

Centre for Numerical Algorithms & Intelligent Software

1. PROBLEM DESCRIPTION

The problem is to minimize a sum of two convex functions,

$$\min_{x \in \mathbb{R}^d} \{ P(x) := f(x) + R(x) \},\$$

where f is the average of a large number of smooth convex functions $f_i(x)$, i.e.,

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x).$$

2. Assumptions

Assumption 1. The regularizer $R : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is convex and closed. The functions $f_i : \mathbb{R}^d \to \mathbb{R}$ are differentiable and have **Lipschitz continuous** gradients with constant L > 0, *i.e.*, $\forall x, y \in \mathbb{R}^d$,

$$\|\nabla f_i(x) - \nabla f_i(y)\| \le L \|x - y\|, \text{ where } \|\cdot\| i$$

Assumption 2. P is strongly convex with paramet $\operatorname{dom}(P),$

$$P(y) \ge P(x) + \xi^T (y - x) + \frac{\mu}{2} \|y - x\|^2, \quad \forall \xi$$

where $\partial P(x)$ is the subdifferential of P at x.

3. The Algorithm (mS2GD)

Algorithm 1 mS2GD

1: Input: $m \pmod{\#}$ of stochastic steps per epoch); h > 0 (stepsize); $x_0 \in \mathbb{R}^d$ (starting point); minibatch size $b \in \{1, \ldots, n\}$ 2: for $k = 0, 1, 2, \dots$ do Compute and store $g_k \leftarrow \nabla f(x_k) = \frac{1}{n} \sum_i \nabla f_i(x_k)$ Initialize the inner loop: $y_{k,0} \leftarrow x_k$ 4: Let $t_k \leftarrow t \in \{1, 2, \dots, m\}$ uniformly at random 5: for t = 0 to $t_k - 1$ do Choose mini-batch $A_{kt} \subset \{1, \ldots, n\}$ of size b, uniformly at random 7:Compute a stoch. estimate of $\nabla f(y_{k,t})$: 8: $v_{k,t} \leftarrow g_k + \frac{1}{b} \sum_{i \in A_{kt}} (\nabla f_i(y_{k,t}) - \nabla f_i(x_k))$ $y_{k,t+1} \leftarrow \operatorname{prox}_{hR}(y_{k,t} - hv_{k,t})$ end for Set $x_{k+1} \leftarrow y_{k,t_k}$ 11: 12: **end for**

This is a simplified case of our original algorithm. A complete version of the algorithm and convergence result, with known lower bounds of the convexity parameters ν_F, ν_R for F and R respectively, requires a non-uniform distribution for the number of steps per epoch [1].

MINI-BATCH SEMI-STOCHASTIC GRADIENT DESCENT IN THE PROXIMAL SETTING

Jakub Konečný

Jie Liu

is L2 norm.

ter
$$\mu > 0$$
, i.e., $\forall x, y \in$

 $\xi \in \partial P(x),$ (2)

4. Convergence Result

 $\min\{\frac{1}{4L\alpha(\mathbf{b})}, \frac{1}{L}\}$ and that m is sufficiently large so that

 $\rho \stackrel{\text{def}}{=} \frac{1}{mn\mu(1 - 4\eta L\alpha)}$

 $\mathbf{E}(P(x_k) - P(x_*))$

The following bound of variance is considered crucial:

$$\mathbf{E}\left[\|v_{k,t} - \nabla F(y_{k,t})\|^2\right] \le 4\alpha(\mathbf{b})L(P(y_{k,t}) - P(x_*) + P(x_k) - P(x_*)).$$

5. MINI-BATCH SPEEDUP

Theorem 2. Fix target $\rho \in (0,1)$ and the mini-batch size b. Let us define

$$\tilde{h}^b := \sqrt{\left(\frac{1+\rho}{\rho\mu}\right)^2 + \frac{1}{4\mu\alpha(\mathbf{b})L} - \frac{1+\rho}{\rho\mu}}.$$

overall decrease — are given as follows: If $\tilde{h}^b \leq \frac{1}{L}$ then $h^b_* = \tilde{h}^b$ and

$$\mathbf{m}_{*}^{\mathbf{b}} = 8\boldsymbol{\alpha}(\mathbf{b})L \frac{1+\boldsymbol{\rho} + \sqrt{\frac{1}{4\boldsymbol{\alpha}(\mathbf{b})L}}\mu\boldsymbol{\rho}^{2} + (1+\boldsymbol{\rho})^{2}}{\mu\boldsymbol{\rho}^{2}}.$$
 (4)

