Robert M. Gower ${ }^{\dagger} \quad$ Donald Goldfarb* ${ }^{*} \quad$ Peter Richtárik ${ }^{\dagger}$<br>† University of Edinburgh *Columbia University

## 1. Problem

Find an approximate minima of

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} f(x) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} f_{i}(x) \tag{1}
\end{equation*}
$$

where $f_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex and twice differentiable, $d$ is large and $n$ is very large.

## 2. Variable Metric Methods

Given $x_{0} \in \mathbb{R}^{d}$, many successful methods for solving (1) fit the format

$$
x_{t+1}=x_{t}-\eta H_{t} g_{t},
$$

where $\mathbf{E}\left[g_{t}\right]=\nabla f\left(x_{t}\right), H_{t} \approx \nabla^{2} f\left(x_{t}\right)^{-1}$, and $\eta>0$ is a stepsize. To update $g_{t}$ and $H_{t}$, effective methods use only the subsampled gradient and subsampled Hessian
$\nabla f_{S}(x) \stackrel{\text { def }}{=} \frac{1}{|S|} \sum_{i \in S} \nabla f_{i}(x), \quad \nabla^{2} f_{T}(x) \stackrel{\text { def }}{=} \frac{1}{|T|} \sum_{i \in T} \nabla^{2} f_{i}(x)$
where $S, T \subseteq[n] \stackrel{\text { def }}{=}\{1,2, \ldots, n\}$ selected uniformly at random.
Challenge: Update $H_{t}$ using subsampled Hessians.
Novelty: We develop a new stochastic Block BFGS method for updating/maintaining $H_{t}$ based on sketching. We also present a new limited memory variant.

## 5. Block L-BFGS update

Let $V_{t}=I-D_{t} \Delta_{t} Y_{t}^{T}$. Expanding $M$ block BFGS updates applied to $H_{t-M}$ gives

$$
H_{t}=V_{t} H_{t-1} V_{t}^{T}+D_{t} \Delta_{t} D_{t}^{T}
$$

$$
=V_{t} \cdots V_{t+1-M} H_{t-M} V_{t+1-M}^{T} \cdots V_{t}^{T}
$$

$$
+\sum_{i=t}^{t+1-M} V_{t} \cdots V_{i+1} D_{i} \Delta_{i} D_{i}^{T} V_{i+1}^{T} \cdots V_{t}^{T} .
$$

Therefore $H_{t}$ is a function of $H_{t-M}$ and the triples $\left(D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M}\right), \ldots,\left(D_{t}, Y_{t}, \Delta_{t}\right)$. (5) Set $H_{t-M}=I$ and only store the triples in (5).

Algorithm 1 Block L-BFGS Update (Two-loop Recursion)

```
inputs: }\mp@subsup{g}{t}{}\in\mp@subsup{\mathbb{R}}{}{d},\mp@subsup{D}{i}{},\mp@subsup{Y}{i}{}\in\mp@subsup{\mathbb{R}}{}{d\timesq}\mathrm{ and }\mp@subsup{\Delta}{i}{}\in\mp@subsup{\mathbb{R}}{}{q\timesq}\mathrm{ for
i\in{t+1-M,\ldots,t}
initiate:}v\leftarrow\mp@subsup{g}{t}{
for }i=t,\ldots,t-M+1 d
    \alphai}\leftarrow\mp@subsup{\Delta}{i}{}\mp@subsup{D}{i}{T}v,\quadv\leftarrowv-\mp@subsup{Y}{i}{}\mp@subsup{\alpha}{i}{
end for
for }i=t-M+1,\ldots,t d
    \betai}\leftarrow\mp@subsup{\Delta}{i}{}\mp@subsup{Y}{i}{T}v,\quadv\leftarrowv+\mp@subsup{D}{i}{}(\mp@subsup{\alpha}{i}{}-\mp@subsup{\beta}{i}{}
end for
output }\mp@subsup{H}{t}{}\mp@subsup{g}{t}{}\leftarrow
```


