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| 1. PROBLEM DESCRIPTION _
I The problem is to minimize a sum of two convex functions, def

||Theorem 1. Let Assumptions 1 and 2 be satisfied and let r, =

| | arg ming P(x). In addition, assume that the stepsize satisfies 0 < h <
(@), (D i L— . +1} and that m i ently | that
min<{ ITa(b) =} and that m is sufficiently large so tha

4. CONVERGENCE RESULT

min {P(z):

= f(a) +

where f is the average of a large number of smooth convex functions f;(x), i.e.,

dnLa(b)(m + 1)
m(1l —4nLa(b))

def 1

<1,
mnu(l — 4nLa(b))

(3)

where a(b) = b?n__bl) . Then mS2GD has linear convergence in expectation:
2. ASSUMPTIONS
_ < F _ .
I Assumption 1. The reqularizer R : R — R U {+oo} is convex and closed. E(P(zr) — P(a.)) < p"(P(@0) — P(@.))

I The functions f; : R* — R are differentiable and have Lipschitz continuous I The following bound of variance is considered crucial:

gradients with constant L > 0, i.e., Vx,y € RY,
| E |[[vx,: — VE(yr)|*] < 4ou(b)L(P(yx,) — P(2.)).
IVfi(z) = Vi)l < Lilz —yl, where ||| is L2 norm.

Assumption 2. P is strongly convex with parameter yu > 0, i.e., Vx,y € | 5. MINI-BATCH SPEEDUP _

dom(P), Theorem 2. Fix target p € (0,1) and the mini-batch size b. Let us define

Eb.\/(l%—p)Q 1 1+ p |
| i dpc(b)L pp

Then the optimal step size h® and the mazimum size of inner loop m? —

which minimizes the number of gradient evaluation while keeping sufficient

overall decrease — are given as follows:
If h < % then h® = h® and

— P(x4) + P(xy)

P(y) > P(z)+ &' (y — x) +

where OP(x) is the subdifferential of P at x.

V¢ € OP(x),

Hoy o 2
ly — .

(2) |

3. THE ALGORITHM (mS2G

Algorithm 1 mS2GD

1: Input: m (max # of stochastic steps per epoch); h > 0 (stepsize); o € R? ‘ 4o+ \/ L 0% 4+ (1 + )2
(starting point); minibatch size b € {1,...,n} mP = 8a(b)L da(b)L
2: for £=0,1,2,... do [Lp?
Compute and store g < Vf(xr) = = >, Vfi(xy)
Initialize the inner loop: yi o < Tk
Let tx < t € {1,2,...,m} uniformly at random
fort=0tot, —1do
Choose mini-batch Ag; C {1,...,n} of size b, uniformly at random
Compute a stoch. estimate of V f(yx +):
Vit < gk T % Zz‘eAkt(vfi(yk,t)
9: Yk t+1 < ProxX, p(Yr.t — hvg.¢)
10: end for
11:  Set Ti41 < Yk,
12: end for

L/p+4o(b)

o pb 1
Otherwise h) = + pRvpISTSEE

L

and mP

If mP < m?!/b, then we can reach the same accuracy with fewer gradient

evaluations. Equation (4) shows that as long as the condition h® < L is

satisfied, m? is decreasing at a rate roughly faster than 1/b. Hence, we

can attain the same accuracy with less work, compared to the case when

b=1.
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— V fi(zr))

This is a simplified case of our original algorithm. A complete version of the
algorithm and convergence result, with known lower bounds of the convexity
parameters vp, vg for F' and R respectively, requires a non-uniform distribution 3]
for the number of steps per epoch [1].

Semi-Stochastic Gradient Descent

MINI-BATCH SEMI-STOCHASTIC GRADIENT

DESCENTIN THE PROXIMAL SETTING
Jie Liu

Martin Takac

COMPUTATIONAL OPTIMIZATION, _--,"F' )
RESEARCH AT LEHIGH ety

LEHIGH ?Jrl—'lf IS l‘

UNIVERSITY

6. NUMERICAL EXP
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Figure 1: rcvl dataset, logistic regression, R(x) = %HxHQ

TOP: Comparison between mS2GD and the other rele-
vant algorithms implies its competitiveness. SGDcon is
by using constant step-size in hindsight and SGD+ is the
one with adaptive step-size h = ho/(k+ 1), where k is the
number of effective passes.

MIDDLE: We compare mS2GD algorithm for different

mini-batch sizes with the best parameters m and h for
each batch size.

BOTTOM: We present the ideal speedup by parallelism

— that would happen it we could always efliciently eval-
uate the b gradients in parallel, thus being b times faster.