Otherwise $h_*^b = \frac{1}{L}$ and $\mathbf{m}_*^b = \frac{L/\mu + 4\boldsymbol{\alpha}(\mathbf{b})}{\rho - 4\boldsymbol{\alpha}(\mathbf{b})(1+\rho)}$.

If $\mathbf{m}^{\mathbf{b}}_* \leq \mathbf{m}^{\mathbf{1}}_*/\mathbf{b}$, then we can reach the same accuracy with **fewer** gradient evaluations. Equation (4) shows that as long as the condition $h^b \leq \frac{1}{L}$ is satisfied, m_*^b is decreasing at a rate roughly faster than 1/b. Hence, we can attain the same accuracy with less work, compared to the case when b = 1.

7. References

- Methods, arXiv 1312.1666, 2013.
- Progressive Variance Reduction, arXiv 1403.4699, 2014.

Martin Takáč

Theorem 1. Let Assumptions 1 and 2 be satisfied and let $x_* \stackrel{def}{=}$ $\arg \min_x P(x)$. In addition, assume that the stepsize satisfies 0 < h < d

$$\frac{1}{\mathbf{b})} + \frac{4\eta L \boldsymbol{\alpha}(\mathbf{b})(m+1)}{m(1 - 4\eta L \boldsymbol{\alpha}(\mathbf{b}))} < 1, \qquad (3)$$

where $\alpha(\mathbf{b}) = \frac{\mathbf{n} - \mathbf{b}}{\mathbf{b}(\mathbf{n} - 1)}$. Then mS2GD has linear convergence in expectation:

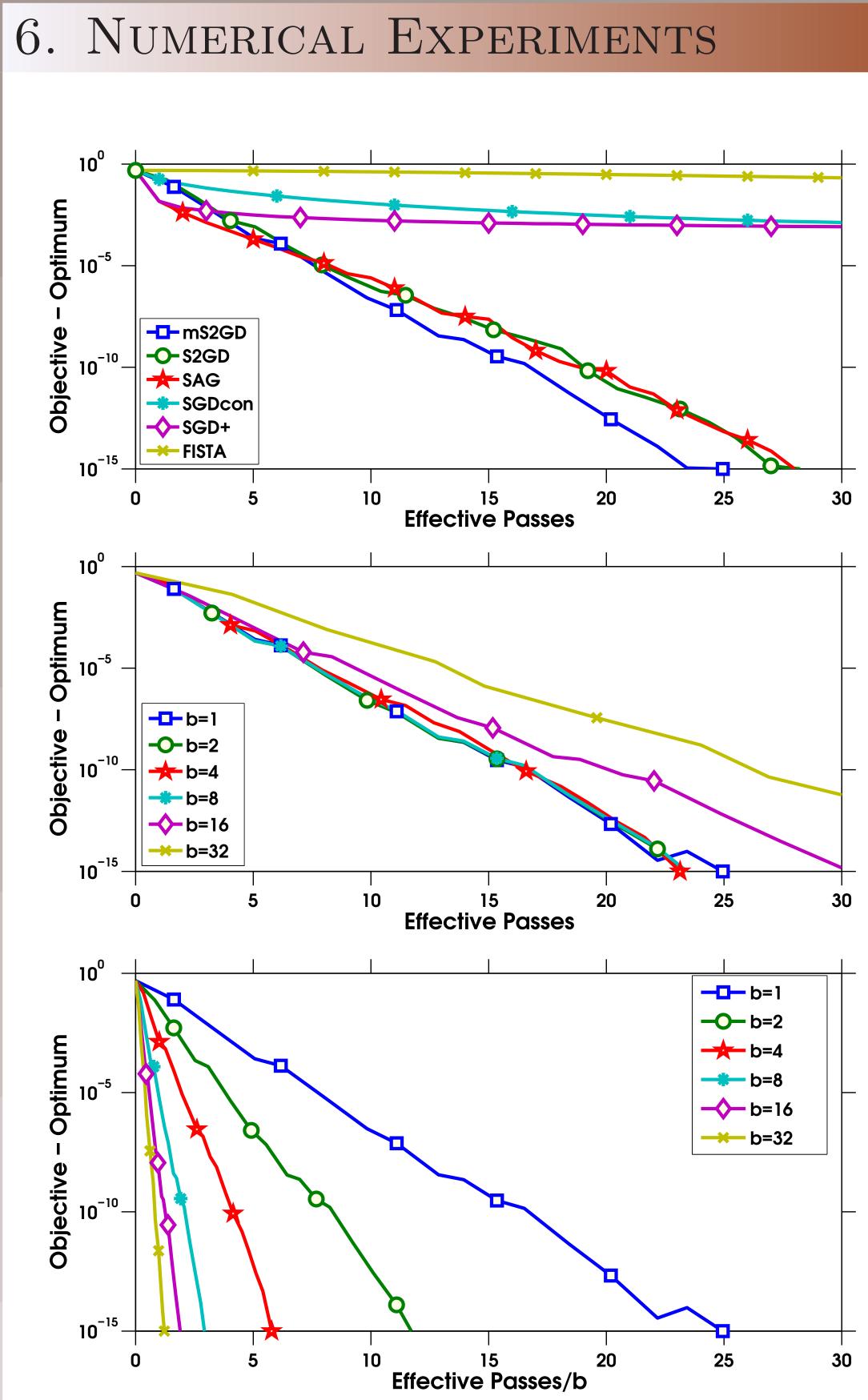
$$P(x_0) \le \rho^k (P(x_0) - P(x_*)).$$

