

Stochastic Block BFGS: Squeezing More Curvature out of Data

Robert M. Gower[†]Donald Goldfarb^{*}Peter Richtárik[†][†] University of Edinburgh*Columbia University

Find an approximate minima of

$$\min_{x \in \mathbb{R}^d} f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x),$$

(1)

where $f_i : \mathbb{R}^d \to \mathbb{R}$ is convex and twice differentiable, d is large and n is very large.

2. Variable Metric Methods

Given $x_0 \in \mathbb{R}^d$, many successful methods for solving (1) fit the format

 $x_{t+1} = x_t - \eta H_t g_t,$

3. Hessian Sketching

Fact: Evaluating Hessian-vector products is cheap

$$\nabla^2 f_T(x_t)v = \left. \frac{d}{d\alpha} \nabla f_T(x_t + \alpha v) \right|_{\alpha=0}$$
(2)

We would like H_t to satisfy the *inverse equation*

 $H_t \nabla^2 f_T(x_t) = I,$

but calculating the inverse of $d \times d$ matrix is expensive. **Solution:** finding H_t that satisfies a *sketched* version of inverse equation

 $H_t \nabla^2 f_T(x_t) D_t = D_t,$

is cheap (2), where $D_t \in \mathbb{R}^{d \times q}$ and $q \ll \min\{d, n\}$.

4. Block BFGS Update

The sketched equation (3) is not enough to determine H_t uniquely. So we make use of the following projection

$$H_t = \arg \min_{H \in \mathbb{R}^{d \times d}} \|H - H_{t-1}\|_t^2$$

subject to $H\nabla^2 f_T(x_t) D_t = D_t, \ H = H^T,$ (4)

where $||H||_t^2 \stackrel{\text{def}}{=} \mathbf{Tr} \left(H \nabla^2 f_T(x_t) H^T \nabla^2 f_T(x_t) \right)$. The closed form solution of (4) is

$$H_t = D_t \Delta_t D_t^T + \left(I - D_t \Delta_t Y_t^T\right) H_{t-1} \left(I - Y_t \Delta_t D_t\right),$$

where $\Delta_t = (D_t^T Y_t)^{-1}$ and $Y_t = \nabla^2 f_T(x_t) D_t.$

where $\mathbf{E}[g_t] = \nabla f(x_t)$, $H_t \approx \nabla^2 f(x_t)^{-1}$, and $\eta > 0$ is a stepsize. To update g_t and H_t , effective methods use only the subsampled gradient and subsampled Hessian

$$\nabla f_S(x) \stackrel{\text{def}}{=} \frac{1}{|S|} \sum_{i \in S} \nabla f_i(x), \quad \nabla^2 f_T(x) \stackrel{\text{def}}{=} \frac{1}{|T|} \sum_{i \in T} \nabla^2 f_i(x)$$

where $S, T \subseteq [n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$ selected uniformly at random.

Challenge: Update H_t using subsampled Hessians. **Novelty:** We develop a new stochastic Block BFGS method for updating/maintaining H_t based on sketching. We also present a new limited memory variant.

5. Block L-BFGS update

Let $V_t = I - D_t \Delta_t Y_t^T$. Expanding *M* block BFGS updates applied to H_{t-M} gives

$$H_t = V_t H_{t-1} V_t^T + D_t \Delta_t D_t^T$$

= $V_t \cdots V_{t+1-M} H_{t-M} V_{t+1-M}^T \cdots V_t^T$
+ $\sum_{i=t}^{t+1-M} V_t \cdots V_{i+1} D_i \Delta_i D_i^T V_{i+1}^T \cdots V_t^T.$

Therefore H_t is a function of H_{t-M} and the triples $(D_{t+1-M}, Y_{t+1-M}, \Delta_{t+1-M}), \dots, (D_t, Y_t, \Delta_t).$ (5) We employ three different sketching strategies: 1) gauss. D_t has standard Gaussian entries sampled i.i.d at each iteration.

2) prev. Let $d_t = -H_t g_t$. Store search directions $D_t = [d_{t+1-q}, \ldots, d_t]$ and update H_t once every q iterations. 3) fact. Sample $C_t \subseteq \{1, \ldots, d\}$ uniformly at random and set $D_t = L_{t-1}I_{:C_t}$, where $L_{t-1}L_{t-1}^T = H_{t-1}$ and $I_{:C_t}$ denotes the concatenation of the columns of the identity matrix indexed by a set $C_t \subset \{1, \ldots, d\}$.

