum (distributed) optimization:
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where each f; is L-smooth (privately known to
client 4) and f is lower-bounded by it > —o.

Private Optimization

DP-SGD performs clipping ¥ (g) = min(1, ®/||g/)g
of clients’ gradients and adds noise:
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where ||¥(g)|| < ® and z* is zero-mean Gaussian
with variance proportional to sensitivity ®.

Example: DP-SGD Fails to Converge
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Consider the problem (1) withn =2.d =1, i.e.

fi(e) = - fala) = ~(x + 3)%
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The minimum to this problem is at z* = 0.

The failure: At z¥ = 2. the algorithm stalls (even
without noise ¥ = 0).

The reason: The normalized gradients cancel
each other out, resulting in a zero update:
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Smoothed Normalization

Smoothed normalization [3] is an alternative op-
erator to clipping defined as
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This operator ensures

(o> 0). (3)

Normg(g) =

= Sensitivity control for DP (||Normg(g)|| < 1).
= Contractive property, unlike clipping.
= Easier parameter tuning [3].

Operator Property
Contractive Compressor IC(g) — gl < |1 —n]lg]l
Clipping |Clip,(g9) — g]| < max(0,]|g]] —7)

Smoothed Normalization [ Norma(g) - gl < |1 = —r! llg)

Table 1. Smoothed normalization, unlike clipping,
satisfies the contractive property similar to
contractive compressors.
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Our Method: o-NormEC

To alleviate the convergence issue of DP-SGD, we
propose a-NormEC, which utilizes

1. Smoothed normalization to bound
sensitivity of clients’ contributions,

2. Error Compensation (EC), i.e. EF21 [4], to
alleviate the operator-induced bias.

Algorithm Description
Given parameters: 8,v,opp > 0 and :z:o,g,? e RY.
At iteration k

1. Each clienti € [1,n]
= Computes normalized difference

AF = Nomma(Vfi(z¥) = gF), @

= Updates local error memory
gith = gb 4+ par, (5)

= [ransmits privatized update

Ak k k
2. The server updates the next iterate
Pl g gk ||g (7)
where

Ak‘+1_g —I—BZAk (8)

Convergence Guarantees

Smoothed Normalization for Efficient

Distributed Private Optimization
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Experimental Results

Consider problem (1), then for parameters 3, v
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where R = max; HVfZ-(xO) — ggH s the initial-
ization error, and O'%P is the DP noise variance.
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Our Contributions

= This is the first provable convergence
guarantee for a distributed DP method that
explicitly handles the operator-induced bias
without restrictive assumptions.

= Unlike Clip21 [2], a-NormEC achieves
convergence in the presence of DP noise.

= |n the non-private case (opp = 0), a-NormEC
obtains the O(1/v/K) rate for non-convex
problems, which is faster than Clip21.
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We ran a-NormEC, DP-SGD, and Clip21 for train-
ing a ResNet20 model on a CIFAR-10 dataset.

Non-Private Setting

Highest test accuracy
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a-NormEC is robust to hyperparameters, re-
maining stable across 5 values and insensitive to
the normalization parameter a.
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Error Compensation significantly improves con-
vergence allowing a-NormEC to outperform DP-
SGD across various 8 values.

Private Setting
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DP-a-NormEC outperforms DP-Clip21, across
different 8 values. Server-side normalization (SN)
provides stability for high noise level (3 = 1).

Conclusion and Future Work

a-NormEC is the first distributed private opti-
mization method with convergence guarantees.
In practice it outperforms existing competitors
across varying hyper-parameters.

Promising future directions are to
e Extend to partial client participation settings.
e Use stochastic gradients at the clients.

e Adapt to complex federated learning protocols.