Then the optimal step size h^b_* and the maximum size of inner loop m^b_* which minimizes the number of gradient evaluation while keeping sufficient

[1] Jakub Konečný, Jie Liu, Peter Richtárik and Martin Takáč: mS2GD: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting, OPT 2014

@NIPS. [2] Jakub Konečný and Peter Richtárik: Semi-Stochastic Gradient Descent

[3] Lin Xiao and Tong Zhang: A Proximal Stochastic Gradient Method with



TOP: Comparison between mS2GD and the other relevant algorithms implies its competitiveness. SGDcon is by using constant step-size in hindsight and SGD+ is the one with adaptive step-size $h = h_0/(k+1)$, where k is the number of effective passes.

each batch size.

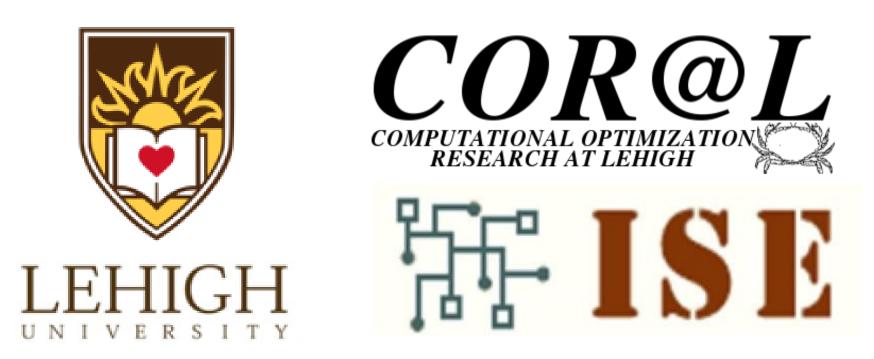


Figure 1: rcv1 dataset, logistic regression, $R(x) = \frac{1}{2n} ||x||^2$.

MIDDLE: We compare mS2GD algorithm for different mini-batch sizes with the best parameters m and h for

BOTTOM: We present the ideal speedup by parallelism — that would happen if we could always efficiently evaluate the b gradients in parallel, thus being b times faster.