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Motivation: Private Learning

Machine Learning (ML) models can leak
sensitive data.

DP‐SGD (2) is the standard method for
Differentially Private (DP) optimization [1].

Clipping introduces bias preventing
convergence to the exact solution.

Existing analyses rely on unrealistic
assumptions (e.g. bounded gradients),
effectively ignoring the clipping bias.

Problem Formulation

Many ML problems can be reformulated as finite‐
sum (distributed) optimization:

min
x∈Rd

[
f (x) := 1

n

n∑
i=1

fi(x)

]
, (1)

where each fi is L‐smooth (privately known to
client i) and f is lower‐bounded by f inf > −∞.

Private Optimization

DP‐SGD performs clipping Ψ(g) = min(1, Φ/∥g∥)g
of clients’ gradients and adds noise:

xk+1 = xk − γ

(
1

|Sk|
∑
i∈Sk

Ψ(∇fi(xk)) + zk

)
, (2)

where ∥Ψ(g)∥ ≤ Φ and zk is zero‐mean Gaussian
with variance proportional to sensitivity Φ.

Example: DP-SGD Fails to Converge

Consider the problem (1) with n = 2, d = 1, i.e.

f1(x) = 1
2
(x − 3)2 and f2(x) = 1

2
(x + 3)2.

The minimum to this problem is at x⋆ = 0.
The failure: At x0 = 2, the algorithm stalls (even
without noise zk = 0).
The reason: The normalized gradients cancel
each other out, resulting in a zero update:

∇f1(x0)
∥∇f1(x0)∥︸ ︷︷ ︸

−1

+ ∇f2(x0)
∥∇f2(x0)∥︸ ︷︷ ︸

+1

= 0

Smoothed Normalization

Smoothed normalization [3] is an alternative op‐
erator to clipping defined as

Normα(g) := 1
α + ∥g∥

g (α ≥ 0). (3)

This operator ensures

Sensitivity control for DP (∥Normα(g)∥ ≤ 1).
Contractive property, unlike clipping.
Easier parameter tuning [3].

Operator Property

Contractive Compressor ∥C(g) − g∥ ≤ |1 − η| ∥g∥

Clipping ∥Clipτ (g) − g∥ ≤ max(0, ∥g∥ − τ )

Smoothed Normalization ∥Normα(g) − g∥ ≤
∣∣∣1 − 1

α+∥g∥

∣∣∣ ∥g∥

Table 1. Smoothed normalization, unlike clipping,
satisfies the contractive property similar to
contractive compressors.

Our Method: α-NormEC

To alleviate the convergence issue ofDP‐SGD, we
propose α‐NormEC, which utilizes

1. Smoothed normalization to bound
sensitivity of clients’ contributions,

2. Error Compensation (EC), i.e. EF21 [4], to
alleviate the operator‐induced bias.

Algorithm Description

Given parameters: β, γ, σDP > 0 and x0, g0
i ∈ Rd.

At iteration k

1. Each client i ∈ [1, n]
Computes normalized difference

∆k
i = Normα(∇fi(xk) − gk

i ), (4)

Updates local error memory
gk+1

i = gk
i + β∆k

i , (5)

Transmits privatized update

∆̂k
i = ∆k

i + zk
i . (6)

2. The server updates the next iterate

xk+1 = xk − γĝk+1/
∥∥ĝk+1∥∥ , (7)

where

ĝk+1 = ĝk + β

n

n∑
i=1

∆̂k
i . (8)

Convergence Guarantees

Consider problem (1), then for parameters β, γ

β

α + R
< 1, and γ ≤ βR

α + R

1
L

,

the iterates of α‐NormEC satisfy:

min
k≤K

E
∥∥∇f (xk)

∥∥ ≤ f (x0) − f inf

γ(K + 1)
+ γL

2︸ ︷︷ ︸
Standard convergence

+2R

+ 2

√
β2(K + 1)σ2

DP
n︸ ︷︷ ︸

DP noise cost

,

where R = maxi

∥∥∇fi(x0) − g0
i

∥∥ is the initial‐
ization error, and σ2

DP is the DP noise variance.

Our Contributions

This is the first provable convergence
guarantee for a distributed DP method that
explicitly handles the operator‐induced bias
without restrictive assumptions.

Unlike Clip21 [2], α‐NormEC achieves
convergence in the presence of DP noise.

In the non‐private case (σDP = 0), α‐NormEC
obtains the O(1/

√
K) rate for non‐convex

problems, which is faster than Clip21.
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Experimental Results

We ranα‐NormEC, DP‐SGD, and Clip21 for train‐
ing a ResNet20 model on a CIFAR‐10 dataset.

Non‐Private Setting

0.01 0.1 1.0

0.
01

0.
1

1.
0

10
.0

83.76 84.35 84.11

85.64 85.78 85.38

84.47 84.66 84.66

81.82 82.16 81.84

Highest test accuracy

82

83

84

85

α‐NormEC is robust to hyperparameters, re‐
maining stable across β values and insensitive to
the normalization parameter α.
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Error Compensation significantly improves con‐
vergence allowing α‐NormEC to outperform DP‐
SGD across various β values.

Private Setting

DP‐α‐NormEC outperforms DP‐Clip21, across
different β values. Server‐side normalization (SN)
provides stability for high noise level (β = 1).

Conclusion and FutureWork

α‐NormEC is the first distributed private opti‐
mization method with convergence guarantees.
In practice it outperforms existing competitors
across varying hyper‐parameters.

Promising future directions are to

• Extend to partial client participation settings.

• Use stochastic gradients at the clients.

• Adapt to complex federated learning protocols.


