1. Problem
Find an approximate minima of
\[\min_{x \in \mathbb{R}^d} f(x) \defeq \frac{1}{n} \sum_{i=1}^{n} f_i(x), \]
where \(f_i : \mathbb{R}^d \to \mathbb{R} \) is convex and twice differentiable, \(d \) is large and \(n \) is very large.

2. Variable Metric Methods
Given \(x_0 \in \mathbb{R}^d \), many successful methods for solving (1) fit the format
\[x_{i+1} = x_i - \eta_i H_i g_i, \]
where \(E[g_i] = \nabla f(x_i) \), \(H_i \approx \nabla^2 f(x_i) \), and \(\eta_i > 0 \) is a stepsize. To update \(g_i \) and \(H_i \), effective methods use only the subsampled gradient and subsampled Hessian
\[\nabla f_i(x) \defeq \frac{1}{m} \sum_{j \in S} \nabla f_j(x), \quad \nabla^2 f_i(x) \defeq \frac{1}{m} \sum_{j \in S} \nabla^2 f_j(x) \]
where \(S,T \subseteq [n] \defeq \{1,2,\ldots,n\} \) selected uniformly at random.

Challenge: Use \(H_i \) using subsampled Hessians.

Novelty: We develop a new stochastic Block BFGS method for updating/maintaining \(H_i \) based on sketching. We also present a new limited memory variant.

3. Hessian Sketching
Fact: Evaluating Hessian-vector products is cheap
\[\nabla^2 f(x)w = \frac{d}{dx} \nabla f(x + \alpha w)|_{\alpha = 0} \]
We would like \(H_i \) to satisfy the inverse equation
\[H_i \nabla^2 f_i(x) = I, \]
but calculating the inverse of \(d \times d \) matrix is expensive.

Solution: Finding \(H_i \) that satisfies a sketched version of inverse equation
\[H_i \nabla^2 f_i(x)D_i = D_i, \]
is cheap (2), where \(D_i \in \mathbb{R}^{d \times d} \) and \(q \ll \min(d,n) \).

We employ three different sketching strategies:

1. **gauss:** \(D_i \) has standard Gaussian entries sampled i.i.d. at each iteration.
2. **prev:** Let \(D_{i+1} = H_i g_i \). Store search directions \(D_{i+1} = \{d_{i+1}, \ldots, d_i\} \) and update \(H_i \) once every \(q \) iterations.
3. **fact:** Sample \(C_i \subseteq \{1, d \} \) uniformly at random and set \(D_{i+1} = L_{i+1} F_{i+1} \) where \(L_{i+1} \) and \(F_{i+1} \) denotes the concatenation of the columns of the identity matrix indexed by a set \(C_i \subseteq \{1, \ldots, d\} \).

4. Block BFGS Update
The sketched equation (3) is not enough to determine \(H_i \) uniquely. So we make use of the following projection
\[H_i \rightarrow \arg \min_{H \in \mathbb{R}^{d \times d}} \|H - H_i \|_F^2 \]
such that \(H \nabla^2 f_i(x)D_i = D_i, \quad H = H^T \), (4)
where \(\|H\|_F \defeq \text{tr}(H \nabla^2 f_i(x)H^T \nabla^2 f_i(x)) \). The closed form solution of (4) is
\[H_i = D_i L_i \Delta_i^{-1} + (I - D_i \Delta_i^{-1} L_i^T)H_{i-1}(I - Y_i \Delta_i^{-1} D_i), \]
where \(\Delta_i \defeq (D_i L_i)^{-1} \) and \(Y_i \defeq \nabla^2 f_i(x)D_i \).

5. Block L-BFGS update
Let \(V_1 = I - D_1 \Delta_1 Y_1^T \). Expanding \(M \) block BFGS updates applied to \(H_{i-M} \) gives
\[H_i = V_{1} H_{i-1} V_{1}^T + D_i \Delta_i D_i^T \]
\[= V_{1} \cdots V_{i-M} H_{i-M} V_{i-M+1} \cdots V_{1} H_{1-M+1} \cdots V_{1} \]
\[+ \sum_{t=1}^{i-M} V_1 \cdots V_{t+1} H_{t+1-M+1} \cdots V_{1} \]
Therefore \(H_i \) is a function of \(H_{i-M} \) and the triples \((D_{1-M}, Y_{1-M}, \Delta_{1-M}), \ldots, (D_{1}, Y_{1}, \Delta_{1})\). (5)
Set \(H_{i-M} = I \) and only store the triples in (5).