(3)

Set $H_{t-M} = I$ and only store the triples in (5).

Algorithm 1 Block L-BFGS Update (Two-loop Recursion)

inputs: $g_t \in \mathbb{R}^d, D_i, Y_i \in \mathbb{R}^{d \times q}$ and $\Delta_i \in \mathbb{R}^{q \times q}$ for $i \in \{t + 1 - M, \dots, t\}$. initiate: $v \leftarrow g_t$ for $i = t, \dots, t - M + 1$ do $\alpha_i \leftarrow \Delta_i D_i^T v, \quad v \leftarrow v - Y_i \alpha_i$ end for for $i = t - M + 1, \dots, t$ do $\beta_i \leftarrow \Delta_i Y_i^T v, \quad v \leftarrow v + D_i (\alpha_i - \beta_i)$ end for output $H_t g_t \leftarrow v$

6. Algorithm

Algorithm 2 Stochastic Block BFGS Method inputs: $w_0 \in \mathbb{R}^d$, stepsize $\eta > 0$, q = sample action

8. Convergence

Assumption 1. There exist constants $0 < \lambda \leq \Lambda$ such that $\lambda I \preceq \nabla^2 f_T(x) \preceq \Lambda I$ (6) for all $x \in \mathbb{R}^d$ and all $T \subseteq [n]$. **Lemma 1.** There exists $\Gamma \geq \gamma > 0$ such that $\gamma I \preceq H_t \preceq \Gamma I \quad \forall t,$ (7)

9. Summary

We proposed a novel limited-memory stochastic block BFGS update for incorporating enriched curvature information in stochastic approximation methods. In our method, the estimate of the inverse Hessian matrix is updated at each iteration using a sketch of the Hessian. We presented three sketching strategies, a new quasi-Newton method that uses stochastic block BFGS updates combined with the variance reduction approach SVRG to com-

size, and length of inner loop m. initiate: $H_{-1} = I$ for k = 0, 1, 2, ... do Compute the full gradient $\mu = \nabla f(w_k)$ Set $x_0 = w_k$ for t = 0, ..., m - 1 do Sample $S_t, T_t \subseteq [n]$, independently Compute variance-reduced stochastic gradient $g_t = \nabla f_{S_t}(x_t) - \nabla f_{S_t}(w_k) + \mu$ Form $D_t \in \mathbb{R}^{d \times q}$ so that $\operatorname{rank}(D_t) = q$ Compute sketch $Y_t = \nabla^2 f_{T_t}(x_t) D_t$ Compute $d_t = -H_t g_t$ via Algorithm 1 Set $x_{t+1} = x_t + \eta d_t$ end for **Option I:** Set $w_{k+1} = x_m$ **Option II:** Set $w_{k+1} = x_i$, where *i* is selected uniformly at random from $[m] = \{1, 2, \dots, m\}$ end for output w_{k+1}

where

$$\frac{1}{1 + \mathbf{M}\Lambda} \leq \gamma \leq \mathbf{\Gamma} \leq (1 + \sqrt{\kappa})^{2\mathbf{M}} (1 + \frac{1}{\lambda(2\sqrt{\kappa} + \kappa)})$$
and $\kappa \stackrel{def}{=} \Lambda/\lambda$.

Theorem 1. If we select parameters m, η such that

$$m \ge \frac{1}{2\eta \left(\gamma \lambda - \eta \Gamma^2 \Lambda (2\Lambda - \lambda)\right)}, \quad \eta < \gamma \lambda / (2\Gamma^2 \Lambda^2)$$

then Algorithm 2 with Option II gives

 $\mathbf{E}[f(w_k) - f(w_*)] \le \rho^k \mathbf{E}[f(w_0) - f(w_*)], \quad k \ge 0$

where the convergence rate is given by

$$\rho = \frac{1/2m\eta + \eta \Gamma^2 \Lambda (\Lambda - \lambda)}{\gamma \lambda - \eta \Gamma^2 \Lambda^2} < 1.$$

pute batch stochastic gradients, and proved linear convergence of the resulting method.

References

 R.M. Gower and P. Richtárik (2016), Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms, arXiv:1602.01768.

[2] R. Johnson and T. Zhang (2013). Accelerating stochastic gradient descent using predictive variance reduction, *NIPS*.

- [3] P. Moritz, R. Nishihara and M. I. Jordan (2016). A Linearly-Convergent Stochastic L-BFGS Algorithm, *AISTATS*
- [4] R.M. Gower and Jacek Gondzio Action constrained quasi-Newton methods, 1412.8045 2014.