1. Problem Description

The problem is to minimize a sum of two convex functions,

$$\min_{x \in \mathbb{R}^d} \{ P(x) := f(x) + R(x) \},$$

where \(f \) is the average of a large number of smooth convex functions \(f_i(x) \), i.e.,

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x).$$

2. Assumptions

Assumption 1. The regularizer \(R : \mathbb{R}^d \to \mathbb{R} \cup \{ +\infty \} \) is convex and closed. The functions \(f_i : \mathbb{R}^d \to \mathbb{R} \) are differentiable and have Lipschitz continuous gradients with constant \(L > 0 \), i.e., \(\forall x, y \in \mathbb{R}^d, \| \nabla f_i(x) - \nabla f_i(y) \| \leq L \| x - y \| \), where \(\| \cdot \| \) is L2 norm.

Assumption 2. \(P \) is strongly convex with parameter \(\mu > 0 \), i.e., \(\forall x, y \in \text{dom}(P), \)

$$P(y) \geq P(x) + \langle \nabla P(x), y - x \rangle + \frac{\mu}{2} \| y - x \|^2,$$

where \(\partial P(x) \) is the subdifferential of \(P \) at \(x \).

3. The Algorithm (mS2GD)

Algorithm 1 mS2GD

1. **Input:** \(m \) (max # of stochastic steps per epoch); \(h > 0 \) (stepsize); \(x_0 \in \mathbb{R}^d \) (starting point); minibatch size \(b \in \{1, \ldots, n\} \)
2. for \(k = 0, 1, 2, \ldots \) do
3. Compute and store \(y_k = -\nabla f(x_k) + \frac{\mu}{2} \sum_i \nabla f_i(x_k) \)
4. Initialize the inner loop: \(y_{k,0} \leftarrow x_k \)
5. Let \(t_k \leftarrow t \in \{1, 2, \ldots, m\} \) uniformly at random
6. for \(t = 0 \) to \(t_k - 1 \) do
7. Choose minibatch \(A_{k,t} \subset \{1, \ldots, n\} \) of size \(b \), uniformly at random
8. Compute a stochastic estimate of \(\nabla f_i(x_k) \): \(\nabla f_i(x_k) \leftarrow \frac{1}{b} \sum_{i \in A_{k,t}} \nabla f_i(x_k) - \nabla f_i(x_k) \)
9. \(y_{k,t+1} \leftarrow \text{prox}_{hP}(y_{k,t} - \mu y_{k,t}) \)
10. end for
11. Set \(x_{k+1} \leftarrow y_{k,t_k} \)
12. end for

This is a simplified case of our original algorithm. A complete version of the algorithm and convergence result, with known lower bounds of the convexity parameters \(\gamma_P, \gamma_R \) for \(F \) and \(R \) respectively, requires a non-uniform distribution for the number of steps per epoch [1].

4. Convergence Result

Theorem 1. Let Assumptions 1 and 2 be satisfied and let \(x^* \) be a minimizer of \(P(x) \). In addition, assume that the stepsize satisfies \(0 < h < \min \{ \frac{1}{4L}, \frac{\mu}{L^2} \} \) and that \(m \) is sufficiently large so that

$$\rho = \frac{m_0}{m_0 - h} \leq 1,$$

where \(h = \min \{ \frac{1}{4L}, \frac{\mu}{L^2} \} \). Then mS2GD has linear convergence in expectation:

$$E(\| x_k - x^* \|) \leq \rho E(\| x_k - x^* \|) \text{ for } k > 0.$$

The following bound of variance is considered crucial:

$$\mathbb{E} \| x_k - x^* \|^2 \leq 4 \rho E(\| P(y_k) - P(x^*) \|).$$

5. Mini-Batch Speedup

Theorem 2. Fix target \(\rho \in (0, 1) \) and the mini-batch size \(b \). Let us define

$$h^b := \sqrt{\frac{1 + \rho}{\mu \rho} + 4 \rho \mu}.$$

Then the optimal step size \(h^b \) and the maximum size of inner loop \(m_t \) — which minimizes the number of gradient evaluations while keeping sufficient overall decrease — are given as follows:

If \(h^b < \frac{1}{2} \) then \(h_t^b = h^b \) and

$$m_t^b = \frac{8 \rho}{\mu \rho} \left(1 + \sqrt{\frac{1}{4 \mu \rho^2} + (1 + \rho)^2} \right).$$

Otherwise \(h_t^b = \frac{1}{2} \) and \(m_t^b = \frac{1 - \rho \sqrt{1 + \rho^2}}{\mu \rho^2} \).

If \(m_t^b \leq m_t^b \), then we can reach the same accuracy with fewer gradient evaluations. Equation (4) shows that as long as the condition \(h^b < \frac{1}{2} \) is satisfied, \(m_t^b \) is decreasing at a rate roughly faster than \(\frac{1}{b} \). Hence, we can attain the same accuracy with less work, compared to the case when \(b = 1 \).

6. Numerical Experiments

Figure 1: rcv1 dataset, logistic regression, \(R(x) = \frac{1}{2} \| x \|^2 \).

TOP: Comparison between mS2GD and the other relevant algorithms implies its competitiveness. SGD+ is by using constant step-size in hindsight and SGD+ is the one with adaptive step-size \(h = h_{b}(k+1) \), where \(k \) is the number of effective passes.

MIDDLE: We compare mS2GD algorithm for different mini-batch sizes with the best parameters \(m \) and \(h \) for each batch size.

BOTTOM: We present the ideal speedup by parallelism — that would happen if we could always efficiently evaluate the \(b \) gradients in parallel, thus being \(b \) times faster.

7. References

