

Smoothed Normalization for Efficient Distributed Private Optimization

Sarit Khirirat Peter Richtárik Egor Shulgin King Abdullah University of Science and Technology (KAUST)

Motivation: Private Learning

- Machine Learning (ML) models can leak sensitive data.
- DP-SGD (2) is the standard method for Differentially Private (DP) optimization [1].
- Clipping introduces bias preventing convergence to the exact solution.
- Existing analyses rely on **unrealistic** assumptions (e.g. bounded gradients), effectively ignoring the clipping bias.

Problem Formulation

Many ML problems can be reformulated as finitesum (distributed) optimization:

Our Method: α **-NormEC**

To alleviate the convergence issue of DP-SGD, we propose α -NormEC, which utilizes

- 1. Smoothed normalization to bound sensitivity of clients' contributions,
- 2. Error Compensation (EC), i.e. EF21 [4], to alleviate the operator-induced bias.

Algorithm Description

Given parameters: $\beta, \gamma, \sigma_{\rm DP} > 0$ and $x^0, g_i^0 \in \mathbb{R}^d$. At iteration k

- 1. Each <u>client</u> $i \in [1, n]$
 - Computes normalized difference
 - $\Delta_i^k = \operatorname{Norm}_{\alpha}(\nabla f_i(x^k) g_i^k),$ (4) α -NormEC is robust to hyperparameters, re-

Experimental Results

We ran α -NormEC, DP-SGD, and Clip21 for training a ResNet20 model on a CIFAR-10 dataset.

Non-Private Setting



$$\min_{x \in \mathbb{R}^d} \left[f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right],\tag{1}$$

where each f_i is L-smooth (privately known to client i) and f is lower-bounded by $f^{inf} > -\infty$.

Private Optimization

DP-SGD performs clipping $\Psi(g) = \min(1, \Phi/||g||)g$ of clients' gradients and **adds noise**:

$$x^{k+1} = x^k - \gamma \left(\frac{1}{|\mathcal{S}^k|} \sum_{i \in \mathcal{S}^k} \Psi(\nabla f_i(x^k)) + z^k \right), \quad (2)$$

where $\|\Psi(g)\| \leq \Phi$ and z^k is zero-mean Gaussian with variance proportional to sensitivity Φ .

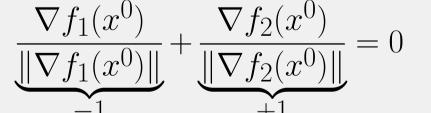
Example: DP-SGD Fails to Converge

Consider the **problem** (1) with
$$n = 2, d = 1$$
, i.e.
 $f_1(x) = \frac{1}{2}(x-3)^2$ and $f_2(x) = \frac{1}{2}(x+3)^2$.

The **minimum** to this problem is at $x^* = 0$.

The **failure:** At $x^0 = 2$, the algorithm stalls (even without noise $z^k = 0$).

The **reason:** The normalized gradients cancel each other out, resulting in a zero update:



Updates local error memory

$$q_i^{k+1} = g_i^k + \beta \Delta_i^k,$$

Transmits privatized update

 $\hat{\Delta}_i^k = \Delta_i^k + z_i^k.$ (6)

(5)

(7)

(8)

