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1. Problem
Find an approximate minima of

minx∈Rd f(x)
def
= 1

n

∑n
i=1 fi(x), (1)

where fi : Rd → R is convex and twice differentiable,
d is large and n is very large.

2. Variable Metric Methods
Given x0 ∈ Rd, many successful methods for solving (1)
fit the format

xt+1 = xt − ηHtgt,
where E [gt] = ∇f(xt), Ht ≈ ∇2f(xt)−1, and η > 0 is
a stepsize. To update gt and Ht, effective methods use
only the subsampled gradient and subsampled Hessian

∇fS(x)
def
=

1

|S|
∑
i∈S
∇fi(x), ∇2fT (x)

def
=

1

|T |
∑
i∈T
∇2fi(x)

where S, T ⊆ [n]
def
= {1, 2, . . . , n} selected uniformly at

random.
Challenge: Update Ht using subsampled Hessians.
Novelty: We develop a new stochastic Block BFGS
method for updating/maintaining Ht based on sketch-
ing. We also present a new limited memory variant.

3. Hessian Sketching
Fact: Evaluating Hessian-vector products is cheap

∇2fT (xt)v =
d

dα
∇fT (xt + αv)

∣∣∣∣
α=0

(2)

We would like Ht to satisfy the inverse equation

Ht∇2fT (xt) = I,

but calculating the inverse of d× d matrix is expensive.
Solution: finding Ht that satisfies a sketched version of
inverse equation

Ht∇2fT (xt)Dt = Dt, (3)

is cheap (2), where Dt ∈ Rd×q and q � min{d, n}.
We employ three different sketching strategies:
1) gauss. Dt has standard Gaussian entries sampled
i.i.d at each iteration.
2) prev. Let dt = −Htgt. Store search directions Dt =
[dt+1−q , . . . , dt] and update Ht once every q iterations.
3) fact. Sample Ct ⊆ {1, . . . , d} uniformly at random
and set Dt = Lt−1I:Ct ,where Lt−1LTt−1 = Ht−1 and
I:Ct denotes the concatenation of the columns of the
identity matrix indexed by a set Ct ⊂ {1, . . . , d}.

4. Block BFGS Update
The sketched equation (3) is not enough to determine Ht
uniquely. So we make use of the following projection

Ht = arg min
H∈Rd×d

‖H −Ht−1‖2t

subject to H∇2fT (xt)Dt = Dt, H = HT , (4)

where ‖H‖2t
def
= Tr

(
H∇2fT (xt)HT∇2fT (xt)

)
. The

closed form solution of (4) is

Ht = Dt∆tD
T
t +

(
I −Dt∆tY

T
t

)
Ht−1 (I − Yt∆tDt) ,

where ∆t = (DTt Yt)
−1 and Yt = ∇2fT (xt)Dt.

{H | H = HT }

·Ht−1

{
H | H∇2fT (xt)Dt = Dt

}

·Ht
·∇2fT (xt)−1

Projection·

5. Block L-BFGS update
Let Vt = I − Dt∆tY

T
t . Expanding M block BFGS

updates applied to Ht−M gives

Ht = VtHt−1V
T
t +Dt∆tD

T
t

= Vt · · ·Vt+1−MHt−MV
T
t+1−M · · ·V Tt

+

t+1−M∑
i=t

Vt · · ·Vi+1Di∆iD
T
i V

T
i+1 · · ·V Tt .

Therefore Ht is a function of Ht−M and the triples

(Dt+1−M , Yt+1−M ,∆t+1−M ) , . . . , (Dt, Yt,∆t) . (5)

Set Ht−M = I and only store the triples in (5).

Algorithm 1 Block L-BFGS Update (Two-loop
Recursion)

inputs: gt ∈ Rd, Di, Yi ∈ Rd×q and ∆i ∈ Rq×q for
i ∈ {t+ 1−M, . . . , t}.
initiate: v ← gt
for i = t, . . . , t−M + 1 do
αi ← ∆iD

T
i v, v ← v − Yiαi

end for
for i = t−M + 1, . . . , t do
βi ← ∆iY

T
i v, v ← v +Di(αi − βi)

end for
output Htgt ← v

6. Algorithm

Algorithm 2 Stochastic Block BFGS Method
inputs: w0 ∈ Rd, stepsize η > 0, q = sample action
size, and length of inner loop m.
initiate: H−1 = I
for k = 0, 1, 2, . . . do

Compute the full gradient µ = ∇f(wk)
Set x0 = wk
for t = 0, . . . ,m− 1 do

Sample St, Tt ⊆ [n], independently
Compute variance-reduced stochastic gradient

gt = ∇fSt (xt)−∇fSt (wk) + µ
Form Dt ∈ Rd×q so that rank(Dt) = q
Compute sketch Yt = ∇2fTt (xt)Dt
Compute dt = −Htgt via Algorithm 1
Set xt+1 = xt + ηdt

end for
Option I: Set wk+1 = xm
Option II: Set wk+1 = xi, where i is selected uni-
formly at random from [m] = {1, 2, . . . ,m}

end for
output wk+1

7.Tests on logistic loss with L2 regularizer
gisette (n; d) = (6, 000; 5, 000) covtype (n; d) = (581, 012; 54) HIGGS (n; d) = (11, 000, 000; 28)
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rcv1 (n; d) = (20, 242; 47, 236) epsilon (n; d) = (400, 000; 2, 000) url_comb (n; d) ≈ (2× 106; 3× 106)
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8. Convergence
Assumption 1. There exist constants 0 < λ ≤ Λ
such that

λI � ∇2fT (x) � ΛI (6)

for all x ∈ Rd and all T ⊆ [n].

Lemma 1. There exists Γ ≥ γ > 0 such that

γI � Ht � ΓI ∀t, (7)

where

1

1 + MΛ
≤ γ ≤ Γ ≤ (1 +

√
κ)2M(1+

1

λ(2
√
κ+ κ)

)

and κ def
= Λ/λ.

Theorem 1. If we select parameters m, η such that

m ≥ 1

2η (γλ− ηΓ2Λ(2Λ− λ))
, η < γλ/(2Γ2Λ2)

then Algorithm 2 with Option II gives

E [f(wk)− f(w∗)] ≤ ρkE [f(w0)− f(w∗)] , k ≥ 0

where the convergence rate is given by

ρ =
1/2mη + ηΓ2Λ(Λ− λ)

γλ− ηΓ2Λ2
< 1.

9. Summary
We proposed a novel limited-memory stochastic
block BFGS update for incorporating enriched
curvature information in stochastic approximation
methods. In our method, the estimate of the in-
verse Hessian matrix is updated at each iteration
using a sketch of the Hessian. We presented three
sketching strategies, a new quasi-Newton method
that uses stochastic block BFGS updates combined
with the variance reduction approach SVRG to com-
pute batch stochastic gradients, and proved linear
convergence of the resulting method.
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