

Nonconvex Variance Reduced Optimization with Arbitrary Sampling

Samuel Horváth¹ Peter Richtárik^{1,2,3}

¹ KAUST

²University of Edinburgh

³Moscow Institute of Physics and Technology

The Problem

$$\min_{x \in \mathbb{R}^d} \quad f(x) \coloneqq \frac{1}{n} \sum_{i=1}^n f_i(x) \tag{1}$$

- f_i is L_i -smooth but **non-convex**
- $\bullet n$ is big

Arbitrary Sampling

- Sampling: a random set-valued mapping S with values being subsets of $[n] := \{1, 2, \dots, n\}$. A sampling is used to generate minibatches in each iteration.
- ullet Probability matrix associated with sampling S: $\mathbf{P}_{ij} \stackrel{\text{def}}{=} \text{Prob}(\{i,j\} \subseteq S)$
- ullet Probability vector associated with sampling S: $p = (p_1, \dots, p_n), \quad p_i \stackrel{\text{def}}{=} \operatorname{Prob}(i \in S)$
- Minibatch size: b = E[|S|] (expected size of S)
- Proper sampling: Sampling for which $p_i > 0$ for all $i \in [n]$
- "Arbitrary sampling" = any proper sampling

Main Contributions

- We develop arbitrary sampling variants of 3 popular variance-reduced methods for solving the non-convex problem (1): SVRG [1], SAGA [2], SARAH [3].
- We are able calculate the optimal sampling out of all samplings of a given minibatch size. This is the first time an optimal minibatch sampling was computed (from the class of all samplings).
- We design importance sampling & approximate importance sampling for minibatches, which vastly outperform standard uniform minibatch strategies in practice.

Key Lemma

Let $\zeta_1, \zeta_2, \ldots, \zeta_n$ be vectors in \mathbb{R}^d and let $\overline{\zeta} \stackrel{\text{def}}{=}$ $\frac{1}{n}\sum_{i=1}^n \zeta_i$ be their average. Let S be a proper sampling. Let $v = (v_1, \ldots, v_n) > 0$ be such that

$$\mathbf{P} - pp^{\top} \leq \mathbf{Diag}(p_1v_1, p_2v_2, \dots, p_nv_n). \tag{2}$$

$$E\left[\left\|\sum_{i\in S} \frac{\zeta_i}{np_i} - \bar{\zeta}\right\|^2\right] \le \frac{1}{n^2} \sum_{i=1}^n \frac{v_i}{p_i} \|\zeta_i\|^2.$$

Whenever (2) holds, it must be the case that $v_i \geq 1 - p_i$.

Optimal Sampling & Superlinear Speedup

• Under our analysis, the independent sampling S^* defined by

$$p_i \stackrel{\text{def}}{=} egin{cases} (b+k-n) rac{L_i}{\sum_{j=1}^k L_j}, & ext{if } i \leq k \ 1, & ext{if } i > k \end{cases}$$

is optimal, where k is the largest integer satisfying $0 < b + k - n \le \frac{\sum_{i=1}^{k} L_i}{L_i}$.

• All 3 methods enjoy superlinear speed in b up to the minibatch size

$$b_{\max} := \max\{b \mid bL_n \le \sum_{i=1}^n L_i\}.$$

Stochastic Gradient Evaluations to Achieve $E ||\nabla f(x)||^2| \leq \epsilon$ Uniform sampling Arbitrary sampling $[NEW] S^*$ (Best Sampling) [NEW]Alg

0			(— , , , , , , , , , , , , , , , , , , ,
SVRG	$\max \left\{ n, \frac{(1+4/3)L_{\max}c_1n^{2/3}}{\epsilon} \right\} [1]$	$\max\left\{n, \frac{(1+4\alpha/3)\bar{L}c_1n^{2/3}}{\epsilon}\right\}$	$\max\left\{n,\frac{\left(1+\frac{4(n-b)}{3n}\right)\bar{L}c_1n^{2/3}}{\epsilon}\right\}$
SAGA	$n + \frac{2L_{\max}c_2n^{2/3}}{\epsilon}$ [2]	$n+rac{(1+lpha)ar{L}c_2n^{2/3}}{\epsilon}$	$n + \frac{(1 + \frac{n-b}{n})\bar{L}c_2n^{2/3}}{\epsilon}$
SARAH	$n + \frac{\frac{n-b}{n-1}L_{\max}^2 c_3}{\epsilon^2} [3]$	$n + \frac{\alpha \bar{L}^2 c_3}{\epsilon^2}$	$n+rac{rac{n-b}{n}ar{L}^2c_3}{\epsilon^2}$

Constants: $L_{\max} = \max_i L_i$ $\bar{L} = \frac{1}{n} \sum_i L_i$ $c_1, c_2, c_3 = \text{universal constants}$ $\alpha := \frac{b}{\bar{L}^2 n^2} \sum_{i=1}^n \frac{v_i L_i^2}{p_i}$

Samplings

- Uniform S^u : Every subset of [n] of size b(minibatch size) is chosen with the same probability: $1/\binom{n}{b}$
- Independent S^* : For each $i \in [n]$ we independently flip a coin, and with probability p_i include element i into S.
- Approximate Independent S^a : Fix some $k \in [n]$ and let $a = [k \max_{i < k} p_i]$. We now sample a single set S' of cardinality a using the uniform minibatch sampling S^u . Subsequently, we apply an independent sampling S^* to select elements of S', with selection probabilities $p'_i = kp_i/a$. The resulting random set is S^a .

SVRG with Arbitrary Sampling

Algorithm 1: SVRG

$$\tilde{x}^{0} = x_{m}^{0} = x^{0}, M = \lceil T/m \rceil;$$

$$\mathbf{for} \ s = 0 \ \mathbf{to} \ M - 1 \ \mathbf{do}$$

$$\begin{vmatrix} x_{0}^{s+1} = x_{m}^{s}; \ g^{s+1} = \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\tilde{x}^{s}) \\ \mathbf{for} \ t = 0 \ \mathbf{to} \ m - 1 \ \mathbf{do}
\end{vmatrix}$$

$$\begin{vmatrix} \text{Draw a random subset (minibatch)} \ S_{t} \sim S \\ v_{t}^{s+1} = \\ \sum_{i_{t} \in S_{t}} \frac{1}{np_{i_{t}}} (\nabla f_{i_{t}}(x_{t}^{s+1}) - \nabla f_{i_{t}}(\tilde{x}^{s})) + g^{s+1} \\ x_{t+1}^{s+1} = x_{t}^{s+1} - \eta v_{t}^{s+1}
\end{vmatrix}$$

$$\mathbf{end}$$

$$\tilde{x}^{s+1} = x_{m}^{s+1}$$

end

Output: Iterate x_a chosen uniformly random from $\{\{x_t^{s+1}\}_{t=0}^m\}_{s=0}^M$

Numerical Results

References

[1] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alex Smola.

Stochastic variance reduction for nonconvex optimization. In The 33th International Conference on Machine Learning, pages 314–323, 2016.

- [2] Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Fast incremental method for smooth nonconvex optimization. In Decision and Control (CDC), 2016 IEEE 55th Conference on, pages 1971–1977. IEEE, 2016.
- [3] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Stochastic recursive gradient algorithm for nonconvex optimization. arXiv:1705.07261, 2017.