## 6. Algorithm

Algorithm 2 Stochastic Block BFGS Method
inputs: $w_{0} \in \mathbb{R}^{d}$, stepsize $\eta>0, q=$ sample action
size, and length of inner loop $m$.
initiate: $H_{-1}=I$
for $k=0,1,2, \ldots$ do
Compute the full gradient $\mu=\nabla f\left(w_{k}\right)$
Set $x_{0}=w_{k}$
for $t=0, \ldots, m-1$ do
Sample $S_{t}, T_{t} \subseteq[n]$, independently
Compute variance-reduced stochastic gradient
$g_{t}=\nabla f_{S_{t}}\left(x_{t}\right)-\nabla f_{S_{t}}\left(w_{k}\right)+\mu$
Form $D_{t} \in \mathbb{R}^{d \times q}$ so that $\operatorname{rank}\left(D_{t}\right)=q$
Compute sketch $Y_{t}=\nabla^{2} f_{T_{t}}\left(x_{t}\right) D_{t}$
Compute $d_{t}=-H_{t} g_{t}$ via Algorithm 1
Set $x_{t+1}=x_{t}+\eta d_{t}$

## end for

Option I: Set $w_{k+1}=x_{m}$
Option II: Set $w_{k+1}=x_{i}$, where $i$ is selected uni formly at random from $[m]=\{1,2, \ldots, m\}$

## end for

output $w_{k+1}$

## 3. Hessian Sketching

Fact: Evaluating Hessian-vector products is cheap

$$
\begin{equation*}
\nabla^{2} f_{T}\left(x_{t}\right) v=\left.\frac{d}{d \alpha} \nabla f_{T}\left(x_{t}+\alpha v\right)\right|_{\alpha=0} \tag{2}
\end{equation*}
$$

We would like $H_{t}$ to satisfy the inverse equation

$$
H_{t} \nabla^{2} f_{T}\left(x_{t}\right)=I
$$

but calculating the inverse of $d \times d$ matrix is expensive. Solution: finding $H_{t}$ that satisfies a sketched version of inverse equation

$$
\begin{equation*}
H_{t} \nabla^{2} f_{T}\left(x_{t}\right) D_{t}=D_{t}, \tag{3}
\end{equation*}
$$

is cheap (2), where $D_{t} \in \mathbb{R}^{d \times q}$ and $q \ll \min \{d, n\}$.
We employ three different sketching strategies:

1) gauss. $D_{t}$ has standard Gaussian entries sampled i.i.d at each iteration.
2) prev. Let $d_{t}=-H_{t} g_{t}$. Store search directions $D_{t}=$ $\left[d_{t+1-q}, \ldots, d_{t}\right]$ and update $H_{t}$ once every $q$ iterations. 3) fact. Sample $C_{t} \subseteq\{1, \ldots, d\}$ uniformly at random and set $D_{t}=L_{t-1} I_{: C_{t}}$, where $L_{t-1} L_{t-1}^{T}=H_{t-1}$ and $I_{: C_{t}}$ denotes the concatenation of the columns of the identity matrix indexed by a set $C_{t} \subset\{1, \ldots, d\}$.

## 4. Block BFGS Update

The sketched equation (3) is not enough to determine $H_{t}$ uniquely. So we make use of the following projection

$$
H_{t}=\arg \min _{H \in \mathbb{R}^{d \times d}}\left\|H-H_{t-1}\right\|_{t}^{2}
$$

subject to $H \nabla^{2} f_{T}\left(x_{t}\right) D_{t}=D_{t}, H=H^{T}$, (4) where $\|H\|_{t}^{2} \stackrel{\text { def }}{=} \operatorname{Tr}\left(H \nabla^{2} f_{T}\left(x_{t}\right) H^{T} \nabla^{2} f_{T}\left(x_{t}\right)\right)$. The closed form solution of (4) is
$H_{t}=D_{t} \Delta_{t} D_{t}^{T}+\left(I-D_{t} \Delta_{t} Y_{t}^{T}\right) H_{t-1}\left(I-Y_{t} \Delta_{t} D_{t}\right)$, where $\Delta_{t}=\left(D_{t}^{T} Y_{t}\right)^{-1}$ and $Y_{t}=\nabla^{2} f_{T}\left(x_{t}\right) D_{t}$.