2. The <u>server</u> updates the next iterate $x^{k+1} = x^k - \gamma \hat{g}^{k+1} / \left\| \hat{g}^{k+1} \right\|,$

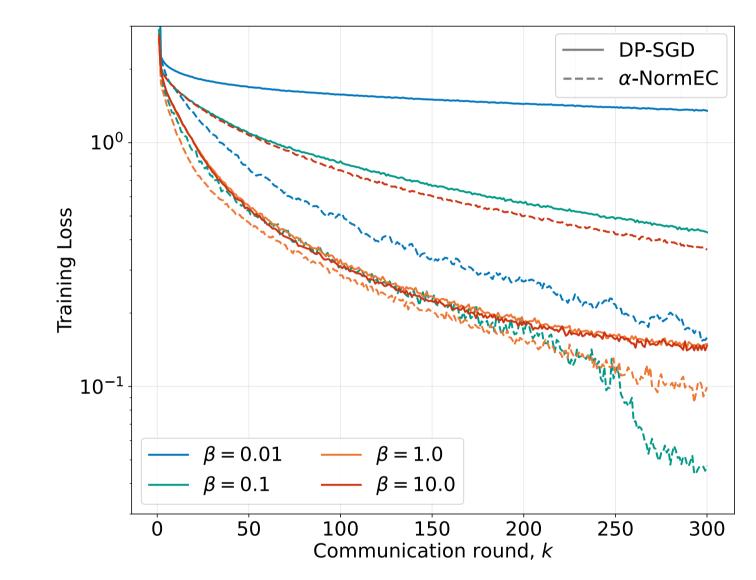
where

$$\hat{g}^{k+1} = \hat{g}^k + \frac{\beta}{n} \sum_{i=1}^n \hat{\Delta}_i^k.$$

Convergence Guarantees

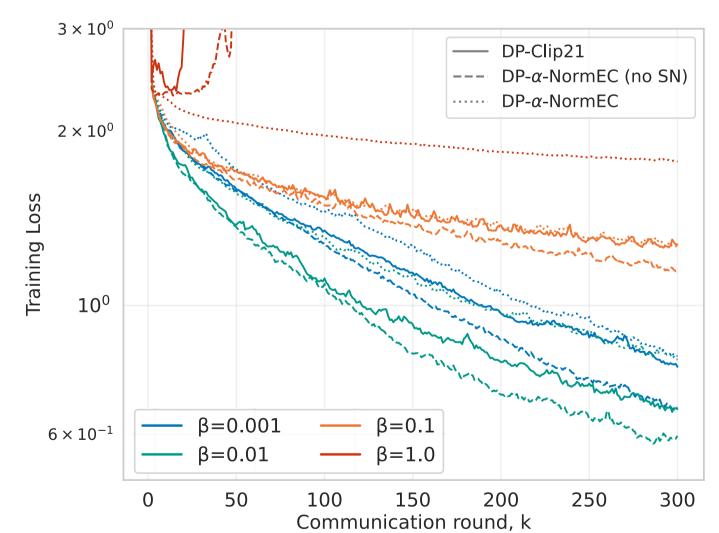
Consider problem (1), then for parameters β, γ $\frac{\beta}{\alpha+R} < 1, \quad \text{and} \quad \gamma \leq \frac{\beta R}{\alpha+R} \frac{1}{L},$ the iterates of α -NormEC satisfy: $\min_{k \le K} \mathbb{E} \left\| \nabla f(x^k) \right\| \le \frac{f(x^0) - f^{\inf}}{\gamma(K+1)} + \frac{\gamma L}{2} + 2R$ Standard convergence DP noise cos where $R = \max_{i} \left\| \nabla f_{i}(x^{0}) - g_{i}^{0} \right\|$ is the initial-

maining stable across β values and insensitive to the normalization parameter α .



Error Compensation significantly improves con**vergence** allowing α -NormEC to outperform DP-SGD across various β values.

Private Setting



Smoothed Normalization

Smoothed normalization [3] is an alternative operator to clipping defined as

> $\operatorname{Norm}_{\alpha}(g) := \frac{1}{\alpha + \|g\|} g \quad (\alpha \ge 0).$ (3)

This operator ensures

- Sensitivity control for DP ($\|\operatorname{Norm}_{\alpha}(g)\| \leq 1$).
- Contractive property, unlike clipping.
- Easier parameter tuning [3].

Operator	Property
Contractive Compressor	$\left\ \mathcal{C}(g) - g\right\ \leq \left 1 - \eta\right \left\ g\right\ $
Clipping	$\ \operatorname{Clip}_{\tau}(g) - g\ \le \max(0, \ g\ - \tau)$
Smoothed Normalization	$\left\ \operatorname{Norm}_{\alpha}(g) - g\right\ \le \left 1 - \frac{1}{\alpha + \ g\ }\right \ g\ $

Table 1. Smoothed normalization, unlike clipping, satisfies the contractive property similar to contractive compressors.

ization error, and $\sigma_{\rm DP}^2$ is the DP noise variance.

Our Contributions

- This is the **first provable convergence** guarantee for a distributed DP method that explicitly handles the operator-induced bias without restrictive assumptions.
- Unlike Clip21 [2], α -NormEC achieves convergence in the presence of DP noise.
- In the non-private case ($\sigma_{\rm DP} = 0$), α -NormEC obtains the $\mathcal{O}(1/\sqrt{K})$ rate for non-convex problems, which is faster than Clip21.

References

- [1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learning with differential privacy. ACM SIGSAC, 2016.
- S. Khirirat, E. Gorbunov, S. Horváth, R. Islamov, F. Karray, and P. Richtárik. [2] Clip21: Error feedback for gradient clipping. arXiv:2305.18929, 2023.
- [3] Z. Bu, Y.X. Wang, S. Zha, G. Karypis. Automatic clipping: Differentially private deep learning made easier and stronger. NeurIPS, 2023.
- [4] P. Richtárik, I. Sokolov, I. Fatkhullin. EF21: A new, simpler, theoretically better, and practically faster error feedback. NeurIPS, 2021.

DP-\alpha-NormEC outperforms DP-Clip21, across different β values. Server-side normalization (SN) **provides stability** for high noise level ($\beta = 1$).

Conclusion and Future Work

 α -NormEC is the first distributed private optimization method with convergence guarantees. In practice it **outperforms** existing **competitors** across varying hyper-parameters.

Promising future directions are to

- Extend to partial client participation settings.
- Use stochastic gradients at the clients.
- Adapt to complex federated learning protocols.