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1. Problem Description
The problem is to minimize a sum of two convex functions,

min
x∈Rd
{P (x) := f(x) +R(x)}, (1)

where f is the average of a large number of smooth convex functions fi(x), i.e.,

f(x) = 1
n

∑n
i=1 fi(x).

2. Assumptions

Assumption 1. The regularizer R : Rd → R ∪ {+∞} is convex and closed.
The functions fi : Rd → R are differentiable and have Lipschitz continuous
gradients with constant L > 0, i.e., ∀x, y ∈ Rd,

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, where ‖ · ‖ is L2 norm.

Assumption 2. P is strongly convex with parameter µ > 0, i.e., ∀x, y ∈
dom(P ),

P (y) ≥ P (x) + ξT (y − x) +
µ

2
‖y − x‖2, ∀ξ ∈ ∂P (x), (2)

where ∂P (x) is the subdifferential of P at x.

3. The Algorithm (mS2GD)

Algorithm 1 mS2GD

1: Input: m (max # of stochastic steps per epoch); h > 0 (stepsize); x0 ∈ Rd
(starting point); minibatch size b ∈ {1, . . . , n}

2: for k = 0, 1, 2, . . . do
3: Compute and store gk ← ∇f(xk) = 1

n

∑
i∇fi(xk)

4: Initialize the inner loop: yk,0 ← xk
5: Let tk ← t ∈ {1, 2, . . . ,m} uniformly at random
6: for t = 0 to tk − 1 do
7: Choose mini-batch Akt ⊂ {1, . . . , n} of size b, uniformly at random
8: Compute a stoch. estimate of ∇f(yk,t):

vk,t ← gk + 1
b

∑
i∈Akt

(∇fi(yk,t)−∇fi(xk))
9: yk,t+1 ← proxhR(yk,t − hvk,t)

10: end for
11: Set xk+1 ← yk,tk
12: end for

This is a simplified case of our original algorithm. A complete version of the
algorithm and convergence result, with known lower bounds of the convexity
parameters νF , νR for F and R respectively, requires a non-uniform distribution
for the number of steps per epoch [1].

4. Convergence Result

Theorem 1. Let Assumptions 1 and 2 be satisfied and let x∗
def
=

arg minx P (x). In addition, assume that the stepsize satisfies 0 < h <
min{ 1

4Lα(b) ,
1
L} and that m is sufficiently large so that

ρ
def
=

1

mηµ(1− 4ηLα(b))
+

4ηLα(b)(m+ 1)

m(1− 4ηLα(b))
< 1, (3)

where α(b) = n−b
b(n−1) . Then mS2GD has linear convergence in expectation:

E(P (xk)− P (x∗)) ≤ ρk(P (x0)− P (x∗)).

The following bound of variance is considered crucial:

E
[
‖vk,t −∇F (yk,t)‖2

]
≤ 4α(b)L(P (yk,t)− P (x∗) + P (xk)− P (x∗)).

5. Mini-Batch Speedup
Theorem 2. Fix target ρ ∈ (0, 1) and the mini-batch size b. Let us define

h̃b :=

√(
1 + ρ

ρµ

)2

+
1

4µα(b)L
− 1 + ρ

ρµ
.

Then the optimal step size hb∗ and the maximum size of inner loop mb
∗ —

which minimizes the number of gradient evaluation while keeping sufficient
overall decrease — are given as follows:

If h̃b ≤ 1
L then hb∗ = h̃b and

mb
∗ = 8α(b)L

1 + ρ+
√

1
4α(b)Lµρ

2 + (1 + ρ)2

µρ2
. (4)

Otherwise hb∗ = 1
L and mb

∗ = L/µ+4α(b)
ρ−4α(b)(1+ρ) .

If mb
∗ ≤m1

∗/b, then we can reach the same accuracy with fewer gradient
evaluations. Equation (4) shows that as long as the condition h̃b ≤ 1

L is
satisfied, mb

∗ is decreasing at a rate roughly faster than 1/b. Hence, we
can attain the same accuracy with less work, compared to the case when
b = 1.
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6. Numerical Experiments
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Figure 1: rcv1 dataset, logistic regression, R(x) = 1
2n

‖x‖2.

TOP: Comparison between mS2GD and the other rele-
vant algorithms implies its competitiveness. SGDcon is
by using constant step-size in hindsight and SGD+ is the
one with adaptive step-size h = h0/(k+ 1), where k is the
number of effective passes.

MIDDLE: We compare mS2GD algorithm for different
mini-batch sizes with the best parameters m and h for
each batch size.

BOTTOM: We present the ideal speedup by parallelism
— that would happen if we could always efficiently eval-
uate the b gradients in parallel, thus being b times faster.