## 7.Tests on logistic loss with L2 regularizer

gisette $(n ; d)=(6,000 ; 5,000)$
covtype $(n ; d)=(581,012 ; 54)$
$\operatorname{HIGGS}(n ; d)=(11,000,000 ; 28)$

${ }^{10} \quad{ }^{15}$
$\operatorname{rcv1}(n ; d)=(20,242 ; 47,236)$

$10 \quad 15$
datapasses

epsilon $(n ; d)=(400,000 ; 2,000) \quad$ url_comb $(n ; d) \approx\left(2 \times 10^{6} ; 3 \times 10^{6}\right)$

$$
0
$$


$\begin{array}{ll}10 & 15 \\ \text { datapasses }\end{array}$

$\begin{array}{ll}10 & 15 \\ \text { datapasses }\end{array}$


## 8. Convergence

Assumption 1. There exist constants $0<\lambda \leq \Lambda$ such that

$$
\begin{equation*}
\lambda I \preceq \nabla^{2} f_{T}(x) \preceq \Lambda I \tag{6}
\end{equation*}
$$

for all $x \in \mathbb{R}^{d}$ and all $T \subseteq[n]$.
Lemma 1. There exists $\Gamma \geq \gamma>0$ such that

$$
\begin{equation*}
\gamma I \preceq H_{t} \preceq \Gamma I \quad \forall t, \tag{7}
\end{equation*}
$$

where
$\frac{1}{1+\mathrm{M} \Lambda} \leq \gamma \leq \Gamma \leq(1+\sqrt{\kappa})^{2 \mathrm{M}}\left(1+\frac{1}{\lambda(2 \sqrt{\kappa}+\kappa)}\right)$
and $\kappa \stackrel{\text { def }}{=} \Lambda / \lambda$.
Theorem 1. If we select parameters $m, \eta$ such that $m \geq \frac{1}{2 \eta\left(\gamma \lambda-\eta \Gamma^{2} \Lambda(2 \Lambda-\lambda)\right)}, \quad \eta<\gamma \lambda /\left(2 \Gamma^{2} \Lambda^{2}\right)$ then Algorithm 2 with Option II gives
$\mathbf{E}\left[f\left(w_{k}\right)-f\left(w_{*}\right)\right] \leq \rho^{k} \mathbf{E}\left[f\left(w_{0}\right)-f\left(w_{*}\right)\right], \quad k \geq 0$
where the convergence rate is given by
$=\underline{1 / 2 m \eta+\eta \Gamma^{2} \Lambda(\Lambda-\lambda)}$

## 9. Summary

We proposed a novel limited-memory stochastic block BFGS update for incorporating enriched curvature information in stochastic approximation methods. In our method, the estimate of the inverse Hessian matrix is updated at each iteration using a sketch of the Hessian. We presented three sketching strategies, a new quasi-Newton method that uses stochastic block BFGS updates combined with the variance reduction approach SVRG to compute batch stochastic gradients, and proved linear convergence of the resulting method.

## References

[1] R.M. Gower and P. Richtárik (2016), Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms, arXiv:1602.01768.
[2] R. Johnson and T. Zhang (2013). Accelerating stochastic gradient descent using predictive variance reduction, NIPS.
[3] P. Moritz, R. Nishihara and M. I. Jordan (2016). A Linearly-Convergent Stochastic L-BFGS Algorithm, AISTATS
[4] R.M. Gower and Jacek Gondzio Action constrained quasi-Newton methods, 1412.80452014.