Algorithm 1 Block L-BFGS Update (Two-loop Recursion)

inputs: \(g_i, D_i, Y_i \in \mathbb{R}^{d \times d} \), \(H_i \in \mathbb{R}^{d \times d} \) for \(i \in \{1, \ldots, i-M\} \).

initiate: \(\eta \leftarrow g_0 \)

for \(i = 1, \ldots, i-M+1 \) do
\(\alpha_i \leftarrow \Delta_i D_i^T v_i \)
\(v_i \leftarrow v_i - Y_i \alpha_i \)
end for

for \(i = M, \ldots, i \) do
\(\beta_i \leftarrow \Delta_i^{-1} Y_i^T v_i \)
\(v_i \leftarrow v_i + D_i (\alpha_i - \beta_i) \)
end for

output \(H_i \leftarrow v \)

6. Algorithm
Algorithm 2 Stochastic Block BFGS Method

inputs: \(w_0 \in \mathbb{R}^{d} \), stepsize \(\eta > 0 \), \(q \) = sample action size, and inner loop of size \(m \).

initiate: \(H_1 = I \)

for \(k = 0, 1, 2, \ldots \) do
Compute the full gradient \(\mu \defeq \nabla f(w_k) \)
Set \(x_0 = w_k \)
for \(t = 0, \ldots, m-1 \) do
Sample \(S_t \subseteq \{n\} \) independently
Compute variance-reduced stochastic gradient \(g_t = \nabla f_i(x_t) - \nabla f_{j}(w_{k}) + \mu \)
Form \(D_1 \in \mathbb{R}^{d \times d} \) so that \(\text{rank}(D_1) = q \)
Compute sketch \(Y_t \defeq \nabla^2 f_i(x_t)D_t \)
Compute \(D_t = H_t g_t \) via Algorithm 1
Set \(x_{t+1} = x_t + \eta D_t \)
end for

Option I: Set \(w_{k+1} = x_m \)

Option II: Set \(w_{k+1} = x_t \), where \(t \) is selected uniformly at random from \(\{1,2,\ldots,m\} \)

end for

output \(w_{k+1} \)

7. Tests on logistic loss with L2 regularizer

gisette \((n;d) = (6,000; 5,000)\)
covtype \((n;d) = (581,012; 54)\)
HIGGS \((n;d) = (11,000,000; 28)\)

8. Convergence

Assumption 1. There exist constants \(0 < \lambda \leq \Lambda \)

such that
\[M \leq \nabla^2 f(x) \leq M \]
for all \(x \in \mathbb{R}^d \) and all \(T \subseteq [n] \).

Lemma 1. There exists \(\gamma \geq 0 \) such that
\[\gamma I \leq H_i \leq \gamma I \quad \forall i, \]
where
\[\frac{1}{1 - \gamma M} \leq \gamma \leq \frac{1}{1 + \lambda^2} \]
and \(\kappa \defeq \lambda / \gamma \).

Theorem 1. If we set parameters \(m, \eta \) such that
\[m \geq 2q \gamma \left(\frac{\lambda}{\lambda - \gamma} \right)^2 \]
then Algorithm 2 with Option II gives
\[\frac{1}{2m \eta} \leq \nabla^2 f(w_{k}) \leq \frac{1}{2m \eta}, \quad k \geq 0 \]
where the convergence rate is given by \(2m \eta \).

9. Summary
We proposed a novel limited-memory stochastic block BFGS update for incorporating enriched curvature information in stochastic approximation methods. In our method, the estimate of the inverse Hessian matrix is updated at each iteration using a sketch of the Hessian. We presented three sketching strategies, a new quasi-Newton method that uses stochastic block BFGS updates combined with the variance reduction approach SVRG to compute batch stochastic gradients, and proved linear convergence of the resulting method.

References